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8.1 Introduction to Probability

 The theory of probability deals with averages of mass phenomena
occurring sequentially or simultaneously.

 If an experiment is performed 𝑛𝑛 times and the event 𝒜𝒜 occurs 𝑛𝑛𝒜𝒜
times, and if 𝑛𝑛 is sufficiently large, it is possible to state that the relative
frequency 𝑛𝑛𝒜𝒜 /𝑛𝑛 of occurrence of 𝒜𝒜 is close to the probability
𝑃𝑃{𝒜𝒜} that the event 𝒜𝒜 occurs:

𝑃𝑃 𝒜𝒜 ≈ 𝑛𝑛𝒜𝒜 /𝑛𝑛

| C. Bruschini, E. Charbon | 2025

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991, Chap. 1
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8.1 Introduction to Probability

 Further formal details in Appendix 8.1 (A8.1)

 Fair dice example

 How a probability function maps events to numbers

 Conditional Probability

 Bayes’ rule & law of total probability (LOTP)

 Independence of Events

| C. Bruschini, E. Charbon | 2025
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8.2 Random Variables

 A Random Variable (RV) is a number 𝑋𝑋 𝑠𝑠 assigned to every 
outcome 𝑠𝑠 of an experiment. 

Examples: the voltage of a random source, etc..

 The domain of the Random Variable 𝑋𝑋 𝑠𝑠 is 𝒮𝒮, which is the 
set of experimental outcomes. It is also called the support
of the random variable. Its range is ℝ. Two properties must 
be satisfied:

1. The set 𝑋𝑋 𝑠𝑠 ≤ 𝑥𝑥 is an event for every 𝑥𝑥.

2. The probabilities of the events 𝑋𝑋 = ∞ and 
𝑋𝑋 = −∞ must be zero:

𝑃𝑃 𝑋𝑋 = ∞ = 𝑃𝑃 𝑋𝑋 = −∞ = 0.

| C. Bruschini, E. Charbon | 2025

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991, Chap. 4.1
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8.2 Random Variables (contd.) – Example 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.1

Example of random variable mapping 𝑋𝑋 from the sample space 
𝒮𝒮 into the real line (randomness comes from choosing a 

random pebble according to 𝑃𝑃 = probability function)

S
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8.2 Random Variables (contd.)

 A Random Variable 𝑋𝑋 is said to be discrete if there is a finite 
list of values 𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝑛𝑛 or an infinite list of values 𝑎𝑎1, 𝑎𝑎2,… 
such that 𝑃𝑃 𝑋𝑋 = 𝑎𝑎𝑗𝑗 for some 𝑗𝑗 = 1. In the first case, its 
support is given by:

𝒮𝒮 = {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛}

Example: the outcome from the launch of a dice; the 
number of photons detected in an image.

 A Random Variable 𝑋𝑋 is instead said to be continuous if it can 
take on any value in a given interval, possibly of infinite 
length. For example its support can be:

𝒮𝒮 = 0,∞

Example: time of arrival of a photon in a LiDAR image.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.2
A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
M. Beer et al., Background Light Rejection…, MDPI Sensors 18, 2018.

SPAD-
Based
LiDAR
first 
photon 
PDF

Q

Q
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8.2.1 Probability Mass Functions

How to express the distribution of a (discrete) Random Variable/1

 The probability mass function (PMF) of a discrete RV 𝑋𝑋 is the function: 

PMF: 𝑝𝑝𝑋𝑋 𝑥𝑥 = 𝑃𝑃{𝑋𝑋 = 𝑥𝑥}

Note that this value is positive if 𝑥𝑥 ∈ 𝒮𝒮, zero otherwise. 

 The PMF needs to satisfy two criteria:

1. Nonnegative: 

𝑝𝑝𝑋𝑋 𝑥𝑥 > 0 if 𝑥𝑥 = 𝑥𝑥𝑗𝑗 for some 𝑗𝑗, 
𝑝𝑝𝑋𝑋 𝑥𝑥 = 0 otherwise.

2. Sums to 1:

�
𝑗𝑗=1

∞
𝑝𝑝𝑋𝑋 𝑥𝑥𝑗𝑗 = 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.2

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiTk_va96bgAhUF6KQKHSgWCDIQjRx6BAgBEAU&url=http://www.wikiwand.com/en/Probability_mass_function&psig=AOvVaw2dGbMqgkdgy0szZI3719y9&ust=1549536550960008
https://www.clipart.email/make-a-clipart/?image=https://cdn.clipart.email/90a6ba512199cd2172760ec1ec6203c5_dice-1-clipart-panda-free-clipart-images_552-413.png
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8.2.1 Probability Mass Functions (contd.) – Example

Example

Imagine to toss two coins at the same time. The possible outcomes are, 
given that 𝐻𝐻 = head and 𝑇𝑇 = tail, the following: 𝒮𝒮 = {𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻,𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇}. If 
the Random Variable 𝑋𝑋 is the number of heads, it follows that:

𝑝𝑝𝑋𝑋 0 = 𝑃𝑃 𝑋𝑋 = 0 = 1/4

𝑝𝑝𝑋𝑋 1 = 𝑃𝑃 𝑋𝑋 = 1 = 2/4

𝑝𝑝𝑋𝑋 2 = 𝑃𝑃 𝑋𝑋 = 2 = 1/4

𝑝𝑝𝑋𝑋 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = 0 for all other 𝑥𝑥

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.2

https://www.clipart.email/make-a-clipart/?image=https://cdn.clipart.email/47b1a4f6d43a250aff5b5b62228430c6_coin-toss-royalty-free-vector-clip-art-illustration-vc089665-_308-480.png
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8.2.2 Bernoulli and Binomial RVs

First case: a Random Variable which can only take two values

 A discrete RV 𝑋𝑋 is said to have the Bernoulli distribution 
with parameter 𝑝𝑝 if 𝑃𝑃 𝑋𝑋 = 1 = 𝑝𝑝 and 𝑃𝑃 𝑋𝑋 = 0 = 1 − 𝑝𝑝, 
where 0 < 𝑝𝑝 < 1. 

 An experiment that can result in either a success or a failure 
is called a Bernoulli trial.

 Suppose that 𝑛𝑛 independent Bernoulli trials are performed. 
Let 𝑝𝑝 be the probability of success, 1 − 𝑝𝑝 the probability of 
failure, 𝑋𝑋 (RV) the number of successes. The distribution of 
𝑋𝑋 is called binomial distribution Bin(𝑛𝑛, 𝑝𝑝) with parameters 𝑛𝑛
and 𝑝𝑝:

PMF: 𝑃𝑃 𝑋𝑋 = 𝑘𝑘 =
𝑛𝑛
𝑘𝑘

𝑝𝑝𝑘𝑘 1 − 𝑝𝑝 𝑛𝑛−𝑘𝑘

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.3

for 𝑘𝑘 = 0,1, … , 𝑛𝑛



Slideaqualab 15Metrology: Elements of Statistics

8.2.2 Bernoulli RV – Example 

| C. Bruschini, E. Charbon | 2025

Photon
No Photon Undetected Photon

Spurious Photon

Frame
Time (T)

(CMOS) SPAD: 
Single-Photon 
Avalanche 
Photodiode

+ time-of-arrival, energy/wavelength, 
polarization, etc.
Perfect single photon detection limited by
1. Photon detection efficiency (PDE) = QE x FF
2. Temporal Aperture Ratio
3. Dark Count Rate

R. Henderson, Edinburgh Univ., ISSCC 2013 – E. Fossum, IISW 2013 A. Chandramouli, A bit too much? High Speed Imaging from 
Sparse Photon Counts, Proc. ICCP 2019

1-bit frame 4-bit frame
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8.2.2 Bernoulli RV – Example 

| C. Bruschini, E. Charbon | 2025

Photon
No Photon Undetected Photon

Spurious Photon

Frame
Time (T)

(CMOS) SPAD: 
Single-Photon 
Avalanche 
Photodiode

ϕ=photon flux �ph
s , τ=exposure time,

η=quantum efficiency, r=Dark Count Rate (DCR)

# of photons at each pixel: 𝑃𝑃 𝑍𝑍 = 𝑘𝑘 =
𝑒𝑒−𝜙𝜙𝜙𝜙𝜙𝜙(𝜙𝜙𝜙𝜙𝜙𝜙)𝑘𝑘

𝑘𝑘!
⟹

𝑃𝑃 𝐵𝐵 = 0 = 𝑒𝑒−(𝜙𝜙𝜙𝜙𝜙𝜙+𝑟𝑟𝜏𝜏)

𝑃𝑃 𝐵𝐵 = 1 = 1 − 𝑒𝑒−(𝜙𝜙𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟)

R. Henderson, Edinburgh Univ., ISSCC 2013 – E. Fossum, IISW 2013 – S. Ma, Quanta Burst Photography, ACM Trans. Graph., Vol. 39, 2020

Q

Q

Ex
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8.2.2 Binomial RV – Example 

| C. Bruschini, E. Charbon | 2025

Photon
No Photon Undetected Photon

Spurious Photon

Frame
Time (T)

(CMOS) SPAD: 
Single-Photon 
Avalanche 
Photodiode

# of photons k at each pixel for n consecutive
(independent) frames:

𝑃𝑃 𝑛𝑛, 𝑘𝑘 =
𝑛𝑛!

𝑛𝑛 − 𝑘𝑘 ! � 𝑘𝑘! � 𝑝𝑝𝑝𝑝𝑝
𝑘𝑘 � 1 − 𝑝𝑝𝑝𝑝𝑝

𝑛𝑛−𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑝𝑝𝑝𝑝𝑝 = 1 − 𝑃𝑃 1,0 = 1 − 𝑒𝑒−(𝜙𝜙𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟)

Y. Hirose, MDPI Sensors(18), 2018



Slideaqualab 18Metrology: Elements of Statistics

8.2.2 Binomial RV – Example 

| C. Bruschini, E. Charbon | 2025
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8.2.3 Cumulative Distribution Functions

How to express the distribution of a Random Variable/2

 The cumulative distribution function (CDF) of a discrete RV 𝑋𝑋 is the 
function 𝐹𝐹𝑋𝑋 given by 

CDF: 𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥

Example: Let 𝑋𝑋 be Bin(4, 1/2). The cumulative distribution function can be 
calculated from the probability mass function.

To find, for example, 𝑃𝑃 𝑋𝑋 ≤ 1.5 , we sum the PMF over all values of the 
support that are less than or equal to 1.5:

𝐹𝐹𝑋𝑋 1.5 = 𝑃𝑃 𝑋𝑋 ≤ 1.5 = 𝑃𝑃 𝑋𝑋 = 0 + 𝑃𝑃 𝑋𝑋 = 1 =

=
4
0

1
2

4

+
4
1

1
2

4

=
1
2

4

+ 4
1
2

4

=
5

16
= 0.3125

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.6
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8.2.3 Cumulative Distribution Functions (contd.)

 For a CDF to be valid, the following three criteria must be met:

1. Increasing: If 𝑥𝑥1 ≤ 𝑥𝑥2, then 𝐹𝐹𝑋𝑋(𝑥𝑥1) ≤ 𝐹𝐹𝑋𝑋(𝑥𝑥2)

2. Right-continuous: The CDF is continuous except possibly for some 
jumps. When there is a jump, the CDF is continuous from the right, 
i.e. for any a:

𝐹𝐹𝑋𝑋 𝑎𝑎 = lim
𝑥𝑥→𝑎𝑎+

𝐹𝐹𝑋𝑋(𝑥𝑥)

3. Convergence to 0 and to 1 in the limits:

lim
𝑥𝑥→−∞

𝐹𝐹𝑋𝑋 𝑥𝑥 = 0

lim
𝑥𝑥→∞

𝐹𝐹𝑋𝑋 𝑥𝑥 = 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.6
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8.2.4 Probability Density Functions

 For a continuous RV 𝑋𝑋 with cumulative distribution function 𝐹𝐹𝑋𝑋, the 
probability density function (PDF) 𝑓𝑓𝑋𝑋 is the derivative of the cumulative 
distribution function (CDF):

PDF: 𝑓𝑓𝑋𝑋 𝑥𝑥 =
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐹𝐹𝑋𝑋 𝑥𝑥

hence:

CDF: 𝐹𝐹𝑋𝑋 𝑥𝑥 = �
−∞

𝑥𝑥
𝑓𝑓𝑋𝑋 𝑡𝑡 𝑑𝑑𝑑𝑑

To get a desired probability, integrate the PDF over the appropriate range...

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.1
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8.2.4 Probability Density Functions (contd.)

 Similarly, by definition of the CDF and the fundamental theorem of 
calculus:

𝑃𝑃{𝑎𝑎 < 𝑋𝑋 ≤ 𝑏𝑏} = 𝐹𝐹𝑋𝑋 𝑏𝑏 − 𝐹𝐹𝑋𝑋 𝑎𝑎 = �
𝑎𝑎

𝑏𝑏
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑑𝑑

-> Probability = integral of the PDF over a given range.

 For a PDF to be valid, two criteria must be met:

1. Nonnegative:

𝑓𝑓𝑋𝑋(𝑥𝑥) ≥ 0

2. Integrates to 1:

�
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.1
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Take-home Messages/W8-1

 Introduction to probability (see also Appendix 8.1):

 Basic definitions, conditional probability

 Bayes’ rule, law of total probability, independence of events

 Random Variables (RVs):

 Examples (discrete/continuous)

 Probability Mass Function (PMF), Cumulative Distribution 
Function (CDF)

 Probability Density Function (PDF)

 Bernoulli, Binomial & related SPAD-based examples

| C. Bruschini, E. Charbon | 2025
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8.2.5 Poisson RV

 A discrete RV 𝑋𝑋 taking on one of the values 0, 1, 2, .. is said 
to have a Poisson distribution with parameter 𝜆𝜆 for 
some 𝜆𝜆 > 0 with

PMF: 𝑝𝑝𝑋𝑋 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑥𝑥

𝑥𝑥!

 It can be demonstrated that the Poisson PMF 
(we will write 𝑋𝑋~Pois 𝜆𝜆 ) is a valid PMF since, 
by Taylor expansion:

�
𝑖𝑖=0

∞
𝜆𝜆𝑖𝑖

𝑖𝑖!
= 𝑒𝑒𝜆𝜆

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.7

Pois(2) PMF Pois(2) CDF

Pois(5) PMF Pois(5) CDF
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8.2.6 Uniform RV

 The continuous uniform RV 𝑈𝑈 on an interval 𝑎𝑎, 𝑏𝑏 is a completely 
random number between 𝑎𝑎 and 𝑏𝑏. Its PDF is given by:

PDF: 𝑓𝑓𝑈𝑈 𝑥𝑥 = �
1

𝑏𝑏 − 𝑎𝑎
for 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏,

0 otherwise.

𝑈𝑈~Unif 𝑎𝑎, 𝑏𝑏

 This is a valid PDF since the area of the PDF is given by the area of a 
rectangle with width 𝑏𝑏 − 𝑎𝑎 and height 1/(𝑏𝑏 − 𝑎𝑎). 

 Its CDF is given by:

𝐹𝐹𝑈𝑈 𝑥𝑥 = �
0 if 𝑥𝑥 ≤ 𝑎𝑎,

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

if 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏

1 if 𝑥𝑥 ≥ 𝑏𝑏.

,

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.2

Unif(0,1) PDF & CDF
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8.2.7 Normal (Gaussian) RV

 The Normal (Gaussian) distribution (we will write 𝑋𝑋~𝒩𝒩 𝜇𝜇,𝜎𝜎2 ) is a 
famous continuous distribution that is extremely used because of the 
central limit theorem, which will be explained later. For the continuous 
Normal RV 𝑋𝑋, the PDF is:

PDF: 𝑓𝑓𝑋𝑋 𝑥𝑥 = 1
2𝜋𝜋 𝜎𝜎

𝑒𝑒− 𝑥𝑥−𝜇𝜇 2/2𝜎𝜎2

 In the special case of 𝜇𝜇 = 0 and 𝜎𝜎 = 1, the distribution takes the name 
of standard Normal distribution. We will write it as 𝑍𝑍~𝒩𝒩 0,1 . The 
standard Normal PDF and CDF are:

PDF: 𝜑𝜑 𝑧𝑧 =
1
2𝜋𝜋

𝑒𝑒−𝑧𝑧2/2

CDF: Φ 𝑧𝑧 = �
−∞

𝑧𝑧
𝜑𝜑 𝑡𝑡 𝑑𝑑𝑑𝑑 = �

−∞

𝑧𝑧 1
2𝜋𝜋

𝑒𝑒−𝑡𝑡2/2 𝑑𝑑𝑑𝑑

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

No closed form exists!

Standard Normal PDF/CDF
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8.2.7 Normal (Gaussian) RV (contd.)

 The standard Normal distribution has the following properties:

1. Symmetry of the PDF: 𝜑𝜑 satisfies 𝜑𝜑 𝑧𝑧 = 𝜑𝜑 −𝑧𝑧

2. Symmetry of the tail area: the area under the PDF to the left of −𝑧𝑧
and to the right of 𝑧𝑧 is equal. Using the CDF:

Φ 𝑧𝑧 = 1 −Φ −𝑧𝑧

3. Symmetry of 𝑍𝑍 and −𝑍𝑍: If 𝑍𝑍~𝒩𝒩 0,1 , then −𝑍𝑍~𝒩𝒩 0,1 as well.

 The Normal distribution 𝑋𝑋~𝒩𝒩 𝜇𝜇,𝜎𝜎2 has PDF and CDF as follows:

PDF: 𝑓𝑓𝑋𝑋 𝑥𝑥 =
1
2𝜋𝜋 𝜎𝜎

𝑒𝑒− 𝑥𝑥−𝜇𝜇 2/2𝜎𝜎2 = 𝜑𝜑
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

1
𝜎𝜎

CDF: 𝐹𝐹𝑋𝑋 𝑥𝑥 = Φ
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

[𝑋𝑋 = 𝜇𝜇 + 𝜎𝜎𝑍𝑍]

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Location-scale 
transformation
(shifting and scaling)

Ex
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8.2.8 Exponential RV

 The exponential is a distribution that represents the amount of failures 
before the first success (as in time), considering that 𝜆𝜆 is the success rate 
per unit time. The average number of successes in the time length 𝑡𝑡 is 
𝜆𝜆𝑡𝑡, though the actual number of successes varies randomly.   

 A continuous RV 𝑋𝑋 is said to have an exponential distribution (we will 
write 𝑋𝑋~Expo 𝜆𝜆 ) with parameter 𝜆𝜆 if its PDF is:

PDF: 𝑓𝑓𝑋𝑋 𝑥𝑥 = 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥, 𝑥𝑥 > 0

 The corresponding CDF is

CDF: 𝐹𝐹𝑋𝑋 𝑥𝑥 = 1 − 𝑒𝑒−𝜆𝜆𝑥𝑥, 𝑥𝑥 > 0

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)

Ex
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8.2.9 Example 1: Photon-flux dependent distributions

SwissSPAD2 
binary SPAD 
imager 

(intensity)

| C. Bruschini, E. Charbon | 2025

Low counts

High counts

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

Q
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8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

Lifetime images: the pixel time-tags all 
photons and calculates t1 , t2 , A1

| C. Bruschini, E. Charbon | 2025

Cancerous 
GanglionFluorescence 

emission

TCSPC (Time-correlated Single-Photon Counting)

Pulsed Laser

Fluorescent Sample

O
bj.

SPAD Imager

dichroic
mirror

emission
filter

Laser pulses

D. Li, Strathclyde Univ. (2016). Gated camera
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8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

SwissSPAD2 
binary SPAD 
imager 

(overlapping gates)

| C. Bruschini, E. Charbon | 2025

A. Ulku et al., Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM. EPFL Thèse 8311 (2021).
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8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

SwissSPAD2 
binary SPAD 
imager 

(overlapping gates 
-> convolution)

IRF: Instrument 
Response Function

| C. Bruschini, E. Charbon | 2025

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

f (t) = g(t) ∗ IRF(t)
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8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs

| C. Bruschini, E. Charbon | 2025

C. Niclass et al., A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs

Direct SPAD illumination -> 
SPAD IRF (jitter noise) -> 

Non-Gaussian behavior of 
the SPADs timing 
uncertainty

| C. Bruschini, E. Charbon | 2025

A. R. Ximenes et al., A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. IEEE JSSC 54 (2019).
C. Niclass et al., A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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8.2.9 Example 4: Real Life Truths – TOF-PET

| C. Bruschini, E. Charbon | 2025

Positron Emission 
Tomography 
Basics

L. Braga et al., ISSCC, 2013
GE Discovery IQ, Nov 2016

G. Nemeth, Mediso, Delft WS 2010
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8.2.9 Example 4: Real Life Truths – TOF-PET

| C. Bruschini, E. Charbon | 2025

R. Walker et al., IISW, 2013
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8.2.9 Example 4: Real Life Truths – Scintillation Light

| C. Bruschini, E. Charbon | 2025

Gundacker S, Auffray E, Pauwels K and Lecoq P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a
general study of prompt photons to achieve 10 ps in TOF-PET. IOP Phys. Med. Biol. 61 2802–37

Fast vs. 
“slow” 
scintillation 
photons in a 
heavy 
scintillating 
crystal
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https://www.researchgate.net/publication/315995665_Leading_in_the_Unknown_with_Imperfect_Knowledge_Situational_Creative_Leadership_Strategies_for_Ideation_Management/
figures

8.2.10 From Theory to Experiment (and back)

| C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics 38
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Take-home Messages/W8-2

 Random Variables:

 RV distributions: 

 Poisson ↔ Exponential

 Uniform, Gaussian

 …and their main properties (see also W3)

 Practical examples!

 Single-photon imager & Poisson light distribution

 Fluorescence lifetime & exponential decay

 Timing jitter – combination of distributions ↔ physics

 Scintillation light – combination of distributions ↔ physics

| C. Bruschini, E. Charbon | 2025
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Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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8.3.1 Expected Values

 Given a discrete RV 𝑋𝑋 with support 𝒮𝒮 = {𝑥𝑥1, 𝑥𝑥2, … }, the
expected value (or expectation) of its distribution, which is
commonly defined mean, is given by (weighted average):

𝐸𝐸 𝑋𝑋 = �
𝑗𝑗=1

∞

𝑥𝑥𝑗𝑗 𝑃𝑃 𝑋𝑋 = 𝑥𝑥𝑗𝑗

 The expected value is undefined if:

�
𝑗𝑗=1

∞

𝑥𝑥𝑗𝑗 𝑃𝑃 𝑋𝑋 = 𝑥𝑥𝑗𝑗 → ∞

 Similarly, if 𝑋𝑋 is a continuous RV with PDF 𝑓𝑓𝑋𝑋 𝑥𝑥 :

𝐸𝐸 𝑋𝑋 = �
−∞

∞
𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑑𝑑

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.1

Champions League 25.02.2020
Napoli – Barcelona 
1 X 2

3.26 3.59 2.11

NB: the expected value does not determine the distribution…
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8.3.2 Mean, Median and Mode

 As previously stated, the mean 𝜇𝜇 of a RV 𝑋𝑋 is given by its
expected value. It is called a measure of the central tendency of
the distribution, specifically its center of mass.

 The median 𝑚𝑚 of a RV 𝑋𝑋 is that value such that 𝑃𝑃{𝑋𝑋 ≤ 𝑚𝑚} ≥ 0.5
and 𝑃𝑃{𝑋𝑋 ≥ 𝑚𝑚} ≥ 0.5. In a continuous RV, it is simply the value at
which 𝐹𝐹𝑋𝑋 𝑚𝑚 = 0.5.

 The mode 𝑐𝑐 of a RV 𝑋𝑋 is that value that maximizes the PMF (for a
discrete RV) or the PDF (for a continuous RV):

𝑃𝑃 𝑋𝑋 = 𝑐𝑐 ≥ 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 for all 𝑥𝑥

𝑓𝑓𝑋𝑋 𝑐𝑐 ≥ 𝑓𝑓𝑋𝑋 𝑥𝑥 for all 𝑥𝑥

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.1

Mean, 
Median, 
Mode

Mean

Median

Mode
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8.3.2 Mean, Median and Mode – Example

| C. Bruschini, E. Charbon | 2025

SwissSPAD2 
binary SPAD imager 

noise level (DCR = 
Dark Count Rate, 
per pixel)

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

Q
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8.3.3 Linearity of expectation and LOTUS

 The most important property of expectation is linearity (actually true for 
all RV, not only discrete ones). For every given RVs 𝑋𝑋 and 𝑌𝑌 and any 
constant 𝑐𝑐, it follows:

𝐸𝐸 𝑋𝑋 + 𝑌𝑌 = 𝐸𝐸 𝑋𝑋 + 𝐸𝐸 𝑌𝑌

𝐸𝐸 𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐 𝑋𝑋

 The law of the unconscious statistician (LOTUS) states that, despite 
𝐸𝐸 𝑔𝑔 𝑋𝑋 does not equal 𝑔𝑔 𝐸𝐸 𝑋𝑋 , there is a way to measure 𝐸𝐸 𝑔𝑔 𝑋𝑋
without the need of finding 𝑔𝑔 𝑋𝑋 . Given the discrete RV 𝑋𝑋 and the 
function 𝑔𝑔:ℝ → ℝ, follows:

𝐸𝐸 𝑔𝑔 𝑋𝑋 = �
𝑥𝑥

𝑔𝑔 𝑥𝑥 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 for all 𝑋𝑋

Similarly, if X is a cont. RV with PDF 𝑓𝑓𝑋𝑋 𝑥𝑥 : 𝐸𝐸 𝑔𝑔 𝑋𝑋 = ∫−∞
∞ 𝑔𝑔 𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑑𝑑

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.2-4.5, 5.1

𝐸𝐸 dice = 3.5

𝐸𝐸 2 dices =
𝐸𝐸 dice + 𝐸𝐸 dice = 7

Used in Section 8.3.6 (MGF)
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8.3.4 Variance

 The variance of a RV 𝑋𝑋 is (average squared difference -> distribution 
spread):

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2 = 𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2 = 𝜎𝜎2

and its square root is called the standard deviation:

𝑆𝑆𝑆𝑆 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝜎𝜎

 For any RV 𝑋𝑋,

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2 = 𝐸𝐸 𝑋𝑋2 − 𝜇𝜇2

which can be demonstrated easily using the linearity property of 
the expected values.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.6

Pulsed LASER

Time−resolved
detector

Q

Q
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8.3.4 Variance (contd.)

 The Variance has the following properties:

1. 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑐𝑐 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 for any constant 𝑐𝑐 (shift a distribution).

2. 𝑉𝑉𝑉𝑉𝑉𝑉 𝑐𝑐𝑋𝑋 = 𝑐𝑐2𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 for any constant 𝑐𝑐.

3. If 𝑋𝑋 and 𝑌𝑌 are independent, then 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 +
𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 . This is not true in general if 𝑋𝑋 and 𝑌𝑌 are dependent. For 
example, in the case where 𝑋𝑋 = 𝑌𝑌:

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 2𝑋𝑋 = 4 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 >

2 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌

4. All 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 ≥ 0, with the equality if and only if 𝑃𝑃 𝑋𝑋 = 𝑎𝑎 = 1 for 
some 𝑎𝑎. [only constants have 0 variance]

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.6

Pulsed LASER

Time−
resolved
detector

Final
measurement

∗



Slideaqualab 47Metrology: Elements of Statistics

8.3.5 Moments

 Let 𝑋𝑋 be a RV with mean 𝜇𝜇 and variance 𝜎𝜎2. For any positive 𝑛𝑛: 

1. the 𝑛𝑛-th moment of 𝑋𝑋 is 𝐸𝐸 𝑋𝑋𝑛𝑛 , 

2. the 𝑛𝑛-th central moment of 𝑋𝑋 is 𝐸𝐸 (𝑋𝑋 − 𝜇𝜇)𝑛𝑛 , 

3. the 𝑛𝑛-th standardized moment of 𝑋𝑋 is 𝐸𝐸 𝑋𝑋−𝜇𝜇
𝜎𝜎

𝑛𝑛
.

 As we have seen previously, the first moment of a RV 𝑋𝑋 is its mean value, 
or, in different words, the center of mass of the distribution:

𝑛𝑛 = 1: 𝜇𝜇 = 𝐸𝐸 𝑋𝑋

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2
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8.3.5 Moments (contd.)

 In the same fashion, the second central moment of a RV 𝑋𝑋 is its variance, 
or the moment of inertia of the distribution around its center:

𝑛𝑛 = 2: 𝜎𝜎2 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝐸𝐸{ 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2}

 The third standardized moment of a RV 𝑋𝑋 is defined as the skewness of 
the distribution. The skewness is a parameter that measures the 
asymmetry of the distribution. By standardizing, we make the skewness 
independent on the position and scale of 𝑋𝑋 (information given by 𝜇𝜇 and 
𝜎𝜎):

𝑛𝑛 = 3: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 = 𝐸𝐸
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

3

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2
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8.3.5 Moments (contd.)

 In general, the odd moments give information about the 
asymmetry of the distribution.

 The fourth standardized moment of a RV 𝑋𝑋 is defined kurtosis
of the distribution. If we split the distribution in three main 
regions, i.e. in the center (1 𝜎𝜎 around 𝜇𝜇), the shoulders
(between 1 and 2 𝜎𝜎’s around 𝜇𝜇) and the tails (more than 2 𝜎𝜎’s 
from 𝜇𝜇), then the kurtosis gives information about the tails.

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑋𝑋 = 𝐸𝐸
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

4

− 3

a classical distribution with large kurtosis is a PDF with a 
sharp peak at the center, low shoulders and heavy tails. 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2

Center

Sh
ou

ld
er

Sh
ou

ld
er

Tail Tail

S
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8.3.5 Moments (contd.) – Textbook Example

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2

S
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8.3.5 Moments (contd.) – Experimental Example

| C. Bruschini, E. Charbon | 2025
F. Gramuglia, High-Performance CMOS SPAD-Based Sensors for Time-of-Flight PET Applications, EPFL Thèse 8720 (2022).

Coincidence measurements between two scintillating crystals -> influence of actual curve shapes

S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

Large crystal
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8.3.6 Moment Generating Functions

 The moment generating function (MGF) of a RV 𝑋𝑋 is defined as:

MGF: 𝜙𝜙 𝑡𝑡 = 𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡 =
�
𝑥𝑥

𝑒𝑒𝑡𝑡𝑡𝑡𝑝𝑝𝑋𝑋 𝑥𝑥 , if 𝑋𝑋 is discrete ∗

�
−∞

∞
𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑑𝑑 , if 𝑋𝑋 is continuous ∗

 We call 𝜙𝜙 𝑡𝑡 the moment generating function because all the moments
of 𝑋𝑋 can be obtained by successfully differentiating 𝜙𝜙 𝑡𝑡 . It follows that:

𝜙𝜙′ 𝑡𝑡 =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡 = 𝐸𝐸 𝑋𝑋𝑒𝑒𝑡𝑡𝑡𝑡 → 𝜙𝜙′ 0 = 𝐸𝐸{𝑋𝑋}

𝜙𝜙′′ 𝑡𝑡 =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜙𝜙′ 𝑡𝑡 =

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐸𝐸 𝑋𝑋𝑒𝑒𝑡𝑡𝑡𝑡 = 𝐸𝐸{𝑋𝑋2𝑒𝑒𝑡𝑡𝑡𝑡} → 𝜙𝜙′′ 0 = 𝐸𝐸 𝑋𝑋2

𝜙𝜙(𝑛𝑛) 0 = 𝐸𝐸 𝑋𝑋𝑛𝑛 , for all 𝑛𝑛 ≥ 1

| C. Bruschini, E. Charbon | 2025

S.M. Ross, Introduction to Probability Models, 10th ed., 2009, Chap. 2.6

The MGF is a 
“tool” to 
calculate the 
moments – by 
differentiating it 
– provided that 
an analytical 
expression of the 
random variable 
is given.

Ex

*Using LOTUS (Section 8.3.3)

S
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Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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8.4 Multivariate Distributions

 During experiments, in real life, we have to deal with multiple RVs. 
It is very important to know the relationship between different 
RVs, i.e. if they are independent or dependent on each other.

 The joint distributions, also called multivariate distributions, 
capture the missing information about how the multiple variables 
interact.

 The key concepts that will be studied are the joint, marginal and 
conditional distributions of two variables (see also Appendix A).

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7

Example: LiDAR = detection 
of backscattered signal 
photons in presence of 
background light

M. Beer et al., Background Light Rejection…, MDPI Sensors 18, 2018.

𝑋𝑋 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,
𝑌𝑌 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷𝐷𝐷, 𝑒𝑒𝑒𝑒𝑒𝑒. )
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8.4.1 Joint Distributions

 The joint distribution of two RVs 𝑋𝑋 and 𝑌𝑌 provides complete information 
about the probability of the vector 𝑋𝑋,𝑌𝑌 falling into any subset of the 
plane.

 The joint CDF of two RVs 𝑋𝑋 and 𝑌𝑌 is a function 𝐹𝐹𝑋𝑋,𝑌𝑌 such that:

CDF: 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥,𝑌𝑌 ≤ 𝑦𝑦

 In the same fashion, the joint PMF of two discrete RVs 𝑋𝑋 and 𝑌𝑌
is a function 𝑝𝑝𝑋𝑋,𝑌𝑌 such that:

PMF: 𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦

 In the same way of the univariate PMF, it has to be nonnegative 
and sum up to 1:

�
𝑥𝑥

�
𝑦𝑦

𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 = 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Joint PMF of discrete RVs X
and Y
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8.4.1 Joint Distributions (contd.)

 Analogously, the joint PDF of two continuous RVs 𝑋𝑋 and 𝑌𝑌 is given by:

PDF: 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2

𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥
𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

 In order for the joint PDF to be valid, it has to be 
nonnegative and integrate to 1:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦 ≥ 0 for all 𝑥𝑥,𝑦𝑦

�
−∞

∞

�
−∞

∞

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.2

Joint PDF of continuous RVs 
X and Y
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8.4.2 Independent Distributions

 Two RVs 𝑋𝑋 and 𝑌𝑌 are independent if:

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝐹𝐹𝑋𝑋 𝑥𝑥 𝐹𝐹𝑌𝑌 𝑦𝑦

which is equivalent to say, for discrete RVs:

𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑃𝑃 𝑌𝑌 = 𝑦𝑦

and for continuous RVs:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑦𝑦

or

𝑓𝑓𝑌𝑌|𝑋𝑋 𝑦𝑦|𝑥𝑥 = 𝑓𝑓𝑌𝑌 𝑦𝑦

for all 𝑥𝑥 and 𝑦𝑦.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Example: LiDAR employing 
detection of photon 
coincidences (within a 
coincidence window) in 
presence of background 
light

M. Beer et al., Background Light Rejection…, MDPI Sensors 18, 2018.
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8.4.3 Example: LIDAR & Coincidence Detection 

| C. Bruschini, E. Charbon | 2025

Photon coincidences

Coincidence detection is a 
well-known technique 
which utilizes spatio-
temporal correlations of 
photons within a laser pulse 
to filter out background 
noise photons which are 
uniformly distributed in 
time
-> concept of coincidence 
window to reduce the 
likelihood of acquiring noise 
events (Appendix B)

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications, Sensors 2019
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8.4.4 Covariance

 The covariance of the joint distribution of two RVs 𝑋𝑋 and 𝑌𝑌
represents their tendency to go up or down together 
(“single-number summary”):

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌

which, using linearity, becomes

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

 If two RVs are independent, then their covariance is zero (-> 
uncorrelated RVs), because:

𝐸𝐸 𝑋𝑋𝑋𝑋 = �
−∞

∞

�
−∞

∞

𝑥𝑥𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 =

= �
−∞

∞

𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑑𝑑 �
−∞

∞

𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑑𝑑 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3 *Using the definition of the Covariance above…

*
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8.4.4 Covariance

 The covariance of the joint distribution of two RVs 𝑋𝑋 and 𝑌𝑌
represents their tendency to go up or down together 
(“single-number summary”):

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌

which, using linearity, becomes

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

 If two RVs are independent, then their covariance is zero (-> 
uncorrelated RVs), because:

𝐸𝐸 𝑋𝑋𝑋𝑋 = �
−∞

∞

�
−∞

∞

𝑥𝑥𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 =

= �
−∞

∞

𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑑𝑑 �
−∞

∞

𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑑𝑑 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3 *Using the definition of the Covariance above…

*
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8.4.4 Covariance (contd.)

 The covariance , which is much easier to verify that the statistical 
independence, has the following properties:

1. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋

2. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌,𝑋𝑋

3. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋, 𝑐𝑐 = 0 for any constant 𝑐𝑐

4. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑋𝑋,𝑌𝑌 = 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 for any constant 𝑎𝑎

5. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋 + 𝑌𝑌,𝑍𝑍 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑍𝑍 + 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌,𝑍𝑍

6. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋 + 𝑌𝑌,𝑊𝑊 + 𝑍𝑍 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑍𝑍 + 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌,𝑍𝑍 + 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑊𝑊 +
𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌,𝑊𝑊

7. 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 + 2𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌

8. 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋1 + ⋯+ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋𝑛𝑛 + 2∑𝑖𝑖<𝑗𝑗 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3
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8.4.5 Correlation

 The correlation between two RVs 𝑋𝑋 and 𝑌𝑌 is given by (unitless version of 
the covariance):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 =
𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌

 Notice that this formulation is insensitive to scaling. In fact:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐,𝑌𝑌 =
𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐,𝑌𝑌

𝑉𝑉𝑉𝑉𝑉𝑉 𝑐𝑐𝑋𝑋 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌
=

𝑐𝑐 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌

𝑐𝑐2 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌
= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌

 Moreover, the correlation is bounded:

−1 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 ≤ 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3
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Take-home Messages/W8-3

 Moments:

 Expected value (mean), median, mode

 Linearity and law of the unconscious statistician (LOTUS)

 Variance/standard deviation and its properties

 Example of laser and time-resolved measurement

 Moments: general definitions, MGF

 Covariance and Correlation:

 Multivariate, joint and independent distributions

 Covariance and correlation

 Covariance properties(!), e.g. 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

| C. Bruschini, E. Charbon | 2025
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Appendix

A8.1 Introduction to Probability

A8.A Multivariate Distributions

A8.B Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025
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Appendix 8.1: Introduction to Probability (contd.) – Example

Fair dice

 The classic example to explain the concept of probability is the fair dice.
In a fair dice, the probability of obtaining one of the six faces, for
example to get the number three, is, as we know, the ratio between the
number of positive configurations and the number of total possible
configurations: 𝑃𝑃{face is 3} = 1/6.

 In the same fashion, the probability of obtaining an odd number is
𝑃𝑃{face is odd} = 3/6.

 The fair dice represents the classical example of uniform probability
distribution, as we will see.

| C. Bruschini, E. Charbon | 2025

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991, Chap. 1
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A8.1 Introduction to Probability (contd.)

How a probability function maps events to numbers

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 1. 6, 1.7
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A8.1.1 Conditional Probability

Thinking conditionally – whenever we observe new evidence (i.e., obtain 
data), we acquire information that may affect our uncertainties.

Conditional probability answers one simple question: how should we
update our beliefs in light of the evidence we observe?

 If 𝒜𝒜 and ℬ are events with 𝑃𝑃{ℬ} > 0, then the conditional probability of
𝒜𝒜 given ℬ (ℬ being the evidence which we observe) is defined as:

𝑃𝑃{𝒜𝒜|ℬ} =
𝑃𝑃{𝒜𝒜 ∩ ℬ}
𝑃𝑃{ℬ}

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.2, 2.3



Slideaqualab 68Metrology: Elements of Statistics

A8.1.1 Conditional Probability (contd.) – Example

Example: Two cards are extracted from a standard deck. Let 𝒜𝒜 be the event
that the first card is a heart, and ℬ the event that the second card is red.
Find 𝑃𝑃 𝒜𝒜|ℬ and 𝑃𝑃 ℬ|𝒜𝒜 .

 From naïve definition of probability:

𝑃𝑃 𝒜𝒜∩ℬ =
13
52

�
25
51

=
25

204
(= 𝑃𝑃 ℬ∩𝒜𝒜 )

while 𝑃𝑃 𝒜𝒜 = 1/4 and 𝑃𝑃 ℬ = 1/2.

 Follows:

𝑃𝑃 𝒜𝒜|ℬ =
𝑃𝑃 𝒜𝒜∩ℬ
𝑃𝑃 ℬ

=
25/204

1/2
=

25
102

𝑃𝑃 ℬ|𝒜𝒜 =
𝑃𝑃 ℬ∩𝒜𝒜
𝑃𝑃 𝒜𝒜

=
25/204

1/4
=

25
51

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.2
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A8.1.1 Conditional Probability (contd.)

 From the definition of the conditional probability:

𝑃𝑃{𝒜𝒜|ℬ} =
𝑃𝑃{𝒜𝒜 ∩ ℬ}
𝑃𝑃{ℬ}

we can derive the following theorem:

𝑃𝑃 𝒜𝒜 ∩ ℬ = 𝑃𝑃 ℬ 𝑃𝑃 𝒜𝒜|ℬ = 𝑃𝑃 𝒜𝒜 𝑃𝑃 ℬ|𝒜𝒜 = 𝑃𝑃 ℬ ∩𝒜𝒜

since 𝑃𝑃 𝒜𝒜 ∩ ℬ = 𝑃𝑃 ℬ ∩𝒜𝒜

Applying it repeatedly, we can generalize to the intersection of n events
(commas = intersections):

𝑃𝑃 𝒜𝒜1,𝒜𝒜2, . . ,𝒜𝒜𝑛𝑛
= 𝑃𝑃 𝒜𝒜1 𝑃𝑃 𝒜𝒜2|𝒜𝒜1 𝑃𝑃{𝒜𝒜3|𝒜𝒜1,𝒜𝒜2} …𝑃𝑃{𝒜𝒜𝑛𝑛|𝒜𝒜1, … ,𝒜𝒜𝑛𝑛−1}

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.2, 2.3
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A8.1.2 Bayes’ Rule and Total Probability

 Manipulating the relationship:

𝑃𝑃{𝒜𝒜 ∩ ℬ} = 𝑃𝑃 ℬ 𝑃𝑃{𝒜𝒜|ℬ} = 𝑃𝑃 𝒜𝒜 𝑃𝑃{ℬ|𝒜𝒜}

we can derive the following theorem (Bayes’ rule):

𝑃𝑃{𝒜𝒜|ℬ} =
𝑃𝑃 ℬ|𝒜𝒜 𝑃𝑃{𝒜𝒜}

𝑃𝑃{ℬ}

which can be extremely useful in case 𝑃𝑃 ℬ|𝒜𝒜 is much
easier to find than 𝑃𝑃{𝒜𝒜|ℬ}, or vice versa.

 Sometimes, it can be extremely convenient to split a complex
statistical problem into smaller pieces. In order to do that, one
can apply the law of total probability (LOTP)*:

𝑃𝑃 ℬ = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 ℬ ∩𝒜𝒜𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝒜𝒜𝑖𝑖 𝑃𝑃 ℬ|𝒜𝒜𝑖𝑖

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.3

*Relates conditional to 
unconditional probabilities

Ex
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A8.1.3 Independence of Events

 Two events are stochastically independent if:

𝑃𝑃 𝒜𝒜 ∩ ℬ = 𝑃𝑃 𝒜𝒜 𝑃𝑃 ℬ

and if 𝑃𝑃{𝒜𝒜} > 0 and 𝑃𝑃{ℬ} > 0 then this is equivalent to (from the 
definition of the conditional probability):

𝑃𝑃 𝒜𝒜|ℬ = 𝑃𝑃 𝒜𝒜 , 𝑃𝑃 ℬ|𝒜𝒜 = 𝑃𝑃 ℬ

 In words, two events 𝒜𝒜 and ℬ are independent if learning that 
ℬ occurred has no influence on the probability of the event 𝒜𝒜 to 
happen (and vice versa).

 As consequence, it also has no influence on the probability of the 
opposite of 𝒜𝒜, 𝒜𝒜𝑐𝑐:

𝑃𝑃 𝒜𝒜𝑐𝑐|ℬ = 1 − 𝑃𝑃 𝒜𝒜|ℬ = 1 − 𝑃𝑃 𝒜𝒜 = 𝑃𝑃 𝒜𝒜𝑐𝑐

 Hence, if 𝒜𝒜 and ℬ are independent, then also 𝒜𝒜𝑐𝑐 and ℬ𝑐𝑐 are. 
Sometimes this property can be extremely useful.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap 2.5
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Appendix 8.A – Multivariate Distributions: Marginal Distributions

 For discrete RVs 𝑋𝑋 and 𝑌𝑌, the marginal (or unconditional) PMF of 
𝑋𝑋 is given by:

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = �
𝑦𝑦

𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦

(distribution of 𝑋𝑋 alone by summing over all 𝑌𝑌)

 In the same way, the marginal CDF of 𝑋𝑋 is obtained by:

𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 = lim
𝑦𝑦→∞

𝑃𝑃{𝑋𝑋 ≤ 𝑥𝑥,𝑌𝑌 ≤ 𝑦𝑦} =

= lim
𝑦𝑦→∞

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Marginal PMF example
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Appendix 8.A – Multivariate Distributions: Marginal Distributions

 For continuous RVs 𝑋𝑋 and 𝑌𝑌 with joint PDF 𝑓𝑓𝑋𝑋,𝑌𝑌, the marginal PDF
of 𝑋𝑋 is given by:

𝑓𝑓𝑋𝑋 𝑥𝑥 = �
−∞

∞

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑑𝑑

 In the more general case of more than two RVs, all that needs to
be done is an integration along the unwanted RVs. For example, if
we have the joint PDF of 𝑋𝑋, 𝑌𝑌, 𝑊𝑊 and 𝑍𝑍, but we want the joint PDF
of the distributions in 𝑋𝑋 and 𝑊𝑊:

𝑓𝑓𝑋𝑋,𝑊𝑊 𝑥𝑥,𝑤𝑤 = �
−∞

∞

�
−∞

∞

𝑓𝑓𝑋𝑋,𝑌𝑌,𝑊𝑊,𝑍𝑍 𝑥𝑥,𝑦𝑦,𝑤𝑤, 𝑧𝑧 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.2
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Appendix 8.A – Multivariate Distributions: Conditional Distributions

 For discrete RVs 𝑋𝑋 and 𝑌𝑌, the conditional PMF of 𝑌𝑌
given 𝑋𝑋 = 𝑥𝑥 is given by:

𝑃𝑃{𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥} =
𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦

𝑃𝑃 𝑋𝑋 = 𝑥𝑥

(we observe the value of X and want to update our distribution 
of Y to reflect this information)

 It is possible to obtain the conditional PMF of 𝑋𝑋 given 𝑌𝑌 = 𝑦𝑦
also using Bayes’ rule or the law of total probability (LOTP):

𝑃𝑃{𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥} =
𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦

𝑃𝑃 𝑋𝑋 = 𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = �
𝑦𝑦

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Conditional PMF of Y given 
X = x
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Appendix 8.A – Multivariate Distributions: Conditional Distributions

 For continuous RVs 𝑋𝑋 and 𝑌𝑌 with joint PDF 𝑓𝑓𝑋𝑋,𝑌𝑌, the 
conditional PDF of 𝑌𝑌 for 𝑋𝑋 = 𝑥𝑥 is given by:

𝑓𝑓𝑌𝑌|𝑋𝑋 𝑦𝑦 𝑥𝑥 =
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑓𝑓𝑋𝑋 𝑥𝑥

 The continuous analogs of Bayes’ rule or the LOTP are given by:

𝑓𝑓𝑌𝑌|𝑋𝑋 𝑦𝑦 𝑥𝑥 =
𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦

𝑓𝑓𝑋𝑋 𝑥𝑥

𝑓𝑓𝑋𝑋 𝑥𝑥 = �
−∞

∞
𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥 𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑑𝑑

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.2

Conditional PDF of Y given 
X = x
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

Photon coincidences

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Coincidence detection is a 
well-known technique 
which utilizes spatio-
temporal correlations of 
photons within a laser pulse 
to filter out background 
noise photons which are 
uniformly distributed in 
time
-> concept of coincidence 
window to reduce the 
likelihood of acquiring noise 
events 
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

A possible pixel (and/or 
sensor) arrangement: 

subgroups (sg) of 8x4 SPADs, 
clustered into 4 minigroups

(mg) of 8 SPADs each

Arrival of the first event 
starts a coincidence window 
-> count events (photons) in 
a sg

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Subgroup, sg (i)

           

ith pixe l
minigroup, mg (i)

-> compare the output of 
the event counter with a 
predefined (and variable) 
coincidence threshold th.
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Mathematically:

p_sth(i) = P(detecting th
number of valid signal 
events within t_window) = 

Probability of detecting a 
signal event in a pixel i, =
p_spixel(i),

given that no noise photon 
is detected at pixel i, 
= ( 1 - p_npixel(i) ),

and…

Subgroup, sg (i)

ith pixe l
minigroup, mg (i)

(1 − p_npixel (i) ) × p_spixel (i)
s = signal, n = noise

(a) Detect 1st signal photon 
at ith pixel
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Subgroup, sg (i)

ith pixe l
minigroup, mg (i)

p_sth−1,mg

(b) Detect (th-1) photons in 
mg(i)

… and p_sth-1,sg(i) = 
P(detecting th - 1 signal 
events in the rest of the 
subgroup). 

But p_sth-1,sg(i) = 

union operation of 
individual probabilities of 
detecting (th - 1) signal 
photons in the minigroup
mg(i) = p_sth-1,mg(i),
…
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Subgroup, sg (i)

ith pixe l
minigroup, mg (i)

p_sth−1,sg-mg

(c) Detect (th-1) photons in 
sg(i) - mg(i)

… or in the rest of the subgroup, 
sg(i) - mg(i),

= p_sth-1,sg(i)-mg(i)
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

Union operation over 
(th-1) photons

P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications, Sensors 2019
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