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Reference Books (Weeks 8&9)

| C. Bruschini, E. Charbon | 2025

J.R. Taylor, An Introduction to Error Analysis, 2nd ed., 1997

G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters, 2nd ed., 2005

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010

S.M. Ross, Introduction to Probability Models, 10th ed., 2009

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991

The first reference, by Blitzstein, was used extensively throughout this lecture as well as 
the following one. It should still be available from the EPFL library and is a suggested 
read for these topics.

NB: in general, see also the reference box at the bottom of the slides for notes on the 
exact chapters, etc.
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Outline

8.1  Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025

The Outline covers both this lecture as well as the next one.
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8.1 Introduction to Probability

 The theory of probability deals with averages of mass phenomena
occurring sequentially or simultaneously.

 If an experiment is performed 𝑛 times and the event 𝒜 occurs 𝑛𝒜
times, and if 𝑛 is sufficiently large, it is possible to state that the relative
frequency 𝑛𝒜  /𝑛 of occurrence of 𝒜 is close to the probability
𝑃ሼ𝒜ሽ that the event𝒜 occurs:

𝑃 𝒜 ൎ 𝑛𝒜  /𝑛

| C. Bruschini, E. Charbon | 2025

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991, Chap. 1

In order to move quickly to practical examples, this part has been substantially abridged 
and is now available in the Appendix. Please refer to it for the exact definitions.
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8.1 Introduction to Probability

 Further formal details in Appendix 8.1 (A8.1)

 Fair dice example

 How a probability function maps events to numbers

 Conditional Probability

 Bayes’ rule & law of total probability (LOTP)

 Independence of Events

| C. Bruschini, E. Charbon | 2025

In order to move quickly to practical examples, this part has been substantially abridged 
and is now available in the Appendix. Please refer to it for the exact definitions.
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Outline
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8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution
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8.2 Random Variables

 A Random Variable (RV) is a number 𝑋 𝑠 assigned to every 
outcome 𝑠 of an experiment. 

Examples: the voltage of a random source, etc..

 The domain of the Random Variable 𝑋 𝑠 is 𝒮, which is the 
set of experimental outcomes. It is also called the support
of the random variable. Its range is ℝ. Two properties must 
be satisfied:

1. The set  𝑋 𝑠 ൑ 𝑥 is an event for every 𝑥.

2. The probabilities of the events  𝑋 ൌ ∞ and 
𝑋 ൌ െ∞ must be zero:

𝑃 𝑋 ൌ ∞ ൌ 𝑃 𝑋 ൌ െ∞ ൌ 0.

| C. Bruschini, E. Charbon | 2025

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991, Chap. 4.1

𝒮 = support is the set of experimental outcomes.
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8.2 Random Variables (contd.) – Example 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.1

Example of random variable mapping 𝑋 from the sample space 
𝒮 into the real line (randomness comes from choosing a 
random pebble according to 𝑃 = probability function)

S

The blue “S” on the top right means that this slide is skipped during the lecture, but left 
in the document to maintain the overall coherence of the material.
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8.2 Random Variables (contd.)

 A Random Variable 𝑋 is said to be discrete if there is a finite 
list of values 𝑎ଵ, 𝑎ଶ, … ,𝑎௡ or an infinite list of values 𝑎ଵ, 𝑎ଶ,… 
such that 𝑃 𝑋 ൌ 𝑎௝  for some 𝑗 ൌ 1. In the first case, its 
support is given by:

𝒮 ൌ ሼ𝑎ଵ, 𝑎ଶ, … ,𝑎௡ሽ

Example: the outcome from the launch of a dice; the 
number of photons detected in an image.

 A Random Variable 𝑋 is instead said to be continuous if it can 
take on any value in a given interval, possibly of infinite 
length. For example its support can be:

𝒮 ൌ 0,∞

Example: time of arrival of a photon in a LiDAR image.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.2

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
M. Beer et al., Background Light Rejection…, MDPI Sensors 18, 2018.

SPAD‐
Based
LiDAR
first 
photon 
PDF

Q

Q

The red “Q” stands for a question asked during class, aimed at going deeper into the 
subject.

Hints: think of a) outdoors operation (and a first‐photon detection set‐up, i.e. only the 
first backscattered photon is detected in a laser period), and b) an illumination with a 
pulsed laser emitting pulses of finite temporal length…

11
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8.2.1 Probability Mass Functions

How to express the distribution of a (discrete) Random Variable/1

 The probability mass function (PMF) of a discrete RV 𝑋 is the function: 

PMF:  𝑝௑ 𝑥 ൌ 𝑃ሼ𝑋 ൌ 𝑥ሽ

Note that this value is positive if 𝑥 ∈ 𝒮, zero otherwise. 

 The PMF needs to satisfy two criteria:

1. Nonnegative: 

𝑝௑ 𝑥 ൐ 0 if 𝑥 ൌ 𝑥௝ for some 𝑗, 
𝑝௑ 𝑥 ൌ 0 otherwise.

2. Sums to 1:

෍ 𝑝௑ 𝑥௝ ൌ 1
ஶ

௝ୀଵ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.2

We start to look into the formal definitions for discrete random variables first, before 
moving to continuous ones.

12
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8.2.1 Probability Mass Functions (contd.) – Example

Example

Imagine to toss two coins at the same time. The possible outcomes are, 
given that 𝐻 = head and 𝑇 = tail, the following: 𝒮 ൌ ሼ𝐻𝐻,𝐻𝑇,𝑇𝐻,𝑇𝑇ሽ. If 
the Random Variable 𝑋 is the number of heads, it follows that:

𝑝௑ 0 ൌ 𝑃 𝑋 ൌ 0 ൌ 1/4

𝑝௑ 1 ൌ 𝑃 𝑋 ൌ 1 ൌ 2/4

𝑝௑ 2 ൌ 𝑃 𝑋 ൌ 2 ൌ 1/4

𝑝௑ 𝑥 ൌ 𝑃 𝑋 ൌ 𝑥 ൌ 0 for all other 𝑥

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.2

13
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8.2.2 Bernoulli and Binomial RVs

First case: a Random Variable which can only take two values

 A discrete RV 𝑋 is said to have the Bernoulli distribution 
with parameter 𝑝 if 𝑃 𝑋 ൌ 1 ൌ 𝑝 and 𝑃 𝑋 ൌ 0 ൌ 1 െ 𝑝, 
where 0 ൏ 𝑝 ൏ 1. 

 An experiment that can result in either a success or a failure 
is called a Bernoulli trial.

 Suppose that 𝑛 independent Bernoulli trials are performed. 
Let 𝑝 be the probability of success, 1 െ 𝑝 the probability of 
failure, 𝑋 (RV) the number of successes. The distribution of 
𝑋 is called binomial distribution Binሺ𝑛,𝑝ሻ with parameters 𝑛
and 𝑝:

PMF:  𝑃 𝑋 ൌ 𝑘 ൌ
𝑛
𝑘

𝑝௞ 1 െ 𝑝 ௡ି௞

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.3

for 𝑘 ൌ 0,1, … ,𝑛

We will now look at some of the most important random variable distributions, 
illustrated by means of examples from engineering and physics.

NB: the binomial coefficient  ௡௞ reads “n choose k”.

14
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8.2.2 Bernoulli RV – Example 

| C. Bruschini, E. Charbon | 2025

Photon

No Photon Undetected Photon

Spurious Photon

Frame
Time (T)

(CMOS) SPAD: 
Single‐Photon 
Avalanche 
Photodiode

+ time‐of‐arrival, energy/wavelength, 
polarization, etc.

Perfect single photon detection limited by

1. Photon detection efficiency (PDE) = QE x FF

2. Temporal Aperture Ratio

3. Dark Count Rate

R. Henderson, Edinburgh Univ., ISSCC 2013 – E. Fossum, IISW 2013
A. Chandramouli, A bit too much? High Speed Imaging from 
Sparse Photon Counts, Proc. ICCP 2019

1‐bit frame 4‐bit frame

A binary SPAD sensor represent an excellent example to illustrate the properties of 
Bernoulli and Binomial random variables.

A CMOS SPAD is seen here a source of individual photon detections ‐> Bernoulli RV. A 
SPAD array extends this concept to a large number of pixels, whose output is organised 
in frames as a function of time. Binary SPAD sensors, such as SwissSPAD2, can be read 
out extremely fast, up to 100 kfps. The detection efficiency is however not perfect, and 
the sensor is a source of noise (spurious counts) as well.

Individual binary frames can be accumulated (on FPGA or PC) in multi‐bit frames 
bottom right image.

15
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8.2.2 Bernoulli RV – Example 

| C. Bruschini, E. Charbon | 2025

Photon

No Photon Undetected Photon

Spurious Photon

Frame
Time (T)

(CMOS) SPAD: 
Single‐Photon 
Avalanche 
Photodiode

ϕൌphoton flux ph
sൗ ,  τൌexposure time,

ηൌquantum efficiency,  rൌDark Count Rate ሺDCRሻ

# of photons at each pixel: 𝑃 𝑍 ൌ 𝑘 ൌ
𝑒ିథఛఎሺ𝜙𝜏𝜂ሻ௞

𝑘!
⟹

𝑃 𝐵 ൌ 0 ൌ 𝑒ିሺథఛఎା௥ఛሻ

𝑃 𝐵 ൌ 1 ൌ 1 െ 𝑒ିሺథఛఎା௥ఛሻ

R. Henderson, Edinburgh Univ., ISSCC 2013 – E. Fossum, IISW 2013 – S. Ma, Quanta Burst Photography, ACM Trans. Graph., Vol. 39, 2020

Q

Q

Ex

We look here at the distribution of the number of detected photons in a single frame. 

𝜙𝜏𝜂 Is the average number of detected photons per frame of exposure time 𝜏. 

Q: where does this statistical distribution ‐ 𝑃 𝑍 ൌ 𝑘 ‐ come from?

 P{Z = k} is nothing but a Poisson distribution, with mean = lambda = 𝜙𝜏𝜂 (see 8.2.5). 
Actually, B = 1 means in this case at least one photon – a purely binary sensor cannot 
count more than one time. (NB: multi‐bit in‐pixel architectures are possible.)

The two bottom formulas are more complete ones and take into account the noise 
contribution as well.

The green “Ex” highlights an exercise or homework which deals with the topic(s) shown 
in class.

16
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8.2.2 Binomial RV – Example 

| C. Bruschini, E. Charbon | 2025

Photon

No Photon Undetected Photon

Spurious Photon

Frame
Time (T)

(CMOS) SPAD: 
Single‐Photon 
Avalanche 
Photodiode

# of photons k at each pixel for n consecutive 
ሺindependentሻ frames: 

𝑃 𝑛,𝑘 ൌ
𝑛!

𝑛 െ 𝑘 ! · 𝑘!
· 𝑝௣௛

௞ · 1 െ 𝑝௣௛
௡ି௞

𝑤ℎ𝑒𝑟𝑒

𝑝௣௛ ൌ 1 െ 𝑃 1,0 ൌ 1 െ 𝑒ିሺథఛఎା௥ఛሻ

Y. Hirose, MDPI Sensors(18), 2018

The previous results can actually be easily generalised to n frames, leading to a 
practical example of a binomial distributions 𝑃 𝑛, 𝑘 . 

𝑝௣௛, the probability of detecting at least one photon, was derived in the previous 
slide.

Source: Hirose MDPI Sensors 2018.

17
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8.2.2 Binomial RV – Example 

| C. Bruschini, E. Charbon | 2025

This video was taken with the first SwissSPAD camera of 512x128 pixels. Its architecture 
is quite similar to one of the more advanced SwissSPAD2 sensor. The camera is looking 
at an analogue oscilloscope, whereby the frames have been added up initially, going 
back all the way to examples of individual binary frames. 

The images are obviously affected by shot noise, but the object being imaged can still be 
distinguished! And the final images are really binary in nature ‒ each pixel has either 
recorded at least a photon, or none.

18
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8.2.3 Cumulative Distribution Functions

How to express the distribution of a Random Variable/2

 The cumulative distribution function (CDF) of a discrete RV 𝑋 is the 
function 𝐹௑ given by 

CDF:  𝐹௑ሺ𝑥ሻ ൌ 𝑃 𝑋 ൑ 𝑥

Example: Let 𝑋 be Binሺ4, 1/2ሻ. The cumulative distribution function can be 
calculated from the probability mass function.

To find, for example, 𝑃 𝑋 ൑ 1.5 , we sum the PMF over all values of the 
support that are less than or equal to 1.5:

𝐹௑ 1.5 ൌ 𝑃 𝑋 ൑ 1.5 ൌ 𝑃 𝑋 ൌ 0 ൅ 𝑃 𝑋 ൌ 1 ൌ

ൌ
4
0

1
2

ସ

൅
4
1

1
2

ସ

ൌ
1
2

ସ

൅ 4
1
2

ସ

ൌ
5

16
ൌ 0.3125

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.6

19
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8.2.3 Cumulative Distribution Functions (contd.)

 For a CDF to be valid, the following three criteria must be met:

1. Increasing: If 𝑥ଵ ൑ 𝑥ଶ, then 𝐹௑ሺ𝑥ଵሻ  ൑ 𝐹௑ሺ𝑥ଶሻ

2. Right‐continuous: The CDF is continuous except possibly for some 
jumps. When there is a jump, the CDF is continuous from the right, 
i.e. for any a:

𝐹௑ 𝑎 ൌ lim
௫→௔శ

𝐹௑ሺ𝑥ሻ

3. Convergence to 0 and to 1 in the limits:

lim
௫→ିஶ

𝐹௑ 𝑥 ൌ 0

lim
௫→ஶ

𝐹௑ 𝑥 ൌ 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.6

20
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8.2.4 Probability Density Functions

 For a continuous RV 𝑋 with cumulative distribution function 𝐹௑, the 
probability density function (PDF) 𝑓௑ is the derivative of the cumulative 
distribution function (CDF):

PDF: 𝑓௑ 𝑥 ൌ
𝑑
𝑑𝑥

𝐹௑ 𝑥

hence:

CDF: 𝐹௑ 𝑥 ൌ න 𝑓௑ 𝑡  𝑑𝑡
௫

ିஶ

To get a desired probability, integrate the PDF over the appropriate range...

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.1

We now move to the main definitions for a continuous random variable. Note 
that the knowledge of either PDF or CDF does completely characterise a 
statistical distribution.

NB: For a PDF 𝑓௑, the quantity 𝑓௑ 𝑥 is not a probability, and in fact it is possible 
to have 𝑓௑ 𝑥 > 1 for some values of 𝑥! In order to obtain a probability, we need 
to integrate the PDF.

21
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8.2.4 Probability Density Functions (contd.)

 Similarly, by definition of the CDF and the fundamental theorem of 
calculus:

𝑃ሼ𝑎 ൏ 𝑋 ൑ 𝑏ሽ ൌ 𝐹௑ 𝑏 െ 𝐹௑ 𝑎 ൌ න 𝑓௑ 𝑥  𝑑𝑥
௕

௔

‐> Probability = integral of the PDF over a given range.

 For a PDF to be valid, two criteria must be met:

1. Nonnegative:

𝑓௑ሺ𝑥ሻ ൒ 0

2. Integrates to 1:

න 𝑓௑ 𝑥  𝑑𝑥
ஶ

ିஶ
ൌ 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.1

22
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Take‐home Messages/W8‐1

 Introduction to probability (see also Appendix 8.1):

 Basic definitions, conditional probability

 Bayes’ rule, law of total probability, independence of events

 Random Variables (RVs):

 Examples (discrete/continuous)

 Probability Mass Function (PMF), Cumulative Distribution 
Function (CDF)

 Probability Density Function (PDF)

 Bernoulli, Binomial & related SPAD‐based examples

| C. Bruschini, E. Charbon | 2025

First recap section: we summarise here the main definitions, results and examples 
discussed so far. They should be clear and understood.
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8.2.5 Poisson RV

 A discrete RV 𝑋 taking on one of the values 0, 1, 2, .. is said 
to have a Poisson distribution with parameter 𝜆 for 
some 𝜆 ൐ 0 with

PMF: 𝑝௑ 𝑥 ൌ 𝑃 𝑋 ൌ 𝑥 ൌ
𝑒ିఒ𝜆௫

𝑥!

 It can be demonstrated that the Poisson PMF 
(we will write 𝑋~Pois 𝜆 ) is a valid PMF since, 
by Taylor expansion:

෍
𝜆௜

𝑖!
ൌ 𝑒ఒ

ஶ

௜ୀ଴

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.7

Pois(2) PMF Pois(2) CDF

Pois(5) PMF Pois(5) CDF

We now look at other important statistical distributions and some of their properties. 
They will be analysed again in the next lecture, in more detail.

Note that a) the Poisson distribution is characterised by a single parameter (𝜆), and b) 
the verification/demonstration that the PMF is indeed a valid one. This is a priori not 
obvious!
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8.2.6 Uniform RV

 The continuous uniform RV 𝑈 on an interval  𝑎, 𝑏 is a completely 
random number between 𝑎 and 𝑏. Its PDF is given by:

PDF: 𝑓௎ 𝑥 ൌ ቐ
1

𝑏 െ 𝑎
        for 𝑎 ൏ 𝑥 ൏ 𝑏,

 0                otherwise.

𝑈~Unif 𝑎, 𝑏

 This is a valid PDF since the area of the PDF is given by the area of a 
rectangle with width 𝑏 െ 𝑎 and height 1/ሺ𝑏 െ 𝑎ሻ. 

 Its CDF is given by:

𝐹௎ 𝑥 ൌ ൞

0                       if 𝑥 ൑ 𝑎,
𝑥 െ 𝑎
𝑏 െ 𝑎

               if 𝑎 ൏ 𝑥 ൏ 𝑏

1                        if 𝑥 ൒ 𝑏.

,

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.2

Unif(0,1) PDF & CDF

Can you think of random variables with this kind of distribution?

Similarly to the previous slide, note here again the verification/demonstration that the 
PDF is indeed a valid one. This is a priori not obvious!
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8.2.7 Normal (Gaussian) RV

 The Normal (Gaussian) distribution (we will write 𝑋~𝒩 𝜇,𝜎ଶ ) is a 
famous continuous distribution that is extremely used because of the 
central limit theorem, which will be explained later. For the continuous 
Normal RV 𝑋, the PDF is:

PDF: 𝑓௑ 𝑥 ൌ
ଵ

ଶగ ఙ
𝑒ି ௫ିఓ మ/ଶఙమ

 In the special case of 𝜇 ൌ 0 and 𝜎 ൌ 1, the distribution takes the name 
of standard Normal distribution. We will write it as 𝑍~𝒩 0,1 . The 
standard Normal PDF and CDF are:

PDF: 𝜑 𝑧 ൌ
1

2𝜋
𝑒ି௭

మ/ଶ

CDF: Φ 𝑧 ൌ න 𝜑 𝑡  𝑑𝑡
௭

ିஶ
ൌ න

1

2𝜋
𝑒ି௧

మ/ଶ 𝑑𝑡
௭

ିஶ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

No closed form exists!

Standard Normal PDF/CDF

The Normal, or Gaussian, distribution is of fundamental importance. It is characterised 

by two parameters (𝜇,𝜎). Note the special case of the standard Normal distribution.

NB: pronunciation: Mu /ˈmjuː/
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8.2.7 Normal (Gaussian) RV (contd.)

 The standard Normal distribution has the following properties:

1. Symmetry of the PDF: 𝜑 satisfies 𝜑 𝑧 ൌ 𝜑 െ𝑧

2. Symmetry of the tail area: the area under the PDF to the left of െ𝑧
and to the right of 𝑧 is equal. Using the CDF:

Φ 𝑧 ൌ 1 െ Φ െ𝑧

3. Symmetry of 𝑍 and െ𝑍: If 𝑍~𝒩 0,1 , then െ𝑍~𝒩 0,1 as well.

 The Normal distribution 𝑋~𝒩 𝜇,𝜎ଶ has PDF and CDF as follows:

PDF: 𝑓௑ 𝑥 ൌ
1

2𝜋 𝜎
𝑒ି ௫ିఓ మ/ଶఙమ ൌ 𝜑

𝑥 െ 𝜇
𝜎

1
𝜎

CDF: 𝐹௑ 𝑥 ൌ Φ
𝑥 െ 𝜇
𝜎

    ሾ𝑋 ൌ 𝜇 ൅ 𝜎𝑍ሿ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Location‐scale 
transformation
(shifting and scaling)

Ex

The second bullet highlights the properties of a location‐scale transformation (basically 
shifting – by 𝜇 – and scaling – by 𝜎), which can be very useful to move from one 
distribution variable to another. 

In this case, we can replace the RV 𝑍, distributed according to a standard Normal, by 
𝑋 ൌ 𝜇 ൅ 𝜎𝑍, which is thus distributed according to a “general” Normal.

NB: pronunciation: Phi (/faɪ/).
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8.2.8 Exponential RV

 The exponential is a distribution that represents the amount of failures 
before the first success (as in time), considering that 𝜆 is the success rate 
per unit time. The average number of successes in the time length 𝑡 is 
𝜆𝑡, though the actual number of successes varies randomly.   

 A continuous RV 𝑋 is said to have an exponential distribution (we will 
write 𝑋~Expo 𝜆 ) with parameter 𝜆 if its PDF is:

PDF: 𝑓௑ 𝑥 ൌ 𝜆𝑒ିఒ௫,  𝑥 ൐ 0

 The corresponding CDF is

CDF: 𝐹௑ 𝑥 ൌ 1 െ 𝑒ିఒ௫,  𝑥 ൐ 0

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)

Ex

Note again the presence of one single variable 𝜆, and the interpretation in terms of 

success rate (e.g. events/second) and number of successes 𝜆𝑡 (e.g. events) in a given 
amount of time 𝑡.
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8.2.9 Example 1: Photon‐flux dependent distributions

SwissSPAD2 
binary SPAD 
imager 

(intensity)

| C. Bruschini, E. Charbon | 2025

Low counts

High counts

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

Q

We will now look into four concrete examples from engineering and physics, linked to 
some of the distributions which we have seen before.

This will also allow to highlight the difference between analytical expressions and real 
experimental data, the presence of noise or of unaccounted phenomena when 
modelling a certain process.

The first example is based on binary SPAD imagers used to measure light intensity and 
its distribution in time and space, including the capability of measuring the statistical 
properties of the impinging photons. This class of sensors allows to output binary frames 
at very high speed. Further details are available from the companion paper on Moodle.

The top right plot shows a histogramme of the photon count population in eight‐bit 
images, i.e. how many pixels fired how many times, at very low illumination levels. Note 
the good fit to a Poisson distribution.
Q: how are such low illumination levels obtained? What would you do to check the fit 
quality at higher photon counts?

The bottom right plot shows the same data at higher illumination levels. 
Q: What attracts your attention in the centre of the distribution? What could this be due 
to?
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8.2.9 Example 2: Fluorescence Lifetime – Time‐Resolved

Lifetime images: the pixel time‐tags all 
photons and calculates t1 , t2 , A1

| C. Bruschini, E. Charbon | 2025

Cancerous 
GanglionFluorescence 

emission

TCSPC (Time-correlated Single-Photon Counting)

Pulsed Laser

Fluorescent Sample

O
b
j.

SPAD Imager

dichroic
mirror

emission
filter

Laser pulses

D. Li, Strathclyde Univ. (2016). Gated camera

The second example is from an application in microscopy/life sciences. When 
fluorophores are excited, they can re‐emit light (at a slightly red‐shifted wavelength = 
lower energy / Stokes shift), typically within a very short period, e.g. nanoseconds. The 
decay is exponential, or a sum of exponentials – see the f(t) expression. The 
corresponding lifetimes provide information on the fluorophore nature and its 
environment.

Let’s suppose that the excitation is periodic, e.g. by means of a pulsed (picosecond) 
laser. There are fundamentally two ways of sampling the re‐emitted light, measuring its 
distribution over time, to determine the fluorophore lifetime: 

‐ [TCSPC] either by measuring precisely each time of arrival, using the laser emission 
time as reference (top), and building a histogramme, from which the lifetime(s) can 
be extracted by fitting a curve, or using other estimators (see next lecture),

‐ [Gated] or by accumulating/counting all photons emitted in a given time window 
(gate) and repeating the operation over several gates, which can be overlapping or 
not. The lifetime can then be extracted either analytically or computationally.
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8.2.9 Example 2: Fluorescence Lifetime – Time‐Resolved

SwissSPAD2 
binary SPAD 
imager 

(overlapping gates)

| C. Bruschini, E. Charbon | 2025

A. Ulku et al., Large‐Format Time‐Gated SPAD Cameras for Real‐Time Phasor‐Based FLIM. EPFL Thèse 8311 (2021).

We see here how to sample the re‐emitted light in a Gated approach, when the gates 
are “long” and overlapping. A sensor like SwissSPAD2 can open and close a gate in 
correspondence of each laser pulse and count the detected photons per pixel.

After sufficient statistics has been accumulated at a given gate position, the gate is 
shifted (by tens or hundreds of picoseconds) to cover another part of the re‐emitted 
light, until the last position (n in this plot) is reached.
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8.2.9 Example 2: Fluorescence Lifetime – Time‐Resolved

SwissSPAD2 
binary SPAD 
imager 

(overlapping gates 
‐> convolution)

IRF: Instrument 
Response Function

| C. Bruschini, E. Charbon | 2025

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

f (t) = g(t) ∗ IRF(t)

The result is that the measured signal (“Gate Response” in this graph) is not the original 
exponential any more, but its convolution with the sensor’s response, termed IRF 
(Instrument Response Function – a square gate for this kind of sensors). This is now the 
data from which the original lifetime information needs to be extracted.

The corresponding signals are shown here when using a 20 MHz laser ‐> 50 ns period. 
The target fluorophore is Rhodamine6G, which has a lifetime of ~3.9 ns. The “Residual” 
is the difference between the measured data and the fit, and indicates the fit quality.
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8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs

| C. Bruschini, E. Charbon | 2025

C. Niclass et al., A 128×128 Single‐Photon Image Sensor With Column‐Level 10‐Bit Time‐to‐Digital Converter Array. IEEE JSSC 43 (2008).

The third example is linked to a LIDAR (Light Detection and Ranging) application, the 
optical equivalent of RADAR. A distance is measured by means of timing 
measurements. The implementation details are shown in the next slide. There are 
obviously other 3D measurement techniques such as indirect time of flight, triangulation 
or interference, which are not discussed here.

Left: photomicrograph of an early EPFL AQUA silicon chip containing 128x128 SPADs 
coupled to an array of 32 TDCs (Time‐to‐Digital Converters), to timestamp the arrival of 
the photons backscattered from a target.

Right: depth‐encoded 3D image. Bottom: same target but at much higher precision. 

Q: how was this image obtained? Hint: calculate the precision of one single time (= 
distance) measurement starting from an estimate of the timestamping precision, e.g. 
10‐100 ps. 

Q: How can this be improved?  next lecture on what happens when averaging 
repetitive measurements!
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8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs

Direct SPAD illumination ‐> 
SPAD IRF (jitter noise) ‐> 

Non‐Gaussian behavior of 
the SPADs timing 
uncertainty

| C. Bruschini, E. Charbon | 2025

A. R. Ximenes et al., A Modular, Direct Time‐of‐Flight Depth Sensor in 45/65‐nm 3‐D‐Stacked CMOS Technology. IEEE JSSC 54 (2019).
C. Niclass et al., A 128×128 Single‐Photon Image Sensor With Column‐Level 10‐Bit Time‐to‐Digital Converter Array. IEEE JSSC 43 (2008).

Left: basic principles of direct time‐of‐flight measurements. Note how the start/stop 
measurements are implemented, the synchronisation with the laser trigger, and the role 
of the system uncertainty (similar to the IRF in the previous slides) on the final 
measurement precision.

Right: how does the precision – or timing jitter – of the photodetector come into play? 
The SPAD response is not infinitely short, but characterised by a Gaussian central 
section, and an exponential (diffusion) tail on the right. These parts are linked to the 
device structure, process properties and resulting electric field distributions.

Q: How can the SPAD’s IRF be determined? One method consists in illuminating directly 
the device and timestamping each photon, to then build a histogram similar to the one 
shown in the plot on the right. Note also the difference between linear and logarithmic 
scales!
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8.2.9 Example 4: Real Life Truths – TOF‐PET

| C. Bruschini, E. Charbon | 2025

Positron Emission 
Tomography 
Basics

L. Braga et al., ISSCC, 2013

GE Discovery IQ, Nov 2016

G. Nemeth, Mediso, Delft WS 2010

The fourth example is based on a molecular imaging technique which measures tiny 
concentrations of a radioisotope, by means of (visible) light intensity and timing 
measurements.
[F. Gramuglia, EPFL PhD Thesis #8720, 2022] PET is the most relevant molecular imaging 
technique available today. The reason for this is its high molecular sensitivity and large 
tissue penetration. Molecular imaging allows the in vivo visualization and quantification 
of biological processes at the cellular and molecular level by using so‐called molecular 
probes. Molecular probes are defined as biocompatible image contrast enhancement 
agents that accumulate and stay in a specific target for a certain time.

In the specific case of PET, the used molecular probes are labeled with a positron‐
emitting radioisotope. One of the best known molecular probes is 18F‐FDG, widely 
employed in oncology. This sugar‐like compound is used to detect cancer cells in high 
metabolism growing tumor masses.

The molecular probes used are + emitters. When a solution of a molecular probe such 
as 18F‐FDG is injected into a patient undergoing a PET exam, the F‐18 emits positrons 
inside the subject’s body. The positron travels for a certain distance, called positron 
range, (~2 mm) before encountering and combining with an electron to forma 
positronium. This system is unstable, and after a time on the order of ~ 100 ps, the e‒

/+ annihilation occurs. This causes the emission of two almost collinear ‐photons, each 

35



with an energy of E = 511 keV (the equivalent of twice the electron rest masses) and 
traveling in opposite direction. The detection of these two ‐photons can allow the 
localization of the annihilation point. For this purpose, the subject under test is placed in 
a ring scanner.
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8.2.9 Example 4: Real Life Truths – TOF‐PET

| C. Bruschini, E. Charbon | 2025

R. Walker et al., IISW, 2013

[ctd] The scanner is fully covered by photodetectors aiming to detect the gammas 
coming from the patient and extract the so‐called line of response (LOR). The LOR is 
defined as the imaginary line connecting the two points in the scanner where a gamma 
pair is detected and ideally passing through the generation point.

TOF‐PET Module measurement of energy, time‐of‐arrival and position
The detection of the gammas generated by the e‒ /+ annihilation can be performed 
with various types of detector, such as solid‐state detectors, ionization chambers, 
inorganic scintillator‐based detectors, etc. In PET, the detection widely relies on the use 
of inorganic scintillators because they offer the best compromise between energy, 
timing, and spatial resolution as well as a high detection efficiency for 511 keV ‐
photons. These materials have the property of absorbing the incoming radiation and 
emitting optical photons following a fast exponential timing evolution with a decay time 
constant d typical of each scintillator. 

The emission is isotropic inside the scintillating material, and the amount of light is 
proportional to the amount of energy deposited in the crystal by the incoming radiation.
The light burst (or pulse), generated by a scintillator, reveals when a gamma interacts in 
the crystal, and it can be detected by instrumenting one or more surfaces of the 
scintillator with a photodetector. Moreover, if the photodetector can quantify the 
amount of detected light, it is possible to estimate the energy of the incoming gamma, 
knowing the light yield.

The image above shows the schematic view of a typical module used in PET applications. 
In this simplified scheme, the scintillator is optically coupled to a photodetector and a 
PCB module is used to read out and process the signal. 

The curves show the typical profiles in time of a scintillation event (emission of light –
thousands of photons in the visible – after conversion of one gamma photon). But 
eventually, we want to send to the reconstruction software three fundamental pieces of 
information for each gamma event: energy, time‐of‐arrival and position. We are usually 
not interested in the full scintillation light waveform and in recording all photons 
individually!
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8.2.9 Example 4: Real Life Truths – Scintillation Light

| C. Bruschini, E. Charbon | 2025

Gundacker S, Auffray E, Pauwels K and Lecoq P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a
general study of prompt photons to achieve 10 ps in TOF‐PET. IOP Phys. Med. Biol. 61 2802–37

Fast vs. 
“slow” 
scintillation 
photons in a 
heavy 
scintillating 
crystal

But how do we know that the scintillation light from a scintillator crystal does really have 
the profile shown in the previous slides? And how can we further exploit the real 
response of a scintillator?

We need to carry out a precision (timing) measurement, for example using a 
radioactive source and detecting as many visible light photons as possible, event after 
event, similarly to the TCPSC (time‐correlated single‐photon counting) method shown 
before.

We can then accumulate all time of arrival data into a histogramme such as the one 
shown above, which tells us for example that the light intensity decay is bi‐exponential 
rather than monoexponential (left), and that there is actually a small fraction of photons 
that are emitted right after the gamma conversion (“prompt” events on the right). These 
could be very useful to improve the timing precision of the PET measurements, and 
therefore the final image quality!

This data does allows allow the material scientists to design improved scintillators, e.g. 
with better light yield and/or faster decays and/or more prompt photons.
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8.2.10 From Theory to Experiment (and back)

| C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics 38

These example highlight the interplay between theory and experiment, possibly going 
through an intermediate simulation step. Sometimes we move from right to left, using 
the experimental data to develop/refine a theory.
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Take‐home Messages/W8‐2

 Random Variables:

 RV distributions: 

 Poisson ↔ Exponential

 Uniform, Gaussian

 …and their main properties (see also W3)

 Practical examples!

 Single‐photon imager & Poisson light distribution

 Fluorescence lifetime & exponential decay

 Timing jitter – combination of distributions ↔ physics

 Scintillation light – combination of distributions ↔ physics

| C. Bruschini, E. Charbon | 2025

Second recap section: we summarise here the main definitions, results and examples 
discussed in this middle section.
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Outline

8.1  Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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8.3.1 Expected Values

 Given a discrete RV 𝑋 with support 𝒮 ൌ ሼ𝑥ଵ,𝑥ଶ, … ሽ, the
expected value (or expectation) of its distribution, which is
commonly defined mean, is given by (weighted average):

𝐸 𝑋 ൌ෍𝑥௝  𝑃 𝑋 ൌ 𝑥௝

ஶ

௝ୀଵ
 The expected value is undefined if:

෍ 𝑥௝  𝑃 𝑋 ൌ 𝑥௝

ஶ

௝ୀଵ

→ ∞

 Similarly, if 𝑋 is a continuous RV with PDF 𝑓௑ 𝑥 : 

𝐸 𝑋 ൌ න 𝑥 𝑓௑ 𝑥  𝑑𝑥
ஶ

ିஶ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.1

Champions League 25.02.2020

Napoli – Barcelona 
1 X 2

3.26 3.59 2.11

NB: the expected value does not determine the distribution…

The expected value, or mean, is a very important parameter characterising the 
distribution of a random variable. Definitions are provided here for a discrete and a 
random variable. However, knowing the mean is usually far from enough….
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8.3.2 Mean, Median and Mode

 As previously stated, the mean 𝜇 of a RV 𝑋 is given by its
expected value. It is called a measure of the central tendency of
the distribution, specifically its center of mass.

 The median 𝑚 of a RV 𝑋 is that value such that 𝑃ሼ𝑋 ൑ 𝑚ሽ ൒ 0.5
and 𝑃ሼ𝑋 ൒ 𝑚ሽ ൒ 0.5. In a continuous RV, it is simply the value at
which 𝐹௑ 𝑚 ൌ 0.5.

 The mode 𝑐 of a RV 𝑋 is that value that maximizes the PMF (for a
discrete RV) or the PDF (for a continuous RV):

𝑃 𝑋 ൌ 𝑐 ൒ 𝑃 𝑋 ൌ 𝑥 for all 𝑥

𝑓௑ 𝑐 ൒ 𝑓௑ 𝑥 for all 𝑥

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.1

Mean, 
Median, 
Mode

Mean

Median

Mode

Sometimes the median is a more useful figure, for example in cases where the target 
distribution is not symmetric. The mean is indeed quite heavily affected by the 
distribution tails and outliers – see the PDF plots here on the right.
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8.3.2 Mean, Median and Mode – Example

| C. Bruschini, E. Charbon | 2025

SwissSPAD2 
binary SPAD imager 

noise level (DCR = 
Dark Count Rate, 
per pixel)

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

Q

An example of how the mean and median of real distributions can look like is provided 
here, in the form of the DCR (dark count rate) values, i.e. the noise level in the dark, for 
the pixels of the previously introduced SwissSPAD2 sensor. Several curves are 
reproduced for different operating conditions, here the excess bias voltage of the SPADs 
(i.e. the voltage level beyond breakdown).

Note that in this example the mean and median differ by one order of magnitude!

Q: what is the origin of this graph? Does it represent a PDF?

 The percent axis is actually the CDF (0‐1 interval = 0‐100%) and the plot flipped with 
respect to the “usual” CDF representation (see bottom right image and the CDF 
definition).
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8.3.3 Linearity of expectation and LOTUS

 The most important property of expectation is linearity (actually true for 
all RV, not only discrete ones). For every given RVs 𝑋 and 𝑌 and any 
constant 𝑐, it follows:

𝐸 𝑋 ൅ 𝑌 ൌ 𝐸 𝑋 ൅ 𝐸 𝑌

𝐸 𝑐𝑋 ൌ 𝑐𝐸 𝑋

 The law of the unconscious statistician (LOTUS) states that, despite 
𝐸 𝑔 𝑋 does not equal 𝑔 𝐸 𝑋 , there is a way to measure 𝐸 𝑔 𝑋
without the need of finding 𝑔 𝑋 . Given the discrete RV 𝑋 and the 
function 𝑔:ℝ → ℝ, follows:

𝐸 𝑔 𝑋 ൌ෍𝑔 𝑥  𝑃 𝑋 ൌ 𝑥  for all 𝑋
௫

Similarly, if X is a cont. RV with PDF 𝑓௑ 𝑥 :  𝐸 𝑔 𝑋 ൌ ׬ 𝑔 𝑥 𝑓௑ 𝑥 𝑑𝑥
ஶ
ିஶ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.2‐4.5, 5.1

𝐸 dice ൌ 3.5

𝐸 2 dices ൌ
𝐸 dice ൅ 𝐸 dice ൌ 7

Used in Section 8.3.6 (MGF)
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8.3.4 Variance

 The variance of a RV 𝑋 is (average squared difference ‐> distribution 
spread):

𝑉𝑎𝑟 𝑋 ൌ 𝐸 𝑋 െ 𝐸 𝑋 ଶ ൌ 𝐸 𝑋 െ 𝜇 ଶ ൌ 𝜎ଶ

and its square root is called the standard deviation:

𝑆𝐷 𝑋 ൌ 𝑉𝑎𝑟 𝑋 ൌ 𝜎

 For any RV 𝑋,

𝑉𝑎𝑟 𝑋 ൌ 𝐸 𝑋ଶ െ 𝐸 𝑋 ଶ ൌ 𝐸 𝑋ଶ െ 𝜇ଶ

which can be demonstrated easily using the linearity property of 
the expected values.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.6

Pulsed LASER

Timeെresolved 
detector

Q

Q

Another extremely important parameter of the distribution of a random variable is its 
variance, which basically indicates how the distribution deviates from its mean value, 
and its square root = standard deviation.

Let’s take as example a time‐resolved system composed of a photodetector, which 
measures the time‐of‐arrival of impinging photons with a certain timing error 

𝜎(detector), and of a laser, which generates a light pulse of width 𝜎(laser). 

Q: which is the resulting timing uncertainly of the complete system?
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8.3.4 Variance (contd.)

 The Variance has the following properties:

1. 𝑉𝑎𝑟 𝑋 ൅ 𝑐 ൌ 𝑉𝑎𝑟 𝑋 for any constant 𝑐 (shift a distribution).

2. 𝑉𝑎𝑟 𝑐𝑋 ൌ 𝑐ଶ𝑉𝑎𝑟 𝑋 for any constant 𝑐.

3. If 𝑋 and 𝑌 are independent, then 𝑉𝑎𝑟 𝑋 ൅ 𝑌 ൌ 𝑉𝑎𝑟 𝑋 ൅
𝑉𝑎𝑟 𝑌 . This is not true in general if 𝑋 and 𝑌 are dependent. For 
example, in the case where 𝑋 ൌ 𝑌:

𝑉𝑎𝑟 𝑋 ൅ 𝑌 ൌ 𝑉𝑎𝑟 2𝑋 ൌ 4 𝑉𝑎𝑟 𝑋 ൐

2 𝑉𝑎𝑟 𝑋 ൌ 𝑉𝑎𝑟 𝑋 ൅ 𝑉𝑎𝑟 𝑌

4. All 𝑉𝑎𝑟 𝑋 ൒ 0, with the equality if and only if 𝑃 𝑋 ൌ 𝑎 ൌ 1 for 
some 𝑎. [only constants have 0 variance]

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.6

Pulsed LASER

Timeെ
resolved 
detector

Final 
measurement

∗

We recall here several important properties of the variance of a random variable. The 
variances of independent RVs add up ‐> their standard deviations combine quadratically.

Right: another representation of the time‐resolved system shown in the previous slide. 
Note the convolution (“*”) of the distributions, whose variances add up (if they are 
independent).
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8.3.5 Moments

 Let 𝑋 be a RV with mean 𝜇 and variance 𝜎ଶ. For any positive 𝑛: 

1. the 𝑛‐th moment of 𝑋 is 𝐸 𝑋௡ , 

2. the 𝑛‐th central moment of 𝑋 is 𝐸 ሺ𝑋 െ 𝜇ሻ௡ , 

3. the 𝑛‐th standardized moment of 𝑋 is 𝐸
௑ିఓ

ఙ

௡
.

 As we have seen previously, the first moment of a RV 𝑋 is its mean value, 
or, in different words, the center of mass of the distribution:

𝑛 ൌ 1:   𝜇 ൌ 𝐸 𝑋

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2

Generalising the concepts of mean and variance, the distribution of a random variable 𝑋
can be characterised by its moments. The first, second, third and fourth moment are 
defined in the following.
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8.3.5 Moments (contd.)

 In the same fashion, the second central moment of a RV 𝑋 is its variance, 
or the moment of inertia of the distribution around its center:

𝑛 ൌ 2:  𝜎ଶ ൌ 𝑉𝑎𝑟 𝑋 ൌ 𝐸ሼ 𝑋 െ 𝐸 𝑋 ଶሽ

 The third standardized moment of a RV 𝑋 is defined as the skewness of 
the distribution. The skewness is a parameter that measures the 
asymmetry of the distribution. By standardizing, we make the skewness 
independent on the position and scale of 𝑋 (information given by 𝜇 and 
𝜎):

𝑛 ൌ 3:   𝑆𝑘𝑒𝑤 𝑋 ൌ 𝐸
𝑋 െ 𝜇
𝜎

ଷ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2
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8.3.5 Moments (contd.)

 In general, the odd moments give information about the 
asymmetry of the distribution.

 The fourth standardized moment of a RV 𝑋 is defined kurtosis
of the distribution. If we split the distribution in three main 
regions, i.e. in the center (1 𝜎 around 𝜇), the shoulders
(between 1 and 2 𝜎’s around 𝜇) and the tails (more than 2 𝜎’s 
from 𝜇), then the kurtosis gives information about the tails.

𝐾𝑢𝑟𝑡 𝑋 ൌ 𝐸
𝑋 െ 𝜇
𝜎

ସ

െ 3

a classical distribution with large kurtosis is a PDF with a 
sharp peak at the center, low shoulders and heavy tails. 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2

Center

Sh
o
u
ld
er

Sh
o
u
ld
er

Tail Tail

S
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8.3.5 Moments (contd.) – Textbook Example

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.2

S

Try to calculate the moments shown in this example!

50



Slideaqualab 51Metrology: Elements of Statistics

8.3.5 Moments (contd.) – Experimental Example

| C. Bruschini, E. Charbon | 2025
F. Gramuglia, High‐Performance CMOS SPAD‐Based Sensors for Time‐of‐Flight PET Applications, EPFL Thèse 8720 (2022).

Coincidence measurements between two scintillating crystals ‐> influence of actual curve shapes

S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF‐PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

Large crystal

Moments in a real experimental set‐ups: this example shows real experimental 
distributions of the timing difference of gamma events detected on a given LOR (line of 
response), such as “opposite” elements of a PET detector (left), or two scintillating 
crystals placed face‐to‐face (right).

Left: operating principle of a time‐of‐flight PET machine. PET detector ring (blue), 
reconstructed cross‐section of a patient (centre), and histogram of the origin of the 
gamma events along the LOR as calculated from the timing difference t2‐t1. The time‐of‐
flight information allows a precise determination of the origin of each event and 
improves the final image quality. The smaller the timing error, the better the resulting 
SNR. The best detectors can measure the time‐of‐arrival of gamma events with an error 
smaller than hundred picoseconds.

Right: timing difference t2‐t1 as measured in the lab for two experimental crystals placed 
face‐to‐face (not shown). Note the vertical logarithmic scale. The resulting distribution is 
not Gaussian, but well fitted by the sum of two overlapping Gaussians. As a 
consequence, not only the width of the curve is important (FWHM = Full Width at Half 
Maximum), but other quantities as well, such as the FWTM (Full Width at 1/10 of 
Maximum) and FW100M (Full Width at 1/100 of Maximum). These parameters allow to 
better gauge the importance of the tails of the distributions, and their importance in the 
final image reconstruction.
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8.3.6 Moment Generating Functions

 The moment generating function (MGF) of a RV 𝑋 is defined as:

MGF:  𝜙 𝑡 ൌ 𝐸 𝑒௧௑ ൌ

෍𝑒௧௫𝑝௑ 𝑥 ,         if 𝑋 is discrete
௫

∗

න 𝑒௧௫𝑓௑ 𝑥  𝑑𝑥
ஶ

ିஶ
,        if 𝑋 is continuous ∗

 We call 𝜙 𝑡 the moment generating function because all the moments
of 𝑋 can be obtained by successfully differentiating 𝜙 𝑡 . It follows that:

𝜙ᇱ 𝑡 ൌ
𝑑
𝑑𝑡
𝐸 𝑒௧௑ ൌ 𝐸 𝑋𝑒௧௑    →    𝜙ᇱ 0 ൌ 𝐸ሼ𝑋ሽ

𝜙ᇱᇱ 𝑡 ൌ
𝑑
𝑑𝑡
𝜙ᇱ 𝑡 ൌ

𝑑
𝑑𝑡
𝐸 𝑋𝑒௧௑ ൌ 𝐸ሼ𝑋ଶ𝑒௧௑ሽ    →    𝜙ᇱᇱ 0 ൌ 𝐸 𝑋ଶ

𝜙ሺ௡ሻ 0 ൌ 𝐸 𝑋௡ ,    for all 𝑛 ൒ 1

| C. Bruschini, E. Charbon | 2025

S.M. Ross, Introduction to Probability Models, 10th ed., 2009, Chap. 2.6

The MGF is a 
“tool” to 
calculate the 
moments – by 
differentiating it 
– provided that 
an analytical 
expression of the 
random variable 
is given.

Ex

*Using LOTUS (Section 8.3.3)

S

The moment generating function (MGF) 𝜙 𝑡 is a “tool” to calculate the 
moments 𝐸 𝑋௡ of a random variable 𝑋 by differentiating it – i.e. calculating 

𝜙ሺ௡ሻ 𝑡  𝜙ሺ௡ሻ 0 – provided that an analytical expression of the random 
variable is given. Its use will be illustrated in the Homeworks.
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Outline

8.1  Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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8.4 Multivariate Distributions

 During experiments, in real life, we have to deal with multiple RVs. 
It is very important to know the relationship between different 
RVs, i.e. if they are independent or dependent on each other.

 The joint distributions, also called multivariate distributions, 
capture the missing information about how the multiple variables 
interact.

 The key concepts that will be studied are the joint, marginal and 
conditional distributions of two variables (see also Appendix A).

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7

Example: LiDAR = detection 
of backscattered signal 
photons in presence of 
background light

M. Beer et al., Background Light Rejection…, MDPI Sensors 18, 2018.

𝑋 ൌ 𝑠𝑖𝑔𝑛𝑎𝑙, 
𝑌 ൌ 𝑛𝑜𝑖𝑠𝑒 ሺ𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑,𝐷𝐶𝑅, 𝑒𝑡𝑐. ሻ

We will now briefly look at more complex distributions of multiple random variables, i.e. 
Joint and Independent Distributions. 
Marginal and Conditional distributions are left for reference in the Appendix, for those 
who would like to know more.

An example of two random variables – signal and background – is provided on the right, 
here for the case of the LIDAR application.
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8.4.1 Joint Distributions

 The joint distribution of two RVs 𝑋 and 𝑌 provides complete information 
about the probability of the vector  𝑋,𝑌 falling into any subset of the 
plane.

 The joint CDF of two RVs 𝑋 and 𝑌 is a function 𝐹௑,௒ such that:

CDF: 𝐹௑,௒ 𝑥,𝑦 ൌ 𝑃 𝑋 ൑ 𝑥,𝑌 ൑ 𝑦

 In the same fashion, the joint PMF of two discrete RVs 𝑋 and 𝑌
is a function 𝑝௑,௒ such that:

PMF: 𝑝௑,௒ 𝑥,𝑦 ൌ 𝑃 𝑋 ൌ 𝑥,𝑌 ൌ 𝑦

 In the same way of the univariate PMF, it has to be nonnegative 
and sum up to 1:

෍෍𝑃 𝑋 ൌ 𝑥,𝑌 ൌ 𝑦
௬௫

ൌ 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Joint PMF of discrete RVs X
and Y

We generalise here the concepts of CDF and PMF to the joint distributions of two 
random variables. An example of joint PMF is shown on the right for two discrete RVs.
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8.4.1 Joint Distributions (contd.)

 Analogously, the joint PDF of two continuous RVs 𝑋 and 𝑌 is given by:

PDF: 𝑓௑,௒ 𝑥,𝑦 ൌ
𝜕ଶ

𝜕𝑥𝜕𝑦
𝐹௑,௒ 𝑥, 𝑦

 In order for the joint PDF to be valid, it has to be 
nonnegative and integrate to 1:

𝑓௑,௒ 𝑥,𝑦 ൒ 0 for all  𝑥,𝑦

න න 𝑓௑,௒ 𝑥, 𝑦  𝑑𝑥 𝑑𝑦

ஶ

ିஶ

ஶ

ିஶ

ൌ 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.2

Joint PDF of continuous RVs 
X and Y

Similarly to the previous slide, an example of joint PDF is shown on the right for two 
continuous RVs.
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8.4.2 Independent Distributions

 Two RVs 𝑋 and 𝑌 are independent if:

𝐹௑,௒ 𝑥,𝑦 ൌ 𝐹௑ 𝑥  𝐹௒ 𝑦

which is equivalent to say, for discrete RVs:

𝑃 𝑋 ൌ 𝑥,𝑌 ൌ 𝑦 ൌ 𝑃 𝑋 ൌ 𝑥 𝑃 𝑌 ൌ 𝑦

and for continuous RVs:

𝑓௑,௒ 𝑥, 𝑦 ൌ 𝑓௑ 𝑥  𝑓௒ 𝑦

or

𝑓௒|௑ 𝑦|𝑥 ൌ 𝑓௒ 𝑦  

for all 𝑥 and 𝑦.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Example: LiDAR employing 
detection of photon 
coincidences (within a 
coincidence window) in 
presence of background 
light

M. Beer et al., Background Light Rejection…, MDPI Sensors 18, 2018.

In the case of independent random variables, the final PDF (probability density 
function) and CDF (cumulative distribution function) are substantially simplified, 
reducing to the product of the individual distributions.

NB: the bottom definition is a generalisation to multiple random variables of the 
conditional probability discussed in Appendix A8.1.1 and A8.1.3.
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8.4.3 Example: LIDAR & Coincidence Detection 

| C. Bruschini, E. Charbon | 2025

Photon coincidences

Coincidence detection is a 
well‐known technique 
which utilizes spatio‐
temporal correlations of 
photons within a laser pulse 
to filter out background 
noise photons which are 
uniformly distributed in 
time
‐> concept of coincidence 
window to reduce the 
likelihood of acquiring noise 
events (Appendix B)

P. Padmanabhan et al., Modeling and Analysis of a Direct Time‐of‐Flight Sensor Architecture for LiDAR Applications, Sensors 2019

An example of a multivariate distribution as applied to the measurement of time‐of‐
flight and the design of a bespoke sensor is provided in Appendix 8.B. We summarise
here the basic idea:

Coincidence detection is a well‐known technique which utilizes spatio‐temporal 
correlation of photons within a laser pulse to filter out background noise photons which 
are uniformly distributed in time. The figure above conceptually explains this technique 
with an example scene and a measured 3D image reconstruction. 
The main idea is to exploit the fact that the signal photons reflected from the target are 
temporally correlated and thus, most likely to be concentrated within a time‐window 
coarsely equal to the total system full width at half maximum, FWHM, of the laser 
pulse….

Instead of letting the sensor integrate events over a long measurement window, 
imposing this time constraint, referred to as the “coincidence window”, reduces the 
likelihood of acquiring noise events whose probability of occurrence within that window 
is very low, thus, electrically enhancing the signal to background noise ratio, SBR. 
Coincidence may be implemented at the sensor level over clusters/groups of closely‐
spaced pixels, exploiting a “more‐likely” fact that neighboring pixels may belong to 
similar target depths (and thus, TOFs), as depicted in the figure for the object labelled 
[4].
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8.4.4 Covariance

 The covariance of the joint distribution of two RVs 𝑋 and 𝑌
represents their tendency to go up or down together 
(“single‐number summary”):

𝐶𝑜𝑣 𝑋,𝑌 ൌ 𝐸 𝑋 െ 𝐸 𝑋 𝑌 െ 𝐸 𝑌

which, using linearity, becomes

𝐶𝑜𝑣 𝑋,𝑌 ൌ 𝐸 𝑋𝑌 െ 𝐸 𝑋 𝐸 𝑌

 If two RVs are independent, then their covariance is zero (‐> 
uncorrelated RVs), because:

𝐸 𝑋𝑌 ൌ න න 𝑥𝑦 𝑓௑ 𝑥  𝑓௒ 𝑦  𝑑𝑥 𝑑𝑦

ஶ

ିஶ

ஶ

ିஶ

ൌ

ൌ න 𝑥 𝑓௑ 𝑥  𝑑𝑥 න 𝑦 𝑓௒ 𝑦  𝑑𝑦

ஶ

ିஶ

ஶ

ିஶ

ൌ 𝐸 𝑋 𝐸 𝑌

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3 *Using the definition of the Covariance above…

*

How can we determine in practice if two random variables are independent, which 
would simplify a lot their joint distribution? We can for example calculate their 
covariance, which is much easier to verify that the statistical independence ‒ if nonzero, 
it indicates that the RVs are not independent. 

Top left: positive correlation (𝐶𝑜𝑣 ൐ 0), top right: negative correlation (𝐶𝑜𝑣 ൏ 0),
bottom left: independent  uncorrelated (𝐶𝑜𝑣 ൌ 𝐶𝑜𝑟𝑟 ൌ 0), bottom right: 𝑌 is a 
deterministic function of 𝑋 (𝑋~𝒩 0,1 , 𝑌 ൌ 𝑋ଶ), but 𝑋 and 𝑌 are uncorrelated (
𝐶𝑜𝑣 ൌ 0 !) using the definition of the Covariance above*…

*Note 1: The Covariance as defined here is a measure of linear association  RVs can be 
dependent in nonlinear ways and still have zero covariance.
____________
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8.4.4 Covariance

 The covariance of the joint distribution of two RVs 𝑋 and 𝑌
represents their tendency to go up or down together 
(“single‐number summary”):

𝐶𝑜𝑣 𝑋,𝑌 ൌ 𝐸 𝑋 െ 𝐸 𝑋 𝑌 െ 𝐸 𝑌

which, using linearity, becomes

𝐶𝑜𝑣 𝑋,𝑌 ൌ 𝐸 𝑋𝑌 െ 𝐸 𝑋 𝐸 𝑌

 If two RVs are independent, then their covariance is zero (‐> 
uncorrelated RVs), because:

𝐸 𝑋𝑌 ൌ න න 𝑥𝑦 𝑓௑ 𝑥  𝑓௒ 𝑦  𝑑𝑥 𝑑𝑦

ஶ

ିஶ

ஶ

ିஶ

ൌ

ൌ න 𝑥 𝑓௑ 𝑥  𝑑𝑥 න 𝑦 𝑓௒ 𝑦  𝑑𝑦

ஶ

ିஶ

ஶ

ିஶ

ൌ 𝐸 𝑋 𝐸 𝑌

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3 *Using the definition of the Covariance above…

*

How can we determine in practice if two random variables are independent, which 
would simplify a lot their joint distribution? We can for example calculate their 
covariance, which is much easier to verify that the statistical independence ‒ if nonzero, 
it indicates that the RVs are not independent. 

Top left: positive correlation (𝐶𝑜𝑣 ൐ 0), top right: negative correlation (𝐶𝑜𝑣 ൏ 0),
bottom left: independent  uncorrelated (𝐶𝑜𝑣 ൌ 𝐶𝑜𝑟𝑟 ൌ 0), bottom right: 𝑌 is a 
deterministic function of 𝑋 (𝑋~𝒩 0,1 , 𝑌 ൌ 𝑋ଶ), but 𝑋 and 𝑌 are uncorrelated (
𝐶𝑜𝑣 ൌ 0 !) using the definition of the Covariance above*…

*Note 1: The Covariance as defined here is a measure of linear association  RVs can be 
dependent in nonlinear ways and still have zero covariance.

Note 2: the inverse of the theorem above (two RVs independent  uncorrelated RVs) is 
not true, i.e. just because 𝑋 and 𝑌 are uncorrelated (𝐶𝑜𝑣 ൌ 0) does not mean that they 
are independent.
____________
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8.4.4 Covariance (contd.)

 The covariance , which is much easier to verify that the statistical 
independence, has the following properties:

1. 𝐶𝑜𝑣 𝑋,𝑋 ൌ 𝑉𝑎𝑟 𝑋

2. 𝐶𝑜𝑣 𝑋,𝑌 ൌ 𝐶𝑜𝑣 𝑌,𝑋

3. 𝐶𝑜𝑣 𝑋, 𝑐 ൌ 0 for any constant 𝑐

4. 𝐶𝑜𝑣 𝑎𝑋,𝑌 ൌ 𝑎 𝐶𝑜𝑣 𝑋,𝑌 for any constant 𝑎

5. 𝐶𝑜𝑣 𝑋 ൅ 𝑌,𝑍 ൌ 𝐶𝑜𝑣 𝑋,𝑍 ൅ 𝐶𝑜𝑣 𝑌,𝑍

6. 𝐶𝑜𝑣 𝑋 ൅ 𝑌,𝑊൅ 𝑍 ൌ 𝐶𝑜𝑣 𝑋,𝑍 ൅ 𝐶𝑜𝑣 𝑌,𝑍 ൅ 𝐶𝑜𝑣 𝑋,𝑊 ൅
𝐶𝑜𝑣 𝑌,𝑊

7. 𝑉𝑎𝑟 𝑋 ൅ 𝑌 ൌ 𝑉𝑎𝑟 𝑋 ൅ 𝑉𝑎𝑟 𝑌 ൅ 2𝐶𝑜𝑣 𝑋,𝑌

8. 𝑉𝑎𝑟 𝑋ଵ ൅ ⋯൅ 𝑋௡ ൌ 𝑉𝑎𝑟 𝑋ଵ ൅ ⋯൅ 𝑉𝑎𝑟 𝑋௡ ൅ 2∑ 𝐶𝑜𝑣 𝑋௜ ,𝑋௝௜ழ௝

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3

Of particular importance are the two last properties, which must be known: simply 
adding the variances of random variables is not always correct!
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8.4.5 Correlation

 The correlation between two RVs 𝑋 and 𝑌 is given by (unitless version of 
the covariance):

𝐶𝑜𝑟𝑟 𝑋,𝑌 ൌ
𝐶𝑜𝑣 𝑋,𝑌

𝑉𝑎𝑟 𝑋  𝑉𝑎𝑟 𝑌

 Notice that this formulation is insensitive to scaling. In fact:

𝐶𝑜𝑟𝑟 𝑐𝑋,𝑌 ൌ
𝐶𝑜𝑣 𝑐𝑋,𝑌

𝑉𝑎𝑟 𝑐𝑋  𝑉𝑎𝑟 𝑌
ൌ

𝑐 𝐶𝑜𝑣 𝑋,𝑌

𝑐ଶ 𝑉𝑎𝑟 𝑋  𝑉𝑎𝑟 𝑌
ൌ 𝐶𝑜𝑟𝑟 𝑋,𝑌

 Moreover, the correlation is bounded:

െ1 ൑ 𝐶𝑜𝑟𝑟 𝑋,𝑌 ൑ 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.3
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Take‐home Messages/W8‐3

 Moments:

 Expected value (mean), median, mode

 Linearity and law of the unconscious statistician (LOTUS)

 Variance/standard deviation and its properties

 Example of laser and time‐resolved measurement

 Moments: general definitions, MGF

 Covariance and Correlation:

 Multivariate, joint and independent distributions

 Covariance and correlation

 Covariance properties(!), e.g. 𝑉𝑎𝑟 𝑋ଵ ൅ ⋯൅ 𝑋௡

| C. Bruschini, E. Charbon | 2025

Third recap section: we summarise here the main definitions, results and examples 
discussed in this third and final section.
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Appendix

A8.1  Introduction to Probability

A8.A Multivariate Distributions

A8.B Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025
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Appendix 8.1: Introduction to Probability (contd.) – Example

Fair dice

 The classic example to explain the concept of probability is the fair dice.
In a fair dice, the probability of obtaining one of the six faces, for
example to get the number three, is, as we know, the ratio between the
number of positive configurations and the number of total possible
configurations: 𝑃ሼface is 3ሽ ൌ 1/6.

 In the same fashion, the probability of obtaining an odd number is
𝑃ሼface is oddሽ ൌ 3/6.

 The fair dice represents the classical example of uniform probability
distribution, as we will see.

| C. Bruschini, E. Charbon | 2025

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991, Chap. 1

This section contains several exact definitions and properties of importance for 
probability theory.
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A8.1 Introduction to Probability (contd.)

How a probability function maps events to numbers

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 1. 6, 1.7
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A8.1.1 Conditional Probability

Thinking conditionally – whenever we observe new evidence (i.e., obtain 
data), we acquire information that may affect our uncertainties.

Conditional probability answers one simple question: how should we
update our beliefs in light of the evidence we observe?

 If𝒜 and ℬ are events with 𝑃ሼℬሽ ൐ 0, then the conditional probability of
𝒜 given ℬ ሺℬ being the evidence which we observe) is defined as:

𝑃ሼ𝒜|ℬሽ ൌ
𝑃ሼ𝒜 ∩ ℬሽ
𝑃ሼℬሽ

 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.2, 2.3
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A8.1.1 Conditional Probability (contd.) – Example

Example: Two cards are extracted from a standard deck. Let𝒜 be the event
that the first card is a heart, and ℬ the event that the second card is red.
Find 𝑃 𝒜|ℬ and 𝑃 ℬ|𝒜 .

 From naïve definition of probability:

𝑃 𝒜∩ℬ ൌ
13
52

·
25
51

ൌ
25

204
ሺൌ 𝑃 ℬ∩𝒜 ሻ

while 𝑃 𝒜 ൌ 1/4 and 𝑃 ℬ ൌ 1/2.

 Follows:

𝑃 𝒜|ℬ ൌ
𝑃 𝒜∩ℬ
𝑃 ℬ

ൌ
25/204

1/2
ൌ

25
102

𝑃 ℬ|𝒜 ൌ
𝑃 ℬ∩𝒜
𝑃 𝒜

ൌ
25/204

1/4
ൌ

25
51

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.2

This example is more involved than what it looks like at first sight…

‐ Naïve definition = just count the possible outcomes (Blitzstein 1.3).

‐ P{B}=1/2 is a bit less obvious but can be demonstrated (Blitzstein pp. 42‐43 – “there 
are 26 favorable possibilities for the second card, and for each of those, the first 
card can be any other card (recall from Chapter 1 that chronological order is not 
needed in the multiplication rule).”).

NB: “… the chronological order in which cards were chosen does not dictate 
which conditional probabilities we can look at. When we calculate conditional 
probabilities, we are considering what information observing one event provides 
about another event, not whether one event causes another.”

NB: “P{A given B} and vice versa introduces an evidence which fundamentally changes 
the outcome (in terms of probability).”
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A8.1.1 Conditional Probability (contd.)

 From the definition of the conditional probability:

𝑃ሼ𝒜|ℬሽ ൌ
𝑃ሼ𝒜 ∩ ℬሽ
𝑃ሼℬሽ

 

we can derive the following theorem:

𝑃 𝒜 ∩ ℬ ൌ 𝑃 ℬ 𝑃 𝒜|ℬ ൌ 𝑃 𝒜 𝑃 ℬ|𝒜 ൌ 𝑃 ℬ ∩𝒜

since 𝑃 𝒜 ∩ ℬ ൌ 𝑃 ℬ ∩𝒜

Applying it repeatedly, we can generalize to the intersection of n events
(commas = intersections):

𝑃 𝒜ଵ,𝒜ଶ, . . ,𝒜௡
ൌ 𝑃 𝒜ଵ 𝑃 𝒜ଶ|𝒜ଵ 𝑃ሼ𝒜ଷ|𝒜ଵ,𝒜ଶሽ…𝑃ሼ𝒜௡|𝒜ଵ, … ,𝒜௡ିଵሽ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.2, 2.3

NB: Intersection = AND (the intersection A ∩ B is the event that occurs if and only if 
both A and B occur).
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A8.1.2 Bayes’ Rule and Total Probability

 Manipulating the relationship:

𝑃ሼ𝒜 ∩ ℬሽ ൌ 𝑃 ℬ 𝑃ሼ𝒜|ℬሽ ൌ 𝑃 𝒜 𝑃ሼℬ|𝒜ሽ

we can derive the following theorem (Bayes’ rule):

𝑃ሼ𝒜|ℬሽ ൌ
𝑃 ℬ|𝒜 𝑃ሼ𝒜ሽ

𝑃ሼℬሽ

which can be extremely useful in case 𝑃 ℬ|𝒜 is much
easier to find than 𝑃ሼ𝒜|ℬሽ, or vice versa.

 Sometimes, it can be extremely convenient to split a complex
statistical problem into smaller pieces. In order to do that, one
can apply the law of total probability (LOTP)*:

𝑃 ℬ ൌ෍𝑃 ℬ ∩𝒜௜

௡

௜ୀଵ

ൌ෍𝑃 𝒜௜  𝑃 ℬ|𝒜௜

௡

௜ୀଵ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 2.3

*Relates conditional to 
unconditional probabilities

Ex

An example of the application of Bayes’ rule is provided in the Homeworks.

NB: 𝒜௜ are (still) events.
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A8.1.3 Independence of Events

 Two events are stochastically independent if:

𝑃 𝒜 ∩ ℬ ൌ 𝑃 𝒜 𝑃 ℬ

and if 𝑃ሼ𝒜ሽ ൐ 0 and 𝑃ሼℬሽ ൐ 0 then this is equivalent to (from the 
definition of the conditional probability):

𝑃 𝒜|ℬ = 𝑃 𝒜 ,  𝑃 ℬ|𝒜 = 𝑃 ℬ

 In words, two events 𝒜 and ℬ are independent if learning that 
ℬ occurred has no influence on the probability of the event 𝒜 to 
happen (and vice versa).

 As consequence, it also has no influence on the probability of the 
opposite of 𝒜, 𝒜௖:

𝑃 𝒜௖|ℬ ൌ 1 െ 𝑃 𝒜|ℬ ൌ 1 െ 𝑃 𝒜 ൌ 𝑃 𝒜௖

 Hence, if 𝒜 and ℬ are independent, then also 𝒜௖ and ℬ௖ are. 
Sometimes this property can be extremely useful.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap 2.5

We refer to this definition of independent events when discussing independent random 
variables.
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Appendix 8.A – Multivariate Distributions: Marginal Distributions

 For discrete RVs 𝑋 and 𝑌, the marginal (or unconditional) PMF of 
𝑋 is given by:

𝑃 𝑋 ൌ 𝑥 ൌ෍𝑃 𝑋 ൌ 𝑥,𝑌 ൌ 𝑦
௬

(distribution of 𝑋 alone by summing over all 𝑌)

 In the same way, the marginal CDF of 𝑋 is obtained by:

𝐹௑ 𝑥 ൌ 𝑃 𝑋 ൑ 𝑥 ൌ lim
௬→ஶ

𝑃ሼ𝑋 ൑ 𝑥,𝑌 ൑ 𝑦ሽ ൌ

ൌ lim
௬→ஶ

𝐹௑,௒ 𝑥,𝑦

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Marginal PMF example

Marginal and Conditional distributions are summarised in this Appendix, for those who 
would like to know more.

Top & image: the marginal PMF is indeed the sum along Y (not the projection!). 

Bottom: the marginal CDF can indeed also be obtained as the limit of the joint CDF when 
𝑦 → ∞.
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Appendix 8.A – Multivariate Distributions: Marginal Distributions

 For continuous RVs 𝑋 and 𝑌 with joint PDF 𝑓௑,௒, the marginal PDF
of 𝑋 is given by:

𝑓௑ 𝑥 ൌ න 𝑓௑,௒ 𝑥, 𝑦  𝑑𝑦

ஶ

ିஶ

 In the more general case of more than two RVs, all that needs to
be done is an integration along the unwanted RVs. For example, if
we have the joint PDF of 𝑋, 𝑌,𝑊 and 𝑍, but we want the joint PDF
of the distributions in 𝑋 and𝑊:

𝑓௑,ௐ 𝑥,𝑤 ൌ න න 𝑓௑,௒,ௐ,௓ 𝑥, 𝑦,𝑤, 𝑧  𝑑𝑦 𝑑𝑧

ஶ

ିஶ

ஶ

ିஶ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.2

NB: the image should actually show the marginal distribution for continuous variables.
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Appendix 8.A – Multivariate Distributions: Conditional Distributions

 For discrete RVs 𝑋 and 𝑌, the conditional PMF of 𝑌
given 𝑋 ൌ 𝑥 is given by:

𝑃ሼ𝑌 ൌ 𝑦|𝑋 ൌ 𝑥ሽ ൌ
𝑃 𝑋 ൌ 𝑥,𝑌 ൌ 𝑦

𝑃 𝑋 ൌ 𝑥

(we observe the value of X and want to update our distribution 

of Y to reflect this information)

 It is possible to obtain the conditional PMF of 𝑋 given 𝑌 ൌ 𝑦 
also using Bayes’ rule or the law of total probability (LOTP):

𝑃ሼ𝑌 ൌ 𝑦|𝑋 ൌ 𝑥ሽ ൌ
𝑃 𝑋 ൌ 𝑥|𝑌 ൌ 𝑦  𝑃 𝑌 ൌ 𝑦

𝑃 𝑋 ൌ 𝑥

𝑃 𝑋 ൌ 𝑥 ൌ෍𝑃 𝑋 ൌ 𝑥 𝑌 ൌ 𝑦
௬

𝑃 𝑌 ൌ 𝑦

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.1

Conditional PMF of Y given 
X = x

Conditional distributions:

just note that 𝑃 𝑋 ൌ 𝑥 with which we renormalize is simply the marginal PMF defined 
two slides before! 

Same thing for 𝑓௑ 𝑥 on the next slide with respect to the definition of marginal PDF for 
continuous RVs.

74



Slideaqualab 75Metrology: Elements of Statistics

Appendix 8.A – Multivariate Distributions: Conditional Distributions

 For continuous RVs 𝑋 and 𝑌 with joint PDF 𝑓௑,௒, the 
conditional PDF of 𝑌 for 𝑋 ൌ 𝑥 is given by:

𝑓௒|௑ 𝑦 𝑥 ൌ
𝑓௑,௒ 𝑥,𝑦
𝑓௑ 𝑥

 The continuous analogs of Bayes’ rule or the LOTP are given by:

𝑓௒|௑ 𝑦 𝑥 ൌ
𝑓௑|௒ 𝑥|𝑦  𝑓௒ 𝑦

𝑓௑ 𝑥

𝑓௑ 𝑥 ൌ න 𝑓௑|௒ 𝑥 𝑦  𝑓௒ 𝑦  𝑑𝑦
ஶ

ିஶ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 7.2

Conditional PDF of Y given 
X = x
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

Photon coincidences

P. Padmanabhan et al., Modeling and Analysis of a Direct Time‐of‐Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Coincidence detection is a 
well‐known technique 
which utilizes spatio‐
temporal correlations of 
photons within a laser pulse 
to filter out background 
noise photons which are 
uniformly distributed in 
time
‐> concept of coincidence 
window to reduce the 
likelihood of acquiring noise 
events 

An example of a multivariate distribution as applied to the measurement of time‐of‐
flight and the design of a bespoke sensor is provided here in Appendix 8.B, as a 
complement to slide 8.4.3, for those who would like to know more.

Coincidence detection is a well‐known technique which utilizes spatio‐temporal 
correlation of photons within a laser pulse to filter out background noise photons which 
are uniformly distributed in time. The figure above conceptually explains this technique 
with an example scene and a measured 3D image reconstruction. 
The main idea is to exploit the fact that the signal photons reflected from the target are 
temporally correlated and thus, most likely to be concentrated within a time‐window 
coarsely equal to the total system full width at half maximum, FWHM, of the laser 
pulse….

Instead of letting the sensor integrate events over a long measurement window, 
imposing this time constraint, referred to as the “coincidence window”, reduces the 
likelihood of acquiring noise events whose probability of occurrence within that window 
is very low, thus, electrically enhancing the signal to background noise ratio, SBR. 
Coincidence may be implemented at the sensor level over clusters/groups of closely‐
spaced pixels, exploiting a “more‐likely” fact that neighboring pixels may belong to 
similar target depths (and thus, TOFs), as depicted in the figure for the object labelled 
[4].
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

A possible pixel (and/or 
sensor) arrangement: 

subgroups (sg) of 8x4 SPADs, 
clustered into 4 minigroups

(mg) of 8 SPADs each

Arrival of the first event 
starts a coincidence window 
‐> count events (photons) in 
a sg

P. Padmanabhan et al., Modeling and Analysis of a Direct Time‐of‐Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Subgroup, sg (i)

ith pixe l

minigroup, mg (i)

‐> compare the output of 
the event counter with a 
predefined (and variable) 
coincidence threshold th.

The sensor may be visualized as an array of modules, called, subgroups, where every 
subgroup is clustered into an array of M = 4 × 8 SPADs in this example capable of 
performing photon detection. The subgroup, sg (M pixels), is further clustered into N 
minigroups, mg, comprising of (M/N) number of pixels each. 

Arrival of the first event starts a coincidence window, twindow. There is an event 
counter in every subgroup which tracks the number of photons within a coincidence 
window. A comparator logic is used to compare the output of the event counter with a 
predefined (and variable) coincidence threshold, th. Whenever the event count exceeds 
th, a signal is considered valid.
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

P. Padmanabhan et al., Modeling and Analysis of a Direct Time‐of‐Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Mathematically:

p_sth(i) = P(detecting th
number of valid signal 
events within t_window) = 

Probability of detecting a 
signal event in a pixel i, =
p_spixel(i),

given that no noise photon 
is detected at pixel i, 
= ( 1 ‐ p_npixel(i) ),

and…

Subgroup, sg (i)

ith pixe l

minigroup, mg (i)

(1 − p_npixel (i) ) × p_spixel (i)

s = signal, n = noise

(a) Detect 1st signal photon 
at ith pixel
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

P. Padmanabhan et al., Modeling and Analysis of a Direct Time‐of‐Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Subgroup, sg (i)

ith pixe l

minigroup, mg (i)

p_sth−1,mg

(b) Detect (th‐1) photons in 
mg(i)

… and p_sth‐1,sg(i) = 
P(detecting th ‐ 1 signal 
events in the rest of the 
subgroup). 

But p_sth‐1,sg(i) = 

union operation of 
individual probabilities of 
detecting (th ‐ 1) signal 
photons in the minigroup
mg(i) = p_sth‐1,mg(i),
…
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

P. Padmanabhan et al., Modeling and Analysis of a Direct Time‐of‐Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Subgroup, sg (i)

ith pixe l

minigroup, mg (i)

p_sth−1,sg-mg

(c) Detect (th‐1) photons in 
sg(i) ‐mg(i)

… or in the rest of the subgroup, 
sg(i) ‐mg(i),

= p_sth‐1,sg(i)‐mg(i)
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Appendix 8.B – Multivariate Distributions – Example: LIDAR 

| C. Bruschini, E. Charbon | 2025

Union operation over 
(th‐1) photons

P. Padmanabhan et al., Modeling and Analysis of a Direct Time‐of‐Flight Sensor Architecture for LiDAR Applications, Sensors 2019

Summarising:

The probability of detecting “th” number of valid signal events within twindow can be 
calculated as a conditional probability of detecting a signal event in a pixel, i, given that 
no noise photon is detected at pixel i and (th ‐ 1) signal events are detected in the rest of 
the subgroup. 

 The final conditional probability of detecting th‐1 signal photons in the subgroup…..
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