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Reference Books (Weeks 8&9)

@ J.K. Blitzstein, J. Hwang, /ntroduction to Probability, 1t ed., 2015

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3™ ed., 1991
S.M. Ross, Introduction to Probability Models, 10t ed., 2009
|.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 15t ed., 2010

G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters, 2" ed., 2005

J.R. Taylor, An Introduction to Error Analysis, 2" ed., 1997
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8.1 Introduction to Probability

" The theory of probability deals with averages of mass phenomena
occurring sequentially or simultaneously.

= |f an experiment is performed n times and the event A occurs ny4
times, and if n is sufficiently large, it is possible to state that the relative
frequency n4 /n of occurrence of A is close to the probability
P{A} that the event A occurs:

P{A}=ny, /n

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3" ed., 1991, Chap. 1
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8.1 Introduction to Probability

* Further formal details in Appendix 8.1 (A8.1)

= Fair dice example

= How a probability function maps events to numbers
= Conditional Probability

= Bayes’ rule & law of total probability (LOTP)

= |ndependence of Events
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8.2 Random Variables

= A Random Variable (RV) is a number X(s) assigned to every
outcome s of an experiment.

Examples: the voltage of a random source, etc..

= The domain of the Random Variable X(s) is §, which is the
set of experimental outcomes. It is also called the support
of the random variable. Its range is R. Two properties must
be satisfied:

1. Theset {X(s) < x}is an event for every x.

2. The probabilities of the events {X = o} and
{X = —o0} must be zero:

l. lww

j

|\ ol ( ”w (M J Jﬂ u\' \ |/ 4.f i

—_— |}

P{X = oo} = P{X = —o0} = 0.

/ f i ) W

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3™ ed., 1991, Chap. 4.1
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8.2 Random Variables (contd.) — Example

Example of random variable mapping X from the sample space
S into the real line (randomness comes from choosing a
random pebblgaccording to P = probability function)

Sgszd% X
S S5 S6

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 3.1
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8.2 Random Variables (contd.)

= A Random Variable X is said to be discrete if there is a finite
list of values a4, a,, ..., a,, or an infinite list of values a4, a,,...

such that P{X = a; for some j} = 1. In the first case, its
support is given by:

4-bit, 4.4 kfps

S ={aq,a,,..,a,} 1
. < 10
Example: the outcome from the launch of a dice; the § - \GD
. . 9
number of photons detected in an image. ! @ SPAD-
z 8 Based
= A Random Variable X is instead said to be continuous if it can S 7p LiDAR
take on any value in a given interval, possibly of infinite = 6t first
length. For example its support can be: £ photon
= PDF
4k
3 . 1 . 1 . 1 . 1 .
, , , , _ 0 20 40 60 80 100
Example: time of arrival of a photon in a LiDAR image. .
Time (ns)
) A. Ulku et al., A512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. |EEE JSTQE (2019).
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 3.2 — M. Beeretal., Background Light Rejection..., MDPI Sensors 18, 2018.
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8.2.1 Probability Mass Functions

How to express the distribution of a (discrete) Random Variable/1

* The probability mass function (PMF) of a discrete RV X is the function:

PMF: pyx(x) = P{X = x}
Note that this value is positive if x € §, zero otherwise.

= The PMF needs to satisfy two criteria:

1. Nonnegative:

px(x) > 0if x = x; for some J,
px(x) = 0 otherwise.

2. Sumsto 1:

co

px(%) =1

J.K. Blitzstein, J. Hwang, Introduction to Probability, lst]ea,12015, Chap. 3.2
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8.2.1 Probability Mass Functions (contd.) — Example

Example

0;

Imagine to toss two coins at the same time. The possible outcomes are,
given that H = head and T = tail, the following: 8§ = {HH,HT, TH,TT}. I
the Random Variable X is the number of heads, it follows that:

px(0) = P{X =0} =1/4

px(1) =P{X =1} =2/4

px(2) = P{X =2} =1/4
px(x) = P{X = x} = 0 for all other x

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 3.2
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8.2.2 Bernoulli and Binomial RVs

First case: a Random Variable which can only take two values

= Adiscrete RV X is said to have the Bernoulli distribution
with parameterp if P{X =1} =pand P{X =0} =1 — p,
where 0 <p < 1.

= An experiment that can result in either a success or a failure
is called a Bernoulli trial.

= Suppose that n independent Bernoulli trials are performed.
Let p be the probability of success, 1 — p the probability of
failure, X (RV) the number of successes. The distribution of
X is called binomial distribution Bin(n, p) with parameters n
and p:
Yk k
PMF: P(X =k} = () p*(1 - )"~
fork=0,1,..,n
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 3.3
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8.2.2 Bernoulli RV — Example

(CMOS) SPAD:
Single-Photon

Avalanche
Photodiode

+ time-of-arrival, energy/wavelength,
polarization, etc.

Perfect single photon detection limited by
1. Photon detection efficiency (PDE) = QE x FF
2. Temporal Aperture Ratio
3. Dark Count Rate

R. Henderson, Edinburgh Univ., ISSCC 2013 — E. Fossum, 11SW 2013
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1-bit frame

L

B Spurious Photon

4-bit frame

— Sparse Photon Counts, Proc. ICCP 2019

A. Chandramouli, A bit too much? High Speed Imaging from
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8.2.2 Bernoulli RV — Example

(CMOS) SPAD: = -
Single-Photon = I
Avalanc.he Z § "t
Photodiode n
| A |
ph = H
¢=photon flux ( /S), T=exposure time, I Frame
n=quantum efficiency, r=Dark Count Rate (DCR) Em | | Time (T)
No Photon Undetected Photon
e~ (hrn)* . B Spurious Photon
@ # of photons at each pixel: P{Z = k} = ] =
P{B = 0} = e~ (®m1+7D)
P{B =1} =1 — e (¢m+rD) @

R. Henderson, Edinburgh Univ., ISSCC 2013 — E. Fossum, [ISW 2013 - S. Ma, Quanta Burst Photography, ACM Trans. Graph., Vol. 39, 2020
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8.2.2 Binomial RV — Example

(CMOS) SPAD: s T
Single-Photon
Avalanche - = ‘
<I | |
Photodiode ih
N ] I o
] _!"' Frame
# of photons k at each pixel for n consecutive P : Time (T)
(independent) frames: O No Photon Undetected Photon
' n—k B Photon B Spurious Photon

P{n, k} = (= k.)' v -p;,fh : (1 — pph) where

ppn =1 —P{1,0} =1 — e ~(@TN+717T)

Y. Hirose, MDPI Sensors(18), 2018
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8.2.2 Binomial RV — Example
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8.2.3 Cumulative Distribution Functions

1.0

How to express the distribution of a Random Variable/2

0.8

= The cumulative distribution function (CDF) of a discrete RV X is the
function Fy given by

0.6

PMF
0.4

CDF: Fx(x) = P{X < x}

0.2

Example: Let X be Bin(4, 1/2). The cumulative distribution function can be
calculated from the probability mass function.

0.0

To find, for example, P{X < 1.5}, we sum the PMF over all values of the
support that are less than or equal to 1.5:

08 1.0

0.6

Fy(15) = P{X <15} =P{X =0} +P{X =1} =

(O - -5

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 3.6
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8.2.3 Cumulative Distribution Functions (contd.)

= For a CDF to be valid, the following three criteria must be met:

1. Increasing: If x; < x,, then Fy(x1) < Fx(x,)

2. Right-continuous: The CDF is continuous except possibly for some

jumps. When there is a jump, the CDF is continuous from the right,
i.e. for any a:

Fe(@) = lim, Fx(x)

3. Convergence to O and to 1 in the limits:

X——00
lim Fy(x) =1
X—> 00

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 3.6
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8.2.4 Probability Density Functions

" Foracontinuous RV X with cumulative distribution function Fy, the

probability density function (PDF) fy is the derivative of the cumulative
distribution function (CDF):

d
PDF: fx(x) = — Fx(x)

hence:

CDF: Fy(x) = jx fx(t) dt

To get a desired probability, integrate the PDF over the appropriate range...

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 5.1

aqua | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics

PDF

CDF

0.10 0.20 0.30

04 06 08 1.0 0.00

0.2

0.0

Slide 21

=PrL



8.2.4 Probability Density Functions (contd.)

= Similarly, by definition of the CDF and the fundamental theorem of
calculus:

b
P{a < X < b} =Fx(b) — Fx(a) = j fx(x) dx

-> Probability = integral of the PDF over a given range.

= For a PDF to be valid, two criteria must be met:

1. Nonnegative:

fx(x) 20

2. Integrates to 1:

j_ifx(x) dx =1

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 5.1
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Take-home Messages/W8-1

= /ntroduction to probability (see also Appendix 8.1):

= Basic definitions, conditional probability ] 4-bit, 4.4 kips
V/ ope . < 10
= Bayes’ rule, law of total probability, independence of events z
z
= Random Variables (RV5): S
z o
= Examples (discrete/continuous) : j
N S U B B
= Probability Mass Function (PMF), Cumulative Distribution T e
Function (CDF) . Bin(10, 172 :
= Probability Density Function (PDF) 3 f \
= Bernoulli, Binomial & related SPAD-based examples  °° ©
Lol ) e
E * ' ' T = . -.4 2 0 ; zlt
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8.2.5 Poisson RV

= Adiscrete RV X taking on one of the values O, 1, 2, .. is said

to have a Poisson distribution with parameter A for

some A > 0 with

PMF: py(x) = P{X = x} =

= |t can be demonstrated that the Poisson PMF

e~ )

x!

(we will write X~Pois(A)) is a valid PMF since,

by Taylor expansion:

—.-=t9'1
i!
=0

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 4.7

aqua

| C. Bruschini, E. Charbon | 2025

Metrology: Elements of Statistics

PMF

PMF

1.0

0.8

06

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Pois(2) PMF

[ g

Pois(5) PMF

CDF

CDF

04 0.6 08 1.0

02

0.0

0.2 04 0.6 0.8 1.0

0.0

Pois(2) CDF

Slide 24

=PrL



8.2.6 Uniform RV

= The continuous uniform RV U on an interval (a, b) is a completely
random number between a and b. Its PDF is given by:

1
PDFfU(x) — b—a fOI'a<x<b,
0 otherwise.
U~Unif(a, b)

= Thisis avalid PDF since the area of the PDF is given by the area of a
rectangle with width b — a and height 1/(b — a).

= |ts CDF is given by:

(0 ifx <a,
X —a

Fy(x) =< ifa<x<b,
b—a
. 1 if x > b.

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 5.2
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8.2.7 Normal (Gaussian) RV

Standard Normal PDF/CDF

0.5

= The Normal (Gaussian) distribution (we will write X~N (u, 62)) is a
famous continuous distribution that is extremely used because of the
central limit theorem, which will be explained later. For the continuous
Normal RV X, the PDF is:

0.4

PDF
0.3

0.2

PDF: fy (x) = =~ (-W"/2"

0.1

0.0

" |nthe special case of u = 0 and o = 1, the distribution takes the name s 4 o1 s s
of standard Normal distribution. We will write it as Z~N(0,1). The
standard Normal PDF and CDF are:

1.0

0.8

0.6

1
PDF: ¢(z) = —e % /2

V2m S i

CDF: ®(2) = jz @(t) dt = jz %e‘tz/z dt S
—00 —oo V4LTT o | . | | | | |
No closed form exists! S 4 2 4 0 1 2 3

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.4
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8.2.7 Normal (Gaussian) RV (contd.)

0.5

= The standard Normal distribution has the following properties:

0.4

1. Symmetry of the PDF: ¢ satisfies ¢(z) = ¢ (—2z)

PDF
0.3

0.2

2. Symmetry of the tail area: the area under the PDF to the left of —z
and to the right of z is equal. Using the CDF:
d(z)=1—P(—2)

0.1

0.0

T T T T T T T
-3 -2 - 0 1 2 3

3. Symmetry of Z and =Z: If Z~N(0,1), then —Z~N(0,1) as well. -
= The Normal distribution X~N (i, 0%) has PDF and CDF as follows: °
x—u\ 1 5
PDF: fy (x) = e~(=W/20% = ¢ ( )— -
V2T o g /O @
CDF: Fy (x) = @ (x — ,u) X = Ut o7 Location-scale :
) = o [X = p+ o] transformation ° 5 5 5 o 1 2 s
J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4 (sh/ft/ng and SCG/ing)
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8.2.8 Exponential RV

= The exponential is a distribution that represents the amount of failures
before the first success (as in time), considering that A is the success rate
per unit time. The average number of successes in the time length t is
At, though the actual number of successes varies randomly.

= Acontinuous RV X is said to have an exponential distribution (we will
write X~Expo(A)) with parameter A if its PDF is:

PDF: fy (x) = 1e ™, x>0
= The corresponding CDF is

CDF: Fy(x) =1 — e, x>0

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 5.5
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8.2.9 Example 1: Photon-flux dependent distributions

SwissSPAD2
binary SPAD
imager

(intensity)

Output pads (128x)

Output 4:1 multiplexer (128x)

Output register (512x)

Column pullup (512x)

—
3
e B
woldN
el
i I
'Bl-'g
)
<10
Y I
o o T
xols
[+
24
)
n X0
ol
owlT
=
T -] e
'Ol-'g
s al8
$|s
o
X olsz
Q
19

TSR AR AT S AR PR A AR R

— Signal Tree for Gate Signals

::|

e

512x512
Pixel Array

Column pullup (512x)

Output register (512x)

Output 4:1 multiplexer (128x)

Output pads (128x)

A. Ulku et al., A512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
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8.2.9 Example 2: Fluorescence Lifetime — Time-Resolved
Laser pulses

D. Li, Strathclyde Univ. (2016).
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Fluorescent Sample

Lifetime images: the pixel time-tags all
photons and calculates t,, t,, A,

| C. Bruschini, E. Charbon | 2025

\ f(t) = Ajexp(-t/T,) + A,exp(-t/T,)+ ...
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8.2.9 Example 2: Fluorescence Lifetime — Time-Resolved

SwissSPAD2
binary SPAD
imager zZ 1
w
c
Q
= n
i = n-1
(overlapping gates) 3 0.5 .
N -3 i
© " Gate Position
-
o O
=
3
50 2
100 !
. 0
Time Gate Position
A. Ulku et al., Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM. EPFL Thése 8311 (2021).
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8.2.9 Example 2:

Fluorescence Lifetime — Time-Resolved

SwissSPAD2
binary SPAD
imager

(overlapping gates
-> convolution)

f (t) = g(t) = IRF(t)

IRF: Instrument
Response Function

A. Ulku et al., A512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. |EEE JSTQE (2019).
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8.2.9 Example 3: Real Life Truths — LIDAR & Timing Jitter in SPADs

3 ;‘\‘\"n‘:‘:‘\\‘\‘\‘L‘L‘;\‘\‘\‘i‘l‘l‘L‘l‘i‘l.\l\i W NN N 00060000 B DRI OF )

M N AN IS T

128x128
SPAD array

128.0 pixels

v/
>
-
o

v

-
”
-
.

-
=
=

-
-
=
=
=
=
=
=
=
=
=
-
=5
=N
5
=5
=5
=
~
o
5
]
~
i
-
-
N
N
N
-_1
b
N
N
-
=
N
o
o
=
o

L L R N R NN

h e S S ST S A SIS TSI T PR RN RN RN RN
i
e

C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. |EEE JSSC 43 (2008).

aqualab | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 33 “P-L



8.2.9 Example 3: Real Life Truths — LIDAR & Timing Jitter in SPADs

START Laser trig . . . .
/Laser pulse Direct SPAD illumination ->
' 5 width . .
AL 1L [ pusea | | A\ SPAD IRF (jitter noise) ->
= — 1 : Laser
eference| ! - i I
i 0 | o tmeraemy | Non-Gaussian behavior of
acss| Time | 5 i e the SPADs timing
<« Interval| . At+$ . At+8 > o= uncertainty
Digitizer| — S i -~

. System T iy
™\ uncertainty : Lot LIg 6

f\ f\ Detoct 7 path 10°
f Interface ; gec or 0‘ f . ) I S
: . | (SPAD) S\ Object P

TDC A 5 Py I T10 s
Optics - a SEAD jitrer taii{exp)——
STOP “ - 3 \\f/
: . : —c-T. 3 S 10 -
6 At < Tmt (Range C Tl]‘lt/ 2) > et S ‘\‘\
Laser trig/START _| | . " -
L 1 ] N uncertainty 22 24 26 28 30
aser puise r / Photon Arrival Time [ns]
STOP AN DA Whs : ;
e ' 26 28 30
Photon Arrival Time [ns]
i A. R. Ximenes et al., A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. IEEE JSSC 54 (2019).
— C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. |IEEE JSSC 43 (2008).
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8.2.9 Example 4: Real Life Truths — TOF-PET

Positron Emission

—-~\
7
Tomography Fhetector
Basics [ block
annihilation /l
process N\
- Time
- I Energy
- Position

N
\ X
. coincidence

unit

L. Braga et al., ISSCC, 2013
GE Discovery 1Q, Nov 2016

[l G. Nemeth, Mediso, Delft WS 2010
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8.2.9 Example 4: Real Life Truths — TOF-PET

gamma scintillator crystal

photon *
=)

Spot Spatial Position (X;Y)

'

w

, o

S

§ Pulse Arrival Time T

scintillation

event / )
| g

Time

Photons

Pulse Energy

Z

< photosensor
— Time
~200 ns

Time

R. Walker et al., 11SW, 2013
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8.2.9 Example 4: Real Life Truths — Scintillation Light

i T T T T T 1 " 80 ’
S 25 1,=45.8ns R =8.2% - 70 L ﬂ T.~9ps
& N 1=365ns R =92% 4 60 | prompt/scintillation = 0.172%
= 2 2 =
(]
o 2 350 -
S O
g . “c:> 40 .
£ & a0 A
= S e Oy S
2 8 N Z20
o - - — e —————
R - R e e 10 -
- 0-5 C 1 1 1 1 1 1 ] - 0 J L L L
S 200 400 600 800 1000 1200 _ 1400 S 104 105 106 107 108 109 110
z 23 A Lk ' : ‘ Ll = 21 WS M SAANGM g AN A ]
- 0 , — 0 Perr——< i L A e o2l U VR : \J
wn -2 L L ] 1 1 g 2t L 1 1 \
& 200 400 600 800 1000 1200 1400 C 104 105 106 107 108 109 110
A T [ns] A T [ns]
Figure 10. Scintillation decay and rise time of BGO measured with a time correlated single photon counting (TCSPC) setup using
511 keV annihilation gammas (Gundacker et al 2016b). The figure on the right hand side shows a pronounced Cherenkov peak at
the onset of the scintillation emission with a relative abundance of 0.172% compared to the total amount of photons detected by the
stop detector of the TCSPC setup.

F

{4

N

S
P

S(
CI

3st vs.
low”
cintillation
hotons in a
eavy
intillating
ystal

Gundacker S, Auffray E, Pauwels K and Lecog P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a
— general study of prompt photons to achieve 10 ps in TOF-PET. IOP Phys. Med. Biol. 61 2802-37
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8.2.10 From Theory to Experiment (and back)

Theory

* Develop Model

¢ List Theoretical
Hypothesis

&

Simulation

s Simulate Model

* Test Theoretical
Predictions

”“x\' .'/

A

Experiment

* Test Model in real
experimental
settings
* Measurement of

dependant variables

y

T MIFES
Fii '||~|||*

https://www.researchgate.net/publication/315995665_ Leading_in_the_Unknown_with_Imperfect_Knowledge_Situational_Creative_Leadership_Strategies_for_ldeation_Management/

— figures
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Take-home Messages/W8-2 c 75] % rommron:
E s
= Random Variables: =28 '[
F 3 ‘ ~- L &
. . . | 1 2 3 4 5 6
= RV distributions: "-\\ flt) = Aexp(-t/,) + Aexp(-t/T)+ ... Photon Count
: : N\
" Poisson <> Exponential N
= Uniform, Gaussian | -:T:-__"_“""";;r— -
= ...and their main properties (see also W3) e
;4-. E I AY ] m‘m;?j: -
= Practical examples! = e —————
i) MZEJ 22 24\\}6 28 30-
= Single-photon imager & Poisson light distribution ] i W i
= Fluorescence lifetime & exponential decay sk C c-asens R=82%
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= Timing jitter — combination of distributions <= physics 5 2
= Scintillation light — combination of distributions <> physics Y
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Outline

8.1 Introduction to Probability
8.2 Random Variables

8.3 Moments

3.4 Covariance and Correlation

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution
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8.3.1 Expected Values

= Given a discrete RV X with support S = {Xl,XZ, }, the Champ|ons League 25022020
expected value (or expectation) of its distribution, which is :
commonly defined mean, is given by (weighted average): NE pOlI — Barcelona
® 1 X 2
E{X} = Z x;j P{X = x;}
po 3.26 3.59 2.11

= The expected value is undefined if:

> | Pix =2} - o0
j=1

= Similarly, if X is a continuous RV with PDF fx(x):

] L

-y

o

=

———o

o

0.0 0.2 0.4 0.6 0.8 1.0

] L

L e

L .

0.0 0.2 0.4 0.6 0.8 1.0

E{X}=f x fi () dx R e e S S

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 4.1 NB: the expected value does not determine the distribution...
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8.3.2 Mean, Median and Mode

° Mean,
< / Median,
= As previously stated, the mean u of a RV X is given by its Mode
expected value. It is called a measure of the central tendency of S
the distribution, specifically its center of mass. N
= The median m of a RV X is that value such that P{X <m} > 0.5 -
and P{X = m} = 0.5. In a continuous RV, it is simply the value at
which Fxy(m) = 0.5. S S
. : .
The mode ¢ of a RV X is that valug that maximizes the PMF (for a S ——v
discrete RV) or the PDF (for a continuous RV): X\
g Median
P{X =c} > P{X =x}forallx \
Mean
fx(c) = fx(x) forall x S
[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 6.1 ° [') Q 1'0 15 2'0
Slide 42
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8.3.2 Mean, Median and Mode — Example

104 L | ——V :25V | :
SwissSPAD2 R
. . ex ' : :
| median: 7.5 cps/px
binary SPAD imager Gaail ¥ sdevl 2
— 3 ex ; 0.26 cps/pm
S o Vex' 22V || mean: 75 cps/px
Z | 2
noise level (DCR = a >

10°

Percent % @

A. Ulku et al., A512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. |EEE JSTQE (2019). 2
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8.3.3 Linearity of expectation and LOTUS

= The most important property of expectation is linearity (actually true for
all RV, not only discrete ones). For every given RVs X and Y and any
constant ¢, it follows:

E{X + Y} = E{X} + E{Y)

E{cX} = cE{X} E{dice} = 3.5

= The law of the unconscious statistician (LOTUS) states that, despite
E{g(X)} does not equal g(E{X}), there is a way to measure E{g(X)}
without the need of finding g(X). Given the discrete RV X and the
function g: R — R, follows:

E{g(X)} = Z g(x) P{X = x}forall X
X
_ o E{2 dices} =
Similarly, if X is a cont. RV with PDF fx(x): E{g(X)} = f_oo g(x)fy(x)dx E{dice} + E{dice} = 7
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 4.2-4.5, 5.1 Used in Section 8.3.6 (MGF)
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8.3.4 Variance

= The variance of a RV X is (average squared difference -> distribution
spread):

Var{X} = E{(X — E{X})*} = E{(X — )*} = o*

and its square root is called the standard deviation:

SD{X} =\ Var{X} =0 @

= ForanyRVJX,
Var{X} = E{X?} — E{X}? = E{X?} — u?

which can be demonstrated easily using the linearity property of
the expected values.

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 4.6
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8.3.4 Variance (contd.) S

= The Variance has the following properties:

1. Var{X + ¢} = Var{X} for any constant c (shift a distribution).
2. Var{cX} = c?*Var{X} for any constant c.

3. If X and Y are independent, then Var{X + Y} = Var{X} +
Var{Y}. Thisis not true in general if X and Y are dependent. For
example, in the case where X =Y

Var{X + Y} =Var{2X} = 4 Var{X} >

2Var{X} =Var{X}+ Var{Y}

4. AllVar{X} = 0, with the equality if and only if P{X = a} = 1 for
some a. [only constants have O variance]

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 4.6
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8.3.5 Moments

= Let X be a RV with mean u and variance 2. For any positive n:

1. the n-th moment of X is E{X"},

2. the n-th central moment of X is E{(X — w)™},

N
3. the n-th standardized moment of X is E {(X—”) }

o

= As we have seen previously, the first moment of a RV X is its mean value,
or, in different words, the center of mass of the distribution:

n=1 u=E{X}

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 6.2
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8.3.5 Moments (contd.)

0.5

0.4

= |n the same fashion, the second central moment of a RV X is its variance,
or the moment of inertia of the distribution around its center:

PDF
0.3

0.2

n=2: d?=Var{X} = E{(X - E{X})?*}

0.1

0.0

-3 -2 -1 0 1 2 3
" The third standardized moment of a RV X is defined as the skewness of '
the distribution. The skewness is a parameter that measures the =
asymmetry of the distribution. By standardizing, we make the skewness 2
independent on the position and scale of X (information given by u and @
o): S 2
3 S
X—u
n=3: Skew{X}=E 3
o
° 070 075 170 175 270 275 370
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 6.2 X
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8.3.5 Moments (contd.)

" |n general, the odd moments give information about the
asymmetry of the distribution.

» The fourth standardized moment of a RV X is defined kurtosis
of the distribution. If we split the distribution in three main
regions, i.e. in the center (1 o around u), the shoulders
(between 1 and 2 ¢’s around u) and the tails (more than 2 a’s
from u), then the kurtosis gives information about the tails.

Kurt{X} = El(X _ H) }— 3
o

a classical distribution with large kurtosis is a PDF with a
sharp peak at the center, low shoulders and heavy tails.

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 6.2
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8.3.5 Moments (contd.) — Textbook Example O

S 0
Al
S o0
e =
w L v |1 w " | :
(@) => ()
o o -~ o ! l
< o ] 0 : :
o‘ o [} |
[} |
N ] |
? [ I T ¢ 2 ' |
o o " ef— | I
o L] L 1 L) L] L o' L) L] 1 F‘_*. o L) L] L L
0.0 1.0 2.0 3.0 O 2 4 6 8 10 12 -05 00 05 1.0 1.5
X X X
FIGURE 6.6

Skewness and kurtosis of some named distributions. Left: Expo(1) PDF, skewness =
2, kurtosis = 6. Middle: Pois(4) PMF, skewness = 0.5, kurtosis = 0.25. Right:
Unif(0, 1) PDF, skewness = 0, kurtosis = —1.2.

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 6.2
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8.3.5 Moments (contd.) — Experimental Example

Coincidence measurements between two scintillating crystals -> influence of actual curve shapes
T ‘;li,“ T T
3 - 1/2 of maximum !ﬁ‘ FWHM=277ps
@ il
4 / \
C f \
= /' \
325 A -
o 1/10 of maximum 4 i FWTM=929ps
B two overlapping 4] Ni\_
o 2 Gaussians \ I
E "
-
<
© 1.5 M1100 ot :
™ maximum ﬂ FW100M=1724ps
3 :
-| |
-1000 -500 0 500 1000
AT [ps]

Large crystal

S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

F. Gramuglia, High-Performance CMOS SPAD-Based Sensors for Time-of-Flight PET Applications, EPFL These 8720 (2022).
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3.3.6 Moment Generating Functions

= The moment generating function (MGF) of a RV X is defined as:

’
z eXpy(x), if X is discrete *
MGF: ¢(t) = E{e"*} =4 _*
f e fy (x) dx, if X is continuous *
\ Y —00

= We call ¢(t) the moment generating function because all the moments

of X can be obtained by successfully differentiating ¢ (t). It follows that:

d
®'(0) = —-E{e™} = E(Xe™} — ¢/(0) = E(X)

d d
#"(0) = 2 ¢'(0) = T EXe™} = E(X?e™} - ¢"(0) = E(X?)

»™(0) = E{X"}, foralln > 1
S.M. Ross, Introduction to Probability Models, 10" ed., 2009, Chap. 2.6
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The MGF is a
“tool” to
calculate the
moments — by
differentiating it
— provided that
an analytical
expression of the
random variable
IS given.

(&9

*Using LOTUS (Section 8.3.3)
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8.4 Multivariate Distributions

Example: LiDAR = detection

= During experiments, in real life, we have to deal with multiple RVs. of backscattered signal
It is very important to know the relationship between different photons in presence of
RVs, i.e. if they are independent or dependent on each other. background light

— (- —————- 00—~

= The joint distributions, also called multivariate distributions, S
capture the missing information about how the multiple variables Signal Photon
i Nnteract. Ambient Photon

Pulse

» The key concepts that will be studied are the joint, marginal and
conditional distributions of two variables (see also Appendix A).

X = signal,
Y = noise (background, DCR, etc.)

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 7 M. Beer et al., Background Light Rejection..., MDPI Sensors 18, 2018.
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8.4.1 Joint Distributions

The joint distribution of two RVs X and Y provides complete information
about the probability of the vector (X, Y) falling into any subset of the

plane.
Joint PMF of discrete RVs X
The joint CDF of two RVs X and Y is a function Fy y such that: and Y

CDF: F V) =P X < x,Y < | '
xy (X, ¥) { X v} PX=x.Y=y) 1 |

In the same fashion, the joint PMF of two discrete RVs X and Y ' | -

is a function py y such that: | .
A1l
PMF: pxy(x,¥) = P{X = x,Y =y} S 9 W w ( ﬂ’ T,
In the same way of the univariate PMF, it has to be nonnegative "y { .o .
and sum up to 1: v T '

ZZP{sz,Yzy}zl ' )
Xy

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.1
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8.4.1 Joint Distributions (contd.)

= Analogously, the joint PDF of two continuous RVs X and Y is given by:
Joint PDF of continuous RVs

K XandY
PDF: fX,y(x, y) = %Fx,y(% y)

" |n order for the joint PDF to be valid, it has to be
nonnegative and integrate to 1:

fX,Y(x»Y) = 0 for all (x;}’)

o OO

j feyGoy) dxdy = 1

—00 —O00

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.2
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8.4.2 Independent Distributions

Example: LIDAR employing
detection of photon
Fyv(x,v) = Fy(x) F coincidences (within a

X’Y( y) x(0) Fr () coincidence window) in
presence of background
light

= Two RVs X and Y are independent if:

which is equivalent to say, for discrete RVs:
P{X =xY =y} =P{X =x}P{Y =y}

and for continuous RVs:

R 01—~

. Signal Photon
fX:Y (x’ y) _ fX (x) fY (y) Ambient Photon

s O--1-@1--—--- -

fY|X(y|x) = fy(y) PRLLN
forall x and y.
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 7.1 M. Beer et al., Background Light Rejection..., MDPI Sensors 18, 2018.
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8.4.3 Example: LIDAR & Coincidence Detection

Example target photograph

<
5m
Power, P Laser signal
Ppeak
....... AAPWQ
= o fime
_______ > @ Coincident photon
o\ Pulsewidth, tpuise Noise photon
time
— Coincidence window €—
touise tOtiotal
After several
Histogram laser cycles
time

TOF, object [4]

Reconstructed 3D image

10 15 20 25
Column

Around same TOF (and depth)

Ay

A

Neighboring pixels on the sensor may
arise from similar parts on the target

30

Depth (m)
10

9
8

7

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiIDAR Applications, Sensors 2019
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Photon coincidences

Coincidence detection is a
well-known technique
which utilizes spatio-
temporal correlations of
photons within a laser pulse
to filter out background
noise photons which are
uniformly distributed in
time

-> concept of coincidence
window to reduce the
likelihood of acquiring noise
events (Appendix B)
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8.4.4 Covariance

= The covariance of the joint distribution of two RVs X and Y
represents their tendency to go up or down together
(“single-number summary”):

CoviX,Y}=E{(X — E{X})(Y —E{Y})}
which, using linearity, becomes
Cov{X,Y} = E{XY} — E{X}E{Y}

= |f two RVs are independent, then their covariance is zero (->
uncorrelated RVs), because:

E{XY} = f j xy fe (O fr () dx dy =

~ [xpeax | v o) dy = EXED)

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 7.3
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8.4.4 Covariance

= The covariance of the joint distribution of two RVs X and Y

represents their tendency to go up or down together bositive correlation Negative correlation
(“single-number summary”): o : o
Cov(X, Y} = E{(X — E(XN)(Y — E{Y})} N I B IR
which, using linearity, becomes -1 x j’f S »x“atb -
Cov{X,Y} = E{XY} — E{X)E{Y) NIREEAE . SR
= |f two RVs are independent, then their covariance is zero (-> ?__‘3 2 4 o 1 2 s ! S 2 4 o 1 5 s

uncorrelated RVs), because:

Independent Dependent but uncorrelated

XY = j" joxyfx(x)fy(y)dxdy= e |

—00 =00 X,Y independent = pxy =0 (X,Y uncorrelated)
pxy =0 (X,Y uncorrelated) = X,Y independent

0o 00

- [2fwax [ypav=smEwy ] - | [ N_J

— 0 —0 -3 -2 A (l) 1[ é é -3 -l2 -l1 (') 1' 2' :;

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 7.3 *Using the definition Of the Covariance above...

aqua | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 60 =PrL



8.4.4 Covariance (contd.)

= The covariance , which is much easier to verify that the statistical
independence, has the following properties:

1. Cov{X, X} =Var{X}

2. Cov{X,Y} = Cov{Y, X}

3. Cov{X,c} = 0forany constant c

4. Cov{aX,Y} = a Cov{X,Y} forany constant a
5. Cov{X+Y,Z} =Cov{X,Z} + Cov{Y,Z}

6. CoviX+Y W+2Z}=Cov{X,Z}+ Cov{Y,Z} + Cov{X,W} +
Cov{Y, W}

7. Var{X+Y}=Var{X}+ Var{Y}+ 2Cov{X,Y}

8. Var{X; + -+ Xp}=Var{X;} + -+ Var{X,} + 2X;; Cov{Xi,Xj}

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 7.3
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8.4.5 Correlation

= The correlation between two RVs X and Y is given by (unitless version of
the covariance):

Covi{X,Y}

CorriX, Y} = \/ Var{X}Var{Y}

= Notice that this formulation is insensitive to scaling. In fact:

Cov{cX,Y} c Cov{X,Y}

CorrieX, ¥} = JVar{cX}Var{Y} } Je2 Var{X} Var{Y}

= Corr{X,Y}

= Moreover, the correlation is bounded:
—1<Corr{X,Y} <1

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 7.3
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" NMoments:

Vi 55V || mean: 75 cps/px
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= Expected value (mean), median, mode

= Linearity and law of the unconscious statistician (LOTUS$0 J

. o _ _ 10° b )
= Variance/standard deviation and its properties 0 20 40 60 80 100

Percent %

= Example of laser and time-resolved measurement

= Moments: general definitions, MGF

» Covariance and Correlation:
= Multivariate, joint and independent distributions

m Covariance and correlation

= Covariance properties(!), e.g. Var{X, + -+ + X, }
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Appendix

A8.1 Introduction to Probability
A8.A  Multivariate Distributions

A8.B  Multivariate Distributions — Example: LIDAR
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Appendix 8.1: Introduction to Probability (contd.) — Example

Fair dice

= The classic example to explain the concept of probability is the fair dice.
In a fair dice, the probability of obtaining one of the six faces, for
example to get the number three, is, as we know, the ratio between the
number of positive configurations and the number of total possible
configurations: P{face is 3} = 1/6.

" |n the same fashion, the probability of obtaining an odd number is
P{face is odd} = 3/6.

= The fair dice represents the classical example of uniform probability
distribution, as we will see.

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3" ed., 1991, Chap. 1
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A8.1 Introduction to Probability (contd.)

How a probability function maps events to numbers

RN
I :t.u"c

What ca)n sooo
happen: oooo
(o] . J-]-
L 4
events numbers
( A b ‘ P(A) N [s
not A P P(A°)=1-P(A)
A and B . P(ANB)
AorB P(AUB) = P(A) + P(B) — P(ANB)
\ something happened P N PS) =1 y A B

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 1. 6, 1.7
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A8.1.1 Conditional Probability

Thinking conditionally — whenever we observe new evidence (i.e., obtain
data), we acquire information that may affect our uncertainties.

Conditional probability answers one simple question: how should we
update our beliefs in light of the evidence we observe?

* |f A and B are events with P{B} > 0, then the conditional probability of
A given B (B being the evidence which we observe) is defined as:

P{A N B}
P{B}

P{A|B} =

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 2.2, 2.3
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A8.1.1 Conditional Probability (contd.) — Example

Example: Two cards are extracted from a standard deck. Let A be the event
that the first card is a heart, and B the event that the second card is red.
Find P{A|B} and P{B|A}.

" From naive definition of probability:

13 25 25
52 51 204

while P{A} = 1/4 and P{B} = 1/2.

P{ANB} = (= P{BNAY})

= Follows:

P{ANB} 25/204 25

PLAIB) = P{B}  1/2 102

P{BNA} 25/204 25
P{A}  1/4 51

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 2.2

P{B|A} =
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A8.1.1 Conditional Probability (contd.)

= From the definition of the conditional probability:

P{A N B}
P{B}

P{A|B} =

we can derive the following theorem:
P{A N B} = P{B}P{A|B} = P{A}P{B|A} = P{BnA}
since P{A N B} = P{B N A}

Applying it repeatedly, we can generalize to the intersection of n events
(commas = intersections):

P{A{, Ay, .., A}
— P{dql}P{qu |dql}P{dq3 |dqli‘/12} P{‘an |dql' "'rdqn—l}

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 2.2, 2.3
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A8.1.2 Bayes’ Rule and Total Probability

= Manipulating the relationship:

P{A N B} = P{B}P{A|B} = P{A}P{B|A} fRelates conditional t
elates conditional to

we can derive the following theorem (Bayes’ rule): unconditional probabilities
P{B|A}P{A
/’\/
which can be extremely useful in case P{B|A} is much BoA, B
easier to find than P{A|B}, or vice versa. Bnd,
Boa, BnA,
= Sometimes, it can be extremely convenient to split a complex BrA,
statistical problem into smaller pieces. In order to do that, one —
can apply the law of total probability (LOTP)*: A, | A, A, A, A A
n n
P(B}= ) PBNA}= Y PlA}PBIA) (&0
i=1 =1

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 2.3
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A8.1.3 Independence of Events

= Two events are stochastically independent if:
P{A N B} = P{A}P{B}

and if P{cA} > 0 and P{B} > 0 then this is equivalent to (from the
definition of the conditional probability):

P{A|B} = P{A}, P{B|A} = P{B)

" |n words, two events A and B are independent if learning that
‘B occurred has no influence on the probability of the event A to
happen (and vice versa).

= As consequence, it also has no influence on the probability of the
opposite of A, A°:

P{A|B} =1 — P{A|B} = 1 — P{A} = P{A°)

= Hence, if A and B are independent, then also A€ and B¢ are. °

Sometimes this property can be extremely useful.
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap 2.5
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Appendix 8. A — Multivariate Distributions: Marginal Distributions

P(X=x)
= Fordiscrete RVs X and Y, the marginal (or unconditional) PMF of
X is given by:

P{X=x}=ZP{X=x,Y=y}
y

T . . T b
Tt | i
’ . ‘I'. |I T { || I,' .
. .". 1‘. ll‘ ‘ || ?‘I
(distribution of X alone by summing over all Y) . . V1 ‘| |T ]
| . | ' I
" |nthe same way, the marginal CDF of X is obtained by: "h S
Fx(x) =P{X<x}=limP{X <x,Y <y}= T
y—00 -
X
= lim Fyy(x,y)
y—00 !
Marginal PMF example
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 7.1
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Appendix 8. A — Multivariate Distributions: Marginal Distributions

For continuous RVs X and Y with joint PDF fx y, the marginal PDF

®
of X is given by: AL

00 * T o.
fx(x) = JfX,Y(x»Y) dy .

= |n the more general case of more than two RVs, all that needs to )

be done is an integration along the unwanted RVs. For example, if

we have the joint PDF of X, Y, W and Z, but we want the joint PDF
of the distributions in X and W'

co 0o

fx,w(x; w) = j ffX,Y,W,Z(x; y,w,z) dy dz

— 00 —O00

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.2
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Appendix 8. A — Multivariate Distributions: Conditional Distributions

= For discrete RVs X and Y, the conditional PMF of Y
given X = x is given by:

P{Y=y|X=x}=P{X=x'Y=y}

(we observe the value of X and want to update our distribution’ -

of Y to reflect this information)

" |tis possible to obtain the conditional PMF of X givenY =y
also using Bayes’ rule or the law of total probability (LOTP):

P{X =x|Y =y} P{Y =y}
P{X = x}

P{Y = y|X =x} =

P(X =x}= ) P(X=xIV =y} PY =y}
y

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.1
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P{X = x} T] MBI

Conditional PMF of Y given
X=X
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Appendix 8. A — Multivariate Distributions: Conditional Distributions

= For continuous RVs X and Y with joint PDF fy y, the
conditional PDF of Y for X = x is given by:

fX,Y(xt y)
fx(x)

fY|X(y|x) =

"= The continuous analogs of Bayes’ rule or the LOTP are given by:

far x1y) fr(y)
frx /1) = ===

fe () = f Few G fr &) dy

.1)@
{bx\

N &0‘\0&
Conditional PDF of Y given
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.2 X=x
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Example target photograph

<

Power, P
Ppeak

Laser signal

@ Coincident photon

________ o |
o\ Pulsewidth, tpuise Noise photon
time
—» Coincidence window €—
tpulse+6t|a¢a|
After several
Histogram laser cycles
time

TOF, object [4]

Reconstructed 3D image

10 15 20 25 30
Column

Around same TOF (and depth)

Ay

A

Neighboring pixels on the sensor may
arise from similar parts on the target

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiIDAR Applications, Sensors 2019
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Depth (m)

10

9

8

7

Photon coincidences

Coincidence detection is a
well-known technique
which utilizes spatio-
temporal correlations of
photons within a laser pulse
to filter out background
noise photons which are
uniformly distributed in
time

-> concept of coincidence
window to reduce the
likelihood of acquiring noise
events

Slides courtesy of P.
Padmanabhan
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

A possible pixel (and/or

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiIDAR Applications, Sensors 2019

aqua

Subgroup, sg (i)

minigroup, mg (i)

i" pixel

i

)

oy
:
:

M pixels

sensor) arrangement:

subgroups (sg) of 8x4 SPADs,
clustered into 4 minigroups

(mg) of 8 SPADs each

Arrival of the first event
starts a coincidence window
-> count events (photons) in

. asg
Event
counter )

coincidence threshold, th

| C. Bruschini, E. Charbon | 2025
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valid

e

Slide 77

-> compare the output of
the event counter with a

predefined (and variable)
coincidence threshold th.
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Subgroup, sg (i)

minigroup, mg (i)

B S

(1 o p_npixel (l) ) & p_spixel (l)

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiIDAR Applications, Sensors 2019
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(a) Detect 1st signal photon
at ith pixel
Mathematically:

p_s.(i) = P(detecting th
number of valid signal
events within t_window) =

Probability of detecting a
signal event in a pixel i, =

p_ Spixe/(i)/

given that no noise photon
is detected at pixel j,

= (1 - p_npixe/(i) )/

and...
s = signal, n = noise
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Subgroup, sg (i)| (b) Detect (th-1) photons in
minigroup, mg (i) mg(i)

i" pixel
1 + * * * * * & ..and p_s,, ,,s9(i) =
P(detecting th - 1 signal

events in the rest of the

* * * * * * * * subgroup).

But p_s,,.1,59(i) =

union operation of
individual probabilities of

* * * * * * * * detecting (th - 1) signal

photons in the minigroup
mg(l) = p_sth-_‘[/mg(i)/

_Sth—l,mg

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiIDAR Applications, Sensors 2019
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Subgroup, sg (i)| (c) Detect (th-1) photonsin
minigroup, mg (i) sg(i) - mg(i)
... or in the rest of the subgroup,

R 1 O SR O O
sgli) - mg(i),
* * * * * * * * =p_S:n.1,59(i)-mg(i)

_S th—1,sg-mg

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiIDAR Applications, Sensors 2019
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

P . Union operation over N\
Summarising: (th-1) photons P—Sth—l,sg(l) = P-Sth—1,mg U P_Sth—1,sg—mg
A |
(a) Detect 1° photon at i" pixel (b) Detect (th-1) photons in mg(i) (¢) Detect (th-1) photons in sg(i) - mg(i)
Subgroup, sg (i) / Subgroup, sg (i) _ _ Subgroup, sg (i) \
r:z’;f:gmup mg (i) ?%Etﬂg, mg (i) mjtfgmup, Mg )
X 3 3 x J l 3 # r ¥ x X + x 3 X ]F 3 X X # x 3 x 3 x
T T | | Ty | ) | 1) (1T LT EE O E e ) [ (EE T L EE e T T e e T T
: A A A N S
i T[] . [T T T T T T T T T T FT 1T + LTI T TV T LLLLLLL] N
r + 3 . 3 K . r 1 # F 3 3 X ]F F y 3 x } x x 9 x 2 F 3
10 (O | | oy () (T T T T CE T T T (T T ) T (T [T L T CL L DL E L L L LT T
+ * ‘ [ * + X x :* :F | \ * 1# + * i} * x x 4: F Y 3 X
) T () (T ) (T T (T (T T O 1) O 10 (OO T T f ) e 0 O [T [ OCE O ) T EE O ) (T
(1 — P _Npixer (i) ) - P_Spixel (i) \ P_Sth-1,mg P_Sth—1,sg-mg /

\_'_’
p_sm(i) = (1— p—npixel(i)) X p—Spixel(i) X p—Sth—l,sg(i)

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiIDAR Applications, Sensors 2019
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