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Reference Books (Weeks 8&9)

@ J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015

[ A. Papoulis, Probability, Random Variables and Stochastic Processes, 3™ ed., 1991
13 S.M. Ross, Introduction to Probability Models, 10t ed., 2009

L .G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 15t ed., 2010

1 G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters, 2" ed., 2005

11 J.R. Taylor, An Introduction to Error Analysis, 2" ed., 1997
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The first reference, by Blitzstein, was used extensively throughout this lecture as well as

the following one. It should still be available from the EPFL library and is a suggested
read for these topics.

NB: in general, see also the reference box at the bottom of the slides for notes on the
exact chapters, etc.




Outline

8.1 Introduction to Probability
8.2 Random Variables
8.3 Moments
8.4 Covariance and Correlation
9.1 Random Processes
9.2 Central Limit Theorem
9.3 Estimation Theory
9.4 Accuracy, Precision and Resolution
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The Outline covers both this lecture as well as the next one.




8.1 Introduction to Probability

= The theory of probability deals with averages of mass phenomena
occurring sequentially or simultaneously.

= |f an experiment is performed n times and the event A occurs ng4
times, and if n is sufficiently large, it is possible to state that the relative
frequency ny4 /n of occurrence of A is close to the probability
P{A} that the event A occurs:

P{A}=ny4 /n

LI A. Papoulis, Probability, Random Variables and Stochastic Processes, 3" ed., 1991, Chap. 1
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In order to move quickly to practical examples, this part has been substantially abridged
and is now available in the Appendix. Please refer to it for the exact definitions.




8.1 Introduction to Probability

= Further formal details in Appendix 8.1 (A8.1)

= Fair dice example

= How a probability function maps events to numbers
= Conditional Probability

= Bayes’ rule & law of total probability (LOTP)

= |ndependence of Events
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In order to move quickly to practical examples, this part has been substantially abridged
and is now available in the Appendix. Please refer to it for the exact definitions.
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8.2 Random Variables

= A Random Variable (RV) is a number X (s) assigned to every
outcome s of an experiment.

Examples: the voltage of a random source, etc..

= The domain of the Random Variable X(s) is §, which is the
set of experimental outcomes. It is also called the support
of the random variable. Its range is R. Two properties must
be satisfied:

1. Theset {X(s) < x}is an event for every x. |

2. The probabilities of the events {X = o} and \l” | ‘\ ‘# M |
{X = —o0} must be zero: ’ y‘ {,“ ‘,‘/\‘ - H\\‘””"‘“ \M“ ’\“ \

R
P{X = o0} = P{X = —o0} = 0. U \

LI A. Papoulis, Probability, Random Variables and Stochastic Processes, 3" ed., 1991, Chap. 4.1
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S = support is the set of experimental outcomes.




8.2 Random Variables (contd.) — Example

Example of random variable mapping X from the sample space
S into the real line (randomness comes from choosing a
random pebbl ing to P = probability function)

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 3.1
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The blue “S” on the top right means that this slide is skipped during the lecture, but left
in the document to maintain the overall coherence of the material.
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8.2 Random Variables (contd.)

= A Random Variable X is said to be discrete if there is a finite
list of values a4, a,, ..., a, or an infinite list of values a4, a,, ...
such that P{X = q; for somej} = 1. In the first case, its
support is given by:

4-bit, 4.4 kips
S ={aq,ay, ..., a,} I

Example: the outcome from the launch of a dice; the _;f " @
number of photons detected in an image. E ’ SPAD-
2 8r Based
* ARandom Variable X is instead said to be continuous ifit can £ 7} LiDAR
take on any value in a given interval, possibly of infinite _—é 6l first
length. For example its support can be: £ sl photon
- PDF
§ = (0,) T
3l.'l lel -ll(l (\1(} R.ﬂ Itll(l

Example: time of arrival of a photon in a LiDAR image.

Time (ns)
m A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 3.2 ~~ M. Beer et al,, Background Light Rejection..., MDPI Sensors 18, 2018.
aqua C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 11 ePrFL

The red “Q” stands for a question asked during class, aimed at going deeper into the
subject.

Hints: think of a) outdoors operation (and a first-photon detection set-up, i.e. only the
first backscattered photon is detected in a laser period), and b) an illumination with a
pulsed laser emitting pulses of finite temporal length...
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8.2.1 Probability Mass Functions

How to express the distribution of a (discrete) Random Variable/1

= The probability mass function (PMF) of a discrete RV X is the function:

PMF: pyx(x) = P{X = x}
Note that this value is positive if x € §, zero otherwise.

= The PMF needs to satisfy two criteria:

1. Nonnegative:

px(x) > 0if x = x; for some j,
px(x) = 0 otherwise.

s

L]

1 2 3 4 5 6

2. Sumsto 1:
)
~opx(x) =1
[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, IS‘JEE.,l2015, Chap. 3.2
aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics e 12
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We start to look into the formal definitions for discrete random variables first, before

moving to continuous ones.
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8.2.1 Probability Mass Functions (contd.) — Example

Example

Imagine to toss two coins at the same time. The possible outcomes are,
given that H = head and T = tail, the following: § = {HH,HT,TH, TT}. If
the Random Variable X is the number of heads, it follows that:

px(0) = P{X = 0} = 1/4
px(1) = P(X =1} =2/4
px(2) = P(X =2} =1/4

px(x) = P{X = x} = 0 for all other x

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 3.2

aqua C. Bruschini, E. Charbon | 2025

Metrology: Elements of Statistics
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8.2.2 Bernoulli and Binomial RVs

First case: a Random Variable which can only take two values

BIn(10, 1/2)

Bin(10, 1/8)

0.4
04

= Adiscrete RV X is said to have the Bernoulli distribution
with parameter pif P{X = 1} = pand P{X =0} = 1 —p, =] s
where 0 <p < 1.

PMF
02
PMF
02

= An experiment that can result in either a success or a failure s ‘ { s
is called a Bernoulli trial. ol . ] [ - 1., ,
o 2 4 & 8 10 o 4 6 8 10
= Suppose that n independent Bernoulli trials are performed. Bin(100, 0.03) Bin(s, 415)

04
04

Let p be the probability of success, 1 — p the probability of
failure, X (RV) the number of successes. The distribution of
X is called binomial distribution Bin(n, p) with parameters n

and p: . ‘ .
n T‘ IT‘I‘

03
03

PMF
0.2

PMF
02

0.0
0.0

PMF: P{X=k}=<k>pk(1—p)"_k e e e

fork =0,1,..,n

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 3.3

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics
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We will now look at some of the most important random variable distributions,
illustrated by means of examples from engineering and physics.

NB: the binomial coefficient (Z) reads “n choose k”.

14



8.2.2 Bernoulli RV — Example

(CMOS) SPAD:
Single-Photon
Avalanche
Photodiode

+ time-of-arrival, energy/wavelength,
polarization, etc.

- %‘;me
- | Tt Time (T)

Perfect single photon detection limited by O No Photon O Undetected Photon

1. Photon detection efficiency (PDE) = QE x FF

2. Temporal Aperture Ratio
3. Dark Count Rate

[0 R. Henderson, Edinburgh Univ., ISSCC 2013 — E. Fossum, IISW 2013

aqua C. Brusc E. Charbon | 2025

B Photon B Spurious Photon

1-bit frame 4-bit frame

 A. Chandramouli, A bit too much? High Speed Imaging from
== Sparse Photon Counts, Proc. ICCP 2019

Metrology: Elements of Statistics Slide 15 =PrL

A binary SPAD sensor represent an excellent example to illustrate the properties of
Bernoulli and Binomial random variables.

A CMOS SPAD is seen here a source of individual photon detections -> Bernoulli RV. A
SPAD array extends this concept to a large number of pixels, whose output is organised
in frames as a function of time. Binary SPAD sensors, such as SwissSPAD2, can be read
out extremely fast, up to 100 kfps. The detection efficiency is however not perfect, and
the sensor is a source of noise (spurious counts) as well.

Individual binary frames can be accumulated (on FPGA or PC) in multi-bit frames -

bottom right image.

15



8.2.2 Bernoulli RV — Example

(CMOS) SPAD:
Single-Photon =0 ! =
Avalanche Faman < L=
Photodiode NTES
- \ ]
¢=photon flux (ph/s)’ T=exposure time, M7 _Frame
n=quantum efficiency, r=Dark Count Rate (DCR) SmEmE- =R Time (T)
No Photon Undetected Photon
—¢tn k u B Spurious Photon
e T
@ # of photons at each pixel: P{Z = k} = +’7)
P{B = 0} = e~ (@¢m1+rD)
P{B=1}=1— e @m+rD) @

[LL]] R. Henderson, Edinburgh Univ., ISSCC 2013 — E. Fossum, IISW 2013 —S. Ma, Quanta Burst Photography, ACM Trans. Graph., Vol. 39, 2020

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 16
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We look here at the distribution of the number of detected photons in a single frame.
@11 Is the average number of detected photons per frame of exposure time 7.

Q: where does this statistical distribution - P{Z = k} - come from?
= P{Z = k} is nothing but a Poisson distribution, with mean = lambda = ¢t7 (see 8.2.5).
Actually, B =1 means in this case at least one photon — a purely binary sensor cannot

count more than one time. (NB: multi-bit in-pixel architectures are possible.)

The two bottom formulas are more complete ones and take into account the noise
contribution as well.

The green “Ex” highlights an exercise or homework which deals with the topic(s) shown
in class.

16



8.2.2 Binomial RV — Example

(CMOS) SPAD:
Single-Photon = l H
Avalanche - R
Photodiode =
1] %‘;me
# of photons k at each pixel for n consecutive . n HH Time (T)
(independent) frames: O No Photon O Undetected Photon
n! n—k @ Photon B8 Spurious Photon

Pink}=——-pk . (1 - where

Ppn = 1 —P{1,0} = 1 — e~ (@71+7D)

2w u...s
7
- A
s

[LL]] Y. Hirose, MDPI Sensors(18), 2018

agua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 17 ePrFL

The previous results can actually be easily generalised to n frames, leading to a
practical example of a binomial distributions P{n, k}.

Ppn, the probability of detecting at least one photon, was derived in the previous
slide.

Source: Hirose MDPI Sensors 2018.




8.2.2 Binomial RV — Example

aqua C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 18 ePrFL

This video was taken with the first SwissSPAD camera of 512x128 pixels. Its architecture
is quite similar to one of the more advanced SwissSPAD2 sensor. The camera is looking
at an analogue oscilloscope, whereby the frames have been added up initially, going
back all the way to examples of individual binary frames.

The images are obviously affected by shot noise, but the object being imaged can still be
distinguished! And the final images are really binary in nature — each pixel has either
recorded at least a photon, or none.

18



8.2.3 Cumulative Distribution Functions

How to express the distribution of a Random Variable/2

1.0

= The cumulative distribution function (CDF) of a discrete RV X is the °]
function Fy given by " 34
CDF: Fy(x) = P{X < x} 3 A
Example: Let X be Bin(4, 1/2). The cumulative distribution function can be : ’ [ [ '
calculated from the probability mass function. ° ) 5 s B
To find, for example, P{X < 1.5}, we sum the PMF over all values of the < o
support that are less than or equal to 1.5: @
Fy(15) = P{X <15} =P{X =0} +P{X = 1} = s 21 }P(X_Z)
O < | -
4 4 4 4 °
4\ (1 4\ (1 1 1 5 1
0/\2 1/\2 2 2 16 o l—
o 1 2 3 4
[LE]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 3.6 X
agua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics e 19 ePrFL
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8.2.3 Cumulative Distribution Functions (contd.)

= For a CDF to be valid, the following three criteria must be met: 2
1. Increasing: If x; < x5, then Fy(x1) < Fx(x3) °
% ©
2. Right-continuous: The CDF is continuous except possibly for some 3 e
jumps. When there is a jump, the CDF is continuous from the right, T
i.e. forany a: [ [
s !
Fx(a) = lim Fy(x) oot 2t
x-at -
3. Convergence to 0 and to 1 in the limits: 3
lim Fy(x) =0 . }P(X_Z)
X——00 <
lim FX(X) =1 o |—
X—00 s ¢ r T T
0 1 2] 3 4
[LE]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 3.6 X
agua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics e 2 ePrFL
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8.2.4 Probability Density Functions

0.30

= Fora continuous RV X with cumulative distribution function Fy, the

probability density function (PDF) fy is the derivative of the cumulative
distribution function (CDF):

PDF
0.20

0.10

d
PDF: fx(x) = -~ Fx (x)

0.00

hence: x

0.8

CDF: Fy(x) = f ’ fx(0) dt

CDF
0.6

0.4

0.2

To get a desired probability, integrate the PDF over the appropriate range...

0.0

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 5.1 X

aqua C. Brusc E. Charbon | 2025 Metrology: Elemen Statistics Slide 21

We now move to the main definitions for a continuous random variable. Note
that the knowledge of either PDF or CDF does completely characterise a
statistical distribution.

NB: For a PDF fy, the quantity fyx(x) is not a probability, and in fact it is possible
to have fx(x) > 1 for some values of x! In order to obtain a probability, we need
to integrate the PDF.

21



8.2.4 Probability Density Functions (contd.)

= Similarly, by definition of the CDF and the fundamental theorem of
calculus:

b
P{a < X < b} = Fx(b) — Fx(a) = f fx(x) dx

a

-> Probability = integral of the PDF over a given range.
= For a PDF to be valid, two criteria must be met:

1. Nonnegative:
fx(x) =0
2. Integrates to 1:

f_ O;fx(x) dx =1

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 5.1

aqua C. Brusc E. Charbon | 2025 Metrology:

ements of Statistics

PDF

CDF

0.20 0.30

0.10

0.00

02 04 06 08

0.0

)

cPFL
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Take-home Messages/W8-1

= |ntroduction to probability (see also Appendix 8.1):

= Basic definitions, conditional probability

= Bayes’ rule, law of total probability, independence of events

» Random Variables (RVs):

Probability Density (MHz)

= Examples (discrete/continuous)

4-bit, 4.4 kips

= Probability Mass Function (PMF), Cumulative Distribution
Function (CDF) 2 Bin(10, 112)

Time (ns)

= Probability Density Function (PDF) 3

0.1

0.0 0.2 0.4 0.6 0.8 1.0

= Bernoulli, Binomial & related SPAD-based examples = ‘ ‘
— I { ‘ T L]

00

aqua C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics

4 8 10 -4
x

First recap section: we summarise here the main definitions, results and examples
discussed so far. They should be clear and understood.
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8.2.5 Poisson RV

agua

= Adiscrete RV X taking on one of the values 0, 1, 2, .. is said
to have a Poisson distribution with parameter A for

some A > 0 with

PMF: py(x) = P{X =x} =

It can be demonstrated that the Poisson PMF

(we will write X~Pois(4)) is a valid PMF since,

by Taylor expansion:

C. Brusc E. Charbon | 2025

Z A
i!
i=0

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 4.7

-1

x!

X

PMF

00

1.0

08
L

0.6
L

04
L

0.2

Pois(2) PMF

Pois(2) CDF

2 P—
— 2
—
@
3
—
@
3
w
&
D<
2 — o
{ { :
3
I I ) 3
A S ! !
0 1 2 3 4 5 6 2 3 5 6
x x
Pois(5) PMF Pois(5) CDF
s
2 ot
—s
—
®
= -—0
o —o
3
w
&
© . o
3
—
o
3
.t T I I I I T Tral 2 . .
0 2 4 6 3 10 4 6 8 10

We now look at other important statistical distributions and some of their properties.
They will be analysed again in the next lecture, in more detail.

Note that a) the Poisson distribution is characterised by a single parameter (4), and b)
the verification/demonstration that the PMF is indeed a valid one. This is a priori not
obvious!
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8.2.6 Uniform RV

= The continuous uniform RV U on an interval (a, b) is a completely
random number between a and b. Its PDF is given by:

1
PDF: f,(x) ={p—q fora<x <b,
0 otherwise.
U~Unif(a, b)

= This is a valid PDF since the area of the PDF is given by the area of a
rectangle with width b — a and height 1/(b — a).

PDF

1.6

1.0

05

00

Unif(0,1) PDF & CDF

@«
[=]
= |ts CDF is given by: N
. S
0 ifx <a, S
X—a . 9
Fy(x) = ifa<x<b,
b—a 2
1 ifx =b. 05 00 05 1.0 15
LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 5.2 x
aqua C. Brusc E. Charbon | 2025 Metrology: Elemen Statistics
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Can you think of random variables with this kind of distribution?

Similarly to the previous slide, note here again the verification/demonstration that the

PDF is indeed a valid one. This is a priori not obvious!

25



8.2.7 Normal (Gaussian) RV

= The Normal (Gaussian) distribution (we will write X~N (u, 02)) is a

famous continuous distribution that is extremely used because of the
central limit theorem, which will be explained later. For the continuous
Normal RV X, the PDF is:

: = L —(x-w?/20?
PDF: fx(x) NP
In the special case of u = 0 and ¢ = 1, the distribution takes the name
of standard Normal distribution. We will write it as Z~N'(0,1). The
standard Normal PDF and CDF are:

1
PDF: ¢(2) = —e 2°/2

V2T
. — ‘ — ‘ L —t2/2
CDF: ®(z) = e(t) dt = \/Z_e dt
—00 —co s

No closed form exists!

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 5.4

agua
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PDF

CDF
0.4

0.5

0.8 1.0 0.0 0.1 0.2 0.3 0.4

0.6

0.2

0.0

Standard Normal PDF/CDF

T
-3

T T
-2 -1

T T
-2 -1

The Normal, or Gaussian, distribution is of fundamental importance. It is characterised
by two parameters (i, o). Note the special case of the standard Normal distribution.

NB: pronunciation: Mu /' mju:/
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8.2.7 Normal (Gaussian) RV (contd.)

0.5

= The standard Normal distribution has the following properties:

0.4

1. Symmetry of the PDF: ¢ satisfies ¢(2) = @(—2)

PDF
03

0.2

2. Symmetry of the tail area: the area under the PDF to the left of —z
and to the right of z is equal. Using the CDF:
O(z)=1—-Dd(—2)

0.1

0.0

T T T T T T
-3 -2 - 0 1 2

3. Symmetry of Z and —Z: If Z~N'(0,1), then —Z~N(0,1) as well. ° *
* The Normal distribution X~N (i, %) has PDF and CDF as follows: 1
1 2 2 X — H 1 é °]
PDF: fy(x) = ——e~(*=#)7/20% = ( )— :
fx o % P -
X—U Location-scale
CDF: Fy(x) = @ (T) [X = n+oZ] transformation © 5 5 & o 1 2
[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 5.4 (shifting and Sca/ing) x

aqua C. Brusc E. Charbon | 2025 Metrology: Elemen Statistics Slide 27

The second bullet highlights the properties of a location-scale transformation (basically
shifting — by u — and scaling — by &), which can be very useful to move from one
distribution variable to another.

In this case, we can replace the RV Z, distributed according to a standard Normal, by
X = u+ oZ, which is thus distributed according to a “general” Normal.

NB: pronunciation: Phi (/fa1/).

27



8.2.8 Exponential RV

Expo(1)

= The exponential is a distribution that represents the amount of failures
before the first success (as in time), considering that A is the success rate u
per unit time. The average number of successes in the time length t is =
At, though the actual number of successes varies randomly.

00 02 04 06 08 10 12
) L L ' '

= A continuous RV X is said to have an exponential distribution (we will

T T T T T
00 05 10 15 20 2
X

write X~Expo(A)) with parameter A if its PDF is:

1.0

T T
5 3.0

PDF: fy(x) = le ™%, x>0

0.8

= The corresponding CDF is

CDF
04 06

CDF: Fy(x) =1 — e™%, x>0

®

0.0

t T T T T
00 05 10 15 20 2

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 5.5 x

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 28
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Note again the presence of one single variable A, and the interpretation in terms of
success rate (e.g. events/second) and number of successes At (e.g. events) in a given
amount of time t.
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4 Low counts
%10

8.2.9 Example 1: Photon-flux dependent distributions 10

—@ Spatial Photon Count Distribution
X Poisson Fit Points
& 7.5
Output pads (128x) g
Output 4:1 multiplexer (128x) £ 5
Output register (512x) g_
Column pullup (512x) (o]
L —— _— o 2.5
SwissSPAD2
binary SPAD RFip 0 e
3[8 0 1 2 3 4 5 6
Imager i H S Photon Count
35|
28 .«E - : High counts
(IntenSIty) P g 512X512 g —a@ Spatial Photon Count Distribution
é% g_ Pixel Arrav c 10000 X Poisson Fit Points
[ ¥
i g o (@
& |= L
3 5000
o}
Column pullup (512x) . 2500
Output register (512x)
Output 4:1 multiplexer (128x) De b
o Outputpede(izsy) | 0 10 20 30 40 50 60
v . . o Photon Count
L A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019). o
aqua | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 29 =PrFL

We will now look into four concrete examples from engineering and physics, linked to
some of the distributions which we have seen before.

This will also allow to highlight the difference between analytical expressions and real
experimental data, the presence of noise or of unaccounted phenomena when
modelling a certain process.

The first example is based on binary SPAD imagers used to measure light intensity and
its distribution in time and space, including the capability of measuring the statistical
properties of the impinging photons. This class of sensors allows to output binary frames
at very high speed. Further details are available from the companion paper on Moodle.

The top right plot shows a histogramme of the photon count population in eight-bit
images, i.e. how many pixels fired how many times, at very low illumination levels. Note
the good fit to a Poisson distribution.

Q: how are such low illumination levels obtained? What would you do to check the fit
quality at higher photon counts?

The bottom right plot shows the same data at higher illumination levels.
Q: What attracts your attention in the centre of the distribution? What could this be due
to?




8.2.9 Example 2: Fluorescence Lifetime — Time-Resolved
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The second example is from an application in microscopy/life sciences. When
fluorophores are excited, they can re-emit light (at a slightly red-shifted wavelength =
lower energy / Stokes shift), typically within a very short period, e.g. nanoseconds. The
decay is exponential, or a sum of exponentials — see the f(t) expression. The
corresponding lifetimes provide information on the fluorophore nature and its

environment.

Let’s suppose that the excitation is periodic, e.g. by means of a pulsed (picosecond)
laser. There are fundamentally two ways of sampling the re-emitted light, measuring its
distribution over time, to determine the fluorophore lifetime:

[TCSPC] either by measuring precisely each time of arrival, using the laser emission

time as reference (top), and building a histogramme, from which the lifetime(s) can
be extracted by fitting a curve, or using other estimators (see next lecture),

[Gated] or by accumulating/counting all photons emitted in a given time window

(gate) and repeating the operation over several gates, which can be overlapping or
not. The lifetime can then be extracted either analytically or computationally.




8.2.9 Example 2: Fluorescence Lifetime — Time-Resolved
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[LL]] A. Ulku et al., Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM. EPFL Thése 8311 (2021).
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We see here how to sample the re-emitted light in a Gated approach, when the gates
are “long” and overlapping. A sensor like SwissSPAD2 can open and close a gate in
correspondence of each laser pulse and count the detected photons per pixel.

After sufficient statistics has been accumulated at a given gate position, the gate is
shifted (by tens or hundreds of picoseconds) to cover another part of the re-emitted
light, until the last position (n in this plot) is reached.
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8.2.9 Example 2: Fluorescence Lifetime — Time-Resolved
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LI} A. Ulku et al.,, A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
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The result is that the measured signal (“Gate Response” in this graph) is not the original

exponential any more, but its convolution with the sensor’s response, termed IRF

(Instrument Response Function — a square gate for this kind of sensors). This is now the

data from which the original lifetime information needs to be extracted.

The corresponding signals are shown here when using a 20 MHz laser -> 50 ns period.
The target fluorophore is Rhodamine6G, which has a lifetime of ~3.9 ns. The “Residual”

is the difference between the measured data and the fit, and indicates the fit quality.
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8.2.9 Example 3: Real Life Truths — LIDAR & Timing Jitter in SPADs

128x128
SPAD array

222y iy N TR UR VU RN T R SRNRANARN
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LIl C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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The third example is linked to a LIDAR (Light Detection and Ranging) application, the
optical equivalent of RADAR. A distance is measured by means of timing
measurements. The implementation details are shown in the next slide. There are
obviously other 3D measurement techniques such as indirect time of flight, triangulation
or interference, which are not discussed here.

Left: photomicrograph of an early EPFL AQUA silicon chip containing 128x128 SPADs
coupled to an array of 32 TDCs (Time-to-Digital Converters), to timestamp the arrival of
the photons backscattered from a target.

Right: depth-encoded 3D image. Bottom: same target but at much higher precision.

Q: how was this image obtained? Hint: calculate the precision of one single time (=
distance) measurement starting from an estimate of the timestamping precision, e.g.

10-100 ps.

Q: How can this be improved? = next lecture on what happens when averaging
repetitive measurements!
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8.2.9 Example 3: Real Life Truths — LIDAR & Timing Jitter in SPADs
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m A. R. Ximenes et al., A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. |EEE JSSC 54 (2019).
“=* C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. |EEE JSSC 43 (2008).
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Left: basic principles of direct time-of-flight measurements. Note how the start/stop
measurements are implemented, the synchronisation with the laser trigger, and the role
of the system uncertainty (similar to the IRF in the previous slides) on the final
measurement precision.

Right: how does the precision — or timing jitter — of the photodetector come into play?
The SPAD response is not infinitely short, but characterised by a Gaussian central
section, and an exponential (diffusion) tail on the right. These parts are linked to the
device structure, process properties and resulting electric field distributions.

Q: How can the SPAD’s IRF be determined? One method consists in illuminating directly
the device and timestamping each photon, to then build a histogram similar to the one
shown in the plot on the right. Note also the difference between linear and logarithmic

scales!
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8.2.9 Example 4: Real Life Truths — TOF-PET
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The fourth example is based on a molecular imaging technique which measures tiny
concentrations of a radioisotope, by means of (visible) light intensity and timing
measurements.

[F. Gramuglia, EPFL PhD Thesis #8720, 2022] PET is the most relevant molecular imaging
technique available today. The reason for this is its high molecular sensitivity and large
tissue penetration. Molecular imaging allows the in vivo visualization and quantification
of biological processes at the cellular and molecular level by using so-called molecular
probes. Molecular probes are defined as biocompatible image contrast enhancement
agents that accumulate and stay in a specific target for a certain time.

In the specific case of PET, the used molecular probes are labeled with a positron-
emitting radioisotope. One of the best known molecular probes is 18F-FDG, widely
employed in oncology. This sugar-like compound is used to detect cancer cells in high
metabolism growing tumor masses.

The molecular probes used are S emitters. When a solution of a molecular probe such
as 18F-FDG is injected into a patient undergoing a PET exam, the F-18 emits positrons
inside the subject’s body. The positron travels for a certain distance, called positron
range, (~2 mm) before encountering and combining with an electron to forma
positronium. This system is unstable, and after a time on the order of ~ 100 ps, the e~
/* annihilation occurs. This causes the emission of two almost collinear »~photons, each
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with an energy of £,= 511 keV (the equivalent of twice the electron rest masses) and
traveling in opposite direction. The detection of these two j-photons can allow the
localization of the annihilation point. For this purpose, the subject under test is placed in
a ring scanner.
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8.2.9 Example 4: Real Life Truths — TOF-PET
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[ctd] The scanner is fully covered by photodetectors aiming to detect the gammas
coming from the patient and extract the so-called line of response (LOR). The LOR is
defined as the imaginary line connecting the two points in the scanner where a gamma
pair is detected and ideally passing through the generation point.

TOF-PET Module = measurement of energy, time-of-arrival and position

The detection of the gammas generated by the e~ /£ annihilation can be performed
with various types of detector, such as solid-state detectors, ionization chambers,
inorganic scintillator-based detectors, etc. In PET, the detection widely relies on the use
of inorganic scintillators because they offer the best compromise between energy,
timing, and spatial resolution as well as a high detection efficiency for 511 keV -
photons. These materials have the property of absorbing the incoming radiation and
emitting optical photons following a fast exponential timing evolution with a decay time
constant 7, typical of each scintillator.

The emission is isotropic inside the scintillating material, and the amount of light is
proportional to the amount of energy deposited in the crystal by the incoming radiation.
The light burst (or pulse), generated by a scintillator, reveals when a gamma interacts in
the crystal, and it can be detected by instrumenting one or more surfaces of the
scintillator with a photodetector. Moreover, if the photodetector can quantify the
amount of detected light, it is possible to estimate the energy of the incoming gamma,
knowing the light yield.

The image above shows the schematic view of a typical module used in PET applications.
In this simplified scheme, the scintillator is optically coupled to a photodetector and a
PCB module is used to read out and process the signal.

The curves show the typical profiles in time of a scintillation event (emission of light —
thousands of photons in the visible — after conversion of one gamma photon). But
eventually, we want to send to the reconstruction software three fundamental pieces of
information for each gamma event: energy, time-of-arrival and position. We are usually
not interested in the full scintillation light waveform and in recording all photons
individually!
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8.2.9 Example 4: Real Life Truths — Scintillation Light
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Figure 10. Scintillation decay and rise time of BGO measured with a time correlated single photon counting (TCSPC) setup using
511 keV annihilation gammas (Gundacker et al 2016b). The figure on the right hand side shows a pronounced Cherenkov peak at
the onset of the scintillation emission with a relative abundance of 0.172% compared to the total amount of photons detected by the
stop detector of the TCSPC setup.

v+ Gundacker S, Auffray E, Pauwels K and Lecoq P Measurement of intrinsic rise times for various L(Y)SO and LUAG scintillators with a
= general study of prompt photons to achieve 10 ps in TOF-PET. IOP Phys. Med. Biol. 61 2802—-37
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But how do we know that the scintillation light from a scintillator crystal does really have
the profile shown in the previous slides? And how can we further exploit the real
response of a scintillator?

- We need to carry out a precision (timing) measurement, for example using a
radioactive source and detecting as many visible light photons as possible, event after
event, similarly to the TCPSC (time-correlated single-photon counting) method shown
before.

We can then accumulate all time of arrival data into a histogramme such as the one
shown above, which tells us for example that the light intensity decay is bi-exponential
rather than monoexponential (left), and that there is actually a small fraction of photons
that are emitted right after the gamma conversion (“prompt” events on the right). These
could be very useful to improve the timing precision of the PET measurements, and
therefore the final image quality!

This data does allows allow the material scientists to design improved scintillators, e.g.
with better light yield and/or faster decays and/or more prompt photons.
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8.2.10 From Theory to Experiment (and back)

Experiment

* Test Model in real
experimental
settings
* Measurement of
dependant variables |

o

i https://www.researchgate.net/publication/315995665_Leading_in_the_Unknown_with_Imperfect_Knowledge_Situational_Creative_Leadership_Strategies_for_ldeation_Management/

== figures
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Theory ‘| Simulation |
* Develop Model * Simulate Model

* List Theoretical e Test Theoretical
Hypothesis Predictions

g

These example highlight the interplay between theory and experiment, possibly going
through an intermediate simulation step. Sometimes we move from right to left, using
the experimental data to develop/refine a theory.
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Take-home Messages/W8-2

10

75

= Random Variables:
= RV distributions:
= Poisson <> Exponential

= Uniform, Gaussian

5

Population

fit) = Aexp(-t/) + Aexpl-t/T)+ ..

™

<10

= Spatial Phaton Count Distribution
X Poisson Fit Points

Photon Count

= ..and their main properties (see also W3)

= Practical examples!

= Single-photon imager & Poisson light distribution

= Fluorescence lifetime & exponential decay

= Timing jitter — combination of distributions <> physics

= Scintillation light — combination of distributions <= physics

C. Bruschini, E. Charbon |
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Second recap section: we summarise here the main definitions, results and examples

discussed in this middle section.
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8.2 Random Variables
8.3 Moments
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9.4 Accuracy, Precision and Resolution
aqua C. Bruschini, E. Charbon | 2025 Sta Slide

40



8.3.1 Expected Values

= Given a discrete RV X with support § = {xq,x5,...}, the
expected value (or expectation) of its distribution, which is
commonly defined mean, is given by (weighted average):

> 1 X 2
E{X}= Z xj P{X = x;}
= 3.26 3.59 2.11

= The expected value is undefined if:

DIl Px = x5} o0
j=1

= Similarly, if X is a continuous RV with PDF fy(x):

(o)

E{X}=j x fx(x) dx [ S S

4

1

——s

| o

00 02 04 08 08 10
I I | L

———————

00 02 04 06 08 10

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 4.1 NB: the expected value does not determine the distribution
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The expected value, or mean, is a very important parameter characterising the
distribution of a random variable. Definitions are provided here for a discrete and a
random variable. However, knowing the mean is usually far from enough....




8.3.2 Mean, Median and Mode

S Mean,
< | /Median,
= As previously stated, the mean u of a RV X is given by its ° Mode
expected value. It is called a measure of the central tendency of i
the distribution, specifically its center of mass. o
= The median m of a RV X is that value such that P{X < m} > 0.5 =
and P{X = m} = 0.5. In a continuous RV, it is simply the value at
which Fy(m) = 0.5. 3 A S

= The mode c of a RV X is that value that maximizes the PMF (for a

. i N Mode
discrete RV) or the PDF (for a continuous RV):
g 4 Median
P{X = ¢} > P{X = x} for all x ™S
Mean
fx(c) = fx(x) forall x =L
[LL]) K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 6.1 ° cl) 5 1'0 1'5 2'0
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Sometimes the median is a more useful figure, for example in cases where the target
distribution is not symmetric. The mean is indeed quite heavily affected by the
distribution tails and outliers — see the PDF plots here on the right.
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8.3.2 Mean, Median and Mode — Example
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LI} A. Ulku et al.,, A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
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An example of how the mean and median of real distributions can look like is provided
here, in the form of the DCR (dark count rate) values, i.e. the noise level in the dark, for
the pixels of the previously introduced SwissSPAD2 sensor. Several curves are
reproduced for different operating conditions, here the excess bias voltage of the SPADs
(i.e. the voltage level beyond breakdown).

Note that in this example the mean and median differ by one order of magnitude!

Q: what is the origin of this graph? Does it represent a PDF?

—> The percent axis is actually the CDF (0-1 interval = 0-100%) and the plot flipped with

respect to the “usual” CDF representation (see bottom right image and the CDF

definition).
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8.3.3 Linearity of expectation and LOTUS

= The most important property of expectation is linearity (actually true for
all RV, not only discrete ones). For every given RVs X and Y and any
constant c, it follows:

E{X + Y} = E{X} + E{Y}

E{cX} = cE{X} E{dice} = 3.5

= The law of the unconscious statistician (LOTUS) states that, despite
E{g(X)} does not equal g(E{X}), there is a way to measure E{g(X)}
without the need of finding g(X). Given the discrete RV X and the
function g: R — R, follows:

E{g(X)} = Zg(x) P{X = x}forall X

E{2 dices} =

. . . . . oo
Similarly, if X is a cont. RV with PDF fx(x): E{g(X)} = f_oog(x)fx(x)dx E{dice} + E{dice} = 7
[LL]} J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 4.2-4.5, 5.1 Used in Section 8.3.6 (MGF)
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8.3.4 Variance

= The variance of a RV X is (average squared difference -> distribution
spread):

Var{X} = E{(X — E{X})?} = E{(X — p)?} = o2 % Pulsed LASER

and its square root is called the standard deviation:

SD{X}=Var{X} =0 @

= ForanyRV X, @

Time—resolved

Var{X} = E{X?} — E{X}? = E{X?} — 12

. . . . . detector
which can be demonstrated easily using the linearity property of
the expected values.
[LE]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 4.6
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Another extremely important parameter of the distribution of a random variable is its
variance, which basically indicates how the distribution deviates from its mean value,
and its square root = standard deviation.

Let’s take as example a time-resolved system composed of a photodetector, which
measures the time-of-arrival of impinging photons with a certain timing error

o(detector), and of a laser, which generates a light pulse of width o (laser).

Q: which is the resulting timing uncertainly of the complete system?
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N
8.3.4 Variance (contd.) N

= The Variance has the following properties: i
Pulsed LASER

1. Var{X + c} = Var{X} for any constant ¢ (shift a distribution).

2. Var{cX} = c?Var{X} for any constant c.

3. If X and Y are independent, then Var{X + Y} = Var{X} +
Var{Y}. Thisis not true in general if X and Y are dependent. For
example, in the case where X =Y

‘ Time—

‘;;ADTm;gNlewp:j mresolved

Var{X + Y} = Var{2X} = 4 Var{X} > detector
2 Var{X} = Var{X} + Var{Y} ]ZZZ%

oo Final
4. AllVar{X} = 0, with the equality if and only if P{X = a} = 1 for measurement
some a. [only constants have O variance] .
[LL]] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 4.6 T oo ™
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We recall here several important properties of the variance of a random variable. The
variances of independent RVs add up -> their standard deviations combine quadratically.

Right: another representation of the time-resolved system shown in the previous slide.
Note the convolution (“*”) of the distributions, whose variances add up (if they are
independent).
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8.3.5 Moments

* Let X be a RV with mean u and variance 2. For any positive n:

1. the n-th moment of X is E{X™},

2. the n-th central moment of X is E{(X — u)"},

AN
3. the n-th standardized moment of X is E{(%) }

= As we have seen previously, the first moment of a RV X is its mean value,
or, in different words, the center of mass of the distribution:

n=1 pu=E{X}

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 6.2
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Generalising the concepts of mean and variance, the distribution of a random variable X
can be characterised by its moments. The first, second, third and fourth moment are

defined in the following.
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8.3.5 Moments (contd.)

0.5

0.4
L

= |nthe same fashion, the second central moment of a RV X is its variance,
or the moment of inertia of the distribution around its center:

n=2: o2 =Var{X} = E{(X — E{X})?}

PDF
03

0.2
L

0.1

0.0

= The third standardized moment of a RV X is defined as the skewness of

the distribution. The skewness is a parameter that measures the
asymmetry of the distribution. By standardizing, we make the skewness
independent on the position and scale of X (information given by p and

o):
{ X_M |

PDF

00 02 04 06 08 10 12
) L L ' '

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 6.2 X
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8.3.5 Moments (contd.)

= |n general, the odd moments give information about the
asymmetry of the distribution.

= The fourth standardized moment of a RV X is defined kurtosis
of the distribution. If we split the distribution in three main
regions, i.e. in the center (1 o around u), the shoulders
(between 1 and 2 ¢’s around u) and the tails (more than 2 ¢’s
from u), then the kurtosis gives information about the tails.

4
Kurt{X} = E{<u> } -3
o

a classical distribution with large kurtosis is a PDF with a
sharp peak at the center, low shoulders and heavy tails.

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 6.2
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8.3.5 Moments (contd.) — Textbook Example
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FIGURE 6.6

Skewness and kurtosis of some named distributions. Left: Expo(1) PDF, skewness =
2, kurtosis = 6. Middle: Pois(4) PMF, skewness = 0.5, kurtosis = 0.25. Right:
Unif(0, 1) PDF, skewness = 0, kurtosis = —1.2.

[ J.K. Blitzstein, J. Hwang, Introduction to Probability, 1 ed., 2015, Chap. 6.2
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Try to calculate the moments shown in this example!
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8.3.5 Moments (contd.) — Experimental Example

Coincidence measurements between two scintillating crystals->-influence of actual curve shapes
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L) S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

_I;_ F. Gramuglia, High-Performance CMOS SPAD-Based Sensors for Time-of-Flight PET Applications, EPFL These 8720 (2022).
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Moments in a real experimental set-ups: this example shows real experimental
distributions of the timing difference of gamma events detected on a given LOR (line of
response), such as “opposite” elements of a PET detector (left), or two scintillating
crystals placed face-to-face (right).

Left: operating principle of a time-of-flight PET machine. PET detector ring (blue),
reconstructed cross-section of a patient (centre), and histogram of the origin of the
gamma events along the LOR as calculated from the timing difference t,-t;. The time-of-
flight information allows a precise determination of the origin of each event and
improves the final image quality. The smaller the timing error, the better the resulting
SNR. The best detectors can measure the time-of-arrival of gamma events with an error
smaller than hundred picoseconds.

Right: timing difference t,-t, as measured in the lab for two experimental crystals placed
face-to-face (not shown). Note the vertical logarithmic scale. The resulting distribution is
not Gaussian, but well fitted by the sum of two overlapping Gaussians. As a
consequence, not only the width of the curve is important (FWHM = Full Width at Half
Maximum), but other quantities as well, such as the FWTM (Full Width at 1/10 of
Maximum) and FW100M (Full Width at 1/100 of Maximum). These parameters allow to
better gauge the importance of the tails of the distributions, and their importance in the
final image reconstruction.
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8.3.6 Moment Generating Functions

= The moment generating function (MGF) of a RV X is defined as:

e py(x), if X is discrete *

MGF: ¢(t) = E{et¥} = x

0]

e™fy(x) dx,

—00

if X is continuous *

= We call ¢(t) the moment generating function because all the moments
of X can be obtained by successfully differentiating ¢ (t). It follows that:

d
¢'(6) = - E{e™} = E{(Xe™} — ¢'(0) = E{X}

d d
B(0) = ' (0) = - EXe™} = E(X?e} - $7(0) = E(x?)

$M(0) = E{(X™},
LIl .M. Ross, Introduction to Probability Models, 10t ed., 2009, Chap. 2.6

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics

foralln>1

The MGF is a
“tool” to
calculate the
moments — by
differentiating it
— provided that
an analytical
expression of the
random variable
is given.

©,

*Using LOTUS (Section 8.3.3)

e 2 EPFL

The moment generating function (MGF) ¢ (t) is a “tool” to calculate the
moments E{X"} of a random variable X by differentiating it —i.e. calculating
d™(t) > ¢™(0) - provided that an analytical expression of the random
variable is given. Its use will be illustrated in the Homeworks.
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Outline

8.1 Introduction to Probability
8.2 Random Variables
8.3 Moments
8.4 Covariance and Correlation
9.1 Random Processes
9.2 Central Limit Theorem
9.3 Estimation Theory
9.4 Accuracy, Precision and Resolution
agua C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide
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8.4 Multivariate Distributions

= During experiments, in real life, we have to deal with multiple RVs.
It is very important to know the relationship between different
RVs, i.e. if they are independent or dependent on each other.

Example: LiDAR = detection
of backscattered signal
photons in presence of
background light

— [ ——————- o0 -0~
= The joint distributions, also called multivariate distributions, >

capture the missing information about how the multiple variables Signal Photon

inte ract. Ambient Photon

‘/ N
—————— O--1-@-------»
Pulse

= The key concepts that will be studied are the joint, marginal and

conditional distributions of two variables (see also Appendix A).

X = signal,

[LE]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 7

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics

Y = noise (background, DCR, etc.)

L) M. Beer et al., Background Light Rejection..., MDPI Sensors 18, 2018.

Soe 5 EPFL

We will now briefly look at more complex distributions of multiple random variables, i.e.

Joint and Independent Distributions.

Marginal and Conditional distributions are left for reference in the Appendix, for those

who would like to know more.

An example of two random variables — signal and background —is provided on the right,

here for the case of the LIDAR application.
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8.4.1 Joint Distributions

= The joint distribution of two RVs X and Y provides complete information
about the probability of the vector (X, Y) falling into any subset of the

plane.
Joint PMF of discrete RVs X

* The joint CDF of two RVs X and Y is a function Fy y such that: and Y
CDF: Fyyv(x,y) =P{X <x,Y <
v (6 Y) { v} PX=x.Y=y) °W ]
= |n the same fashion, the joint PMF of two discrete RVs X and Y 1 I N 1
is a function py y such that: 1 f . |t
1 e[1111]
e I
PMF: pyy(x,y) = P(X = x,Y = } ‘ .TTHT SiEr
. \ -
= |nthe same way of the univariate PMF, it has to be nonnegative L | ‘ .| [ L, e
and sum up to 1: . ! y

ZZP{X=x,Y=y}=1 ) ’
x y

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.1
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We generalise here the concepts of CDF and PMF to the joint distributions of two
random variables. An example of joint PMF is shown on the right for two discrete RVs.
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8.4.1 Joint Distributions (contd.)

= Analogously, the joint PDF of two continuous RVs X and Y is given by:
Joint PDF of continuous RVs
K Xand Y

PDF: fxy(x,y) = mFx,y(x, y)

Ty &)

= |n order for the joint PDF to be valid, it has to be
nonnegative and integrate to 1:

fX,Y(x:)’) = 0 for a” (ny)

oo oo

f f fxy(x,y)dxdy =1

—00 —O00

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.2

aqua | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 56 ePrFL

Similarly to the previous slide, an example of joint PDF is shown on the right for two
continuous RVs.
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8.4.2 Independent Distributions

Example: LIDAR employing

= Two RVs X and Y are independent if: detection of photon

Fyy(x,v) = Fy(x) F coincidences (within a
X'Y( y) X( ) Y(y) coincidence window) in
which is equivalent to say, for discrete RVs: ﬁrﬁsence of background
ight
P{X =x,Y =y} = P{X = x}P{Y = y}
and for continuous RVs: | OO; mae |
Signal Photon
fX’Y (x' y) = fX (x) fY (y) Ambient Photon ’
4
L O--{-@{---—-- -
fy|x(3’|x) =fr(») PRI
forallx and y.
[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.1 [ M. Beer et al,, Background Light Rejection..., MDPI Sensors 18, 2018.
agua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 57 ePrFL

In the case of independent random variables, the final PDF (probability density
function) and CDF (cumulative distribution function) are substantially simplified,
reducing to the product of the individual distributions.

NB: the bottom definition is a generalisation to multiple random variables of the
conditional probability discussed in Appendix A8.1.1 and A8.1.3.
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8.4.3 Example: LIDAR & Coincidence Detection

Example target photograph 0 Reconstructed 3D image Depth ('1“0)
: = ’ Photon coincidences
10 .
215
['4 T
20
6 . . . .
ol S22 Coincidence detection is a
sof FEEERNSS | i 5 i
> o 5 10 15 2 25 3 well-known technique

Column which utilizes spatio-
temporal correlations of
photons within a laser pulse
to filter out background
noise photons which are
uniformly distributed in

Around same TOF (and depth)

“y

@ Coincident photon
o\ _Pulsewidth, touise Noise photon

time .
— Coincidence window €— “» time
ot 5, i i i . .
o e -> concept of coincidence
window to reduce the

likelihood of acquiring noise

Hi stograrvf b

TOF, object [4] e events (Appendix B)
L] P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LIDAR Applications, Sensors 2019
aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 58 ePrFL

An example of a multivariate distribution as applied to the measurement of time-of-
flight and the design of a bespoke sensor is provided in Appendix 8.B. We summarise
here the basic idea:

Coincidence detection is a well-known technique which utilizes spatio-temporal
correlation of photons within a laser pulse to filter out background noise photons which
are uniformly distributed in time. The figure above conceptually explains this technique
with an example scene and a measured 3D image reconstruction.

The main idea is to exploit the fact that the signal photons reflected from the target are
temporally correlated and thus, most likely to be concentrated within a time-window
coarsely equal to the total system full width at half maximum, FWHM, of the laser
pulse....

Instead of letting the sensor integrate events over a long measurement window,
imposing this time constraint, referred to as the “coincidence window”, reduces the
likelihood of acquiring noise events whose probability of occurrence within that window
is very low, thus, electrically enhancing the signal to background noise ratio, SBR.
Coincidence may be implemented at the sensor level over clusters/groups of closely-
spaced pixels, exploiting a “more-likely” fact that neighboring pixels may belong to
similar target depths (and thus, TOFs), as depicted in the figure for the object labelled
[4].




8.4.4 Covariance

= The covariance of the joint distribution of two RVs X and Y
represents their tendency to go up or down together
(“single-number summary”):

Cov{X,Y} = E{(X — E{x}) (Y — E{Y})}
which, using linearity, becomes
Cov{X,Y} = E{XY} — E{X}E{Y}

= |ftwo RVs are independent, then their covariance is zero (->
uncorrelated RVs), because:

) = [ [ a0 o) dxdy =

= [xr@ax [yro)ay=EwEm

— 00 — 00

Positive correlation

Negative correlation

Independent

Dependent but uncorrelated

-3 -2 =1 o 1 2

3

-3

-2 -1 0 1 2

3

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.3

aqua C. Brusc E. Charbon | 2025 Metrology: Elemen Statistics Slide 59

*Using the definition of the Covariance above...

cPFL

How can we determine in practice if two random variables are independent, which
would simplify a lot their joint distribution? We can for example calculate their
covariance, which is much easier to verify that the statistical independence — if nonzero,
it indicates that the RVs are not independent.

Top left: positive correlation (Cov > 0), top right: negative correlation (Cov < 0),
bottom left: independent = uncorrelated (Cov = Corr = 0), bottom right: Y is a
deterministic function of X (X~MN(0,1), Y = X2), but X and Y are uncorrelated (=
Cov = 0!) using the definition of the Covariance above*...

*Note 1: The Covariance as defined here is a measure of linear association = RVs can be
dependent in nonlinear ways and still have zero covariance.
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8.4.4 Covariance

= The covariance of the joint distribution of two RVs X and Y
represents their tendency to go up or down together
(“single-number summary”):

Positive correlation Negative correlation

Cov{X,Y} = E{(X — E{x})(Y — E{Y}}

which, using linearity, becomes =e

Cov{X,Y} = E{XY} — E{X}E{Y} 8] - b

= [ftwo RVs are independent, then their covarianceiszero (> &5 5 & & + 3 3 & % & 4 1 1 1
uncorrelated RVs), because: . *
Independent Dependent but uncorrelated
(o0} [ee] o
) = [ [ a0 o) dxdy = R
—00 — X,Y independent => pyxy =0 (X,Y uncorrelated)
e e pxy =0 (X,Y uncorrelated) = X,Y independent

- [xawar [yroa=snsmy 7 [ N_/ |

- - S 2 4 o0 1 2 s 3 2 4 0 1 oz 3

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.3 *Using the definition Of the Covariance above...
aqua C. Brusc E. Charbon | 2025 Metrology: Elemen Statistics Slide 6 EPFL

How can we determine in practice if two random variables are independent, which
would simplify a lot their joint distribution? We can for example calculate their
covariance, which is much easier to verify that the statistical independence — if nonzero,
it indicates that the RVs are not independent.

Top left: positive correlation (Cov > 0), top right: negative correlation (Cov < 0),
bottom left: independent = uncorrelated (Cov = Corr = 0), bottom right: Y is a
deterministic function of X (X~MN(0,1), Y = X2), but X and Y are uncorrelated (=
Cov = 0!) using the definition of the Covariance above*...

*Note 1: The Covariance as defined here is a measure of linear association = RVs can be
dependent in nonlinear ways and still have zero covariance.

Note 2: the inverse of the theorem above (two RVs independent = uncorrelated RVs) is
not true, i.e. just because X and Y are uncorrelated (Cov = 0) does not mean that they
are independent.




8.4.4 Covariance (contd.)

= The covariance, which is much easier to verify that the statistical
independence, has the following properties:

1.

2.

Cov{X,X} = Var{X}

Cov{X,Y} = Cov{Y, X}

Cov{X,c} = 0 for any constant ¢

Cov{aX,Y} = a Cov{X,Y} for any constant a
Cov{X +Y,Z} = Cov{X,Z} + Cov{Y, Z}

CoviX +Y, W+ Z} = Cov{X,Z} + Cov{Y,Z} + Cov{X,W} +
Cov{Y, W}

7.

8.

Var{X + Y} = Var{X} + Var{Y} + 2Cov{X, Y}

Var{X, + -+ X} = Var{X,} + - + Var{X,} + 23, Cov{X;, X;}

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.3

agua
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Of particular importance are the two last properties, which must be known: simply
adding the variances of random variables is not always correct!
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8.4.5 Correlation

= The correlation between two RVs X and Y is given by (unitless version of
the covariance):

Cov{X,Y}

JVar{X} Var{Y}

Corr{X,Y} =

= Notice that this formulation is insensitive to scaling. In fact:

Cov{cX,Y} B c Cov{X,Y}
JVar{cX}Var{y} Jc2Var{X} Var{Y}

Corr{cX,Y} = = Corr{X,Y}

= Moreover, the correlation is bounded:
—1<Corr{X,Y} <1

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 7.3

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics
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= Variance/standard deviation and its properties 0 20

= Example of laser and time-resolved measurement
= Moments: general definitions, MGF

= Covariance and Correlation:

= Multivariate, joint and independent distributions

= Covariance and correlation

= Covariance properties(!), e.g. Var{X, + -+ X,;}

Metrology: Elements of Statistics
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80 100

aqua C. Brusc E. Charbon 025

Third recap section: we summarise here the main definitions, results and examples
discussed in this third and final section.
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Appendix

A8.1 Introduction to Probability
A8.A  Multivariate Distributions

A8.B  Multivariate Distributions — Example: LIDAR

aqua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statis

cPFL

64



Appendix 8.1: Introduction to Probability (contd.) — Example

Fair dice

= The classic example to explain the concept of probability is the fair dice.
In a fair dice, the probability of obtaining one of the six faces, for
example to get the number three, is, as we know, the ratio between the
number of positive configurations and the number of total possible
configurations: P{face is 3} = 1/6.

= |n the same fashion, the probability of obtaining an odd number is
P{face is odd} = 3/6.

= The fair dice represents the classical example of uniform probability
distribution, as we will see.

LI A. Papoulis, Probability, Random Variables and Stochastic Processes, 3" ed., 1991, Chap. 1

aqua C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics

cPFL

This section contains several exact definitions and properties of importance for
probability theory.
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A8.1 Introduction to Probability (contd.)

How a probability function maps events to numbers

What can
happen?

events

A

not A P
A and B
AorB

something happened

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 1.6, 1.7

agua

| C. Bruschini, E. Charbon | 2025

BT
0000
[« s]e] <]
{+J2]s]-]
(o] J-]-]
)

numbers

P(A)
PA)=1-P(A)
P(ANB)

P(AUB) = P(A) + P(B) — P(ANB)

PS)=1

Metrology: Elements of Statistics
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A8.1.1 Conditional Probability

Thinking conditionally — whenever we observe new evidence (i.e., obtain
data), we acquire information that may affect our uncertainties.

Conditional probability answers one simple question: how should we
update our beliefs in light of the evidence we observe?

= If A and B are events with P{B} > 0, then the conditional probability of
A given B (B being the evidence which we observe) is defined as:
P{A N B}

P{A|B} = P

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 2.2, 2.3

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics
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A8.1.1 Conditional Probability (contd.) — Example

Example: Two cards are extracted from a standard deck. Let A be the event
that the first card is a heart, and B the event that the second card is red.
Find P{A|B} and P{B|A}.

= From naive definition of probability:

P{ANB} = 1325 _ 25 _ P{BNA}
T 52 51 204 = )

while P{A} = 1/4 and P{B} = 1/2.
= Follows:

P{ANB} 25/204 25

PIAIBY = —py— = 1/2 102
_ P{BNA} _25/204 25
P{BIA} = P{A} ~ 1/4 51

[LL]) K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 2.2

aqua C. Brusc E. Charbon | 2025 Metrology: E! ) Statistics Slide ¢

This example is more involved than what it looks like at first sight...
- Naive definition = just count the possible outcomes (Blitzstein 1.3).

- P{B}=1/2 is a bit less obvious but can be demonstrated (Blitzstein pp. 42-43 — “there
are 26 favorable possibilities for the second card, and for each of those, the first
card can be any other card (recall from Chapter 1 that chronological order is not
needed in the multiplication rule).”).

NB: “... the chronological order in which cards were chosen does not dictate
which conditional probabilities we can look at. When we calculate conditional
probabilities, we are considering what information observing one event provides
about another event, not whether one event causes another.”

NB: “P{A given B} and vice versa introduces an evidence which fundamentally changes
the outcome (in terms of probability).”
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A8.1.1 Conditional Probability (contd.)

= From the definition of the conditional probability:

P{A N B}
P{c/llB} = W
we can derive the following theorem:

P{A n B} = P{B}P{A|B} = P{A}P{B|A} = P{B N A}

since P{A N B} = P{B N A}

Applying it repeatedly, we can generalize to the intersection of n events
(commas = intersections):

P{cﬂl, Asy,. .,cﬂn}
= P{cﬂ1}P{fﬂz |fﬂ1}P{<A3|d41'fﬂ2} ---P{fﬂn|<ﬂl: ---"ﬂn—l}

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 2.2, 2.3

aqua C. Brusc E. Charbon | 2025 Slide 69 “PFL

NB: Intersection = AND (the intersection A N B is the event that occurs if and only if
both A and B occur).
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A8.1.2 Bayes’ Rule and Total Probability

= Manipulating the relationship:

P{A n B} = P{B}P{A|B} = P{A}P{B|A}
*Relates conditional to

we can derive the following theorem (Bayes’ rule): unconditional probabilities
P{B|A}P{A
peai) =2 ey
/’\/
which can be extremely useful in case P{B|A} is much Boa, Bod,
easier to find than P{cA| B}, or vice versa. Bod,
Boa, BnA,
= Sometimes, it can be extremely convenient to split a complex BnAzf
statistical problem into smaller pieces. In order to do that, one ~|
can apply the law of total probability (LOTP)*: A | A, A, A, A, A,
n n
P(B} = ) P(BNAY = ) PlA}PBI A} ©,
i=1 i=1
[LE]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 2.3
agua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 7 ePrFL

An example of the application of Bayes’ rule is provided in the Homeworks.

NB: A; are (still) events.




A8.1.3 Independence of Events

= Two events are stochastically independent if:
P{A n B} = P{A}P{B}

and if P{cA} > 0 and P{B} > 0 then this is equivalent to (from the
definition of the conditional probability):

P{A|B} = P{A}, P{B|A} = P{B}

= |n words, two events A and B are independent if learning that
B occurred has no influence on the probability of the event A to
happen (and vice versa).

= As consequence, it also has no influence on the probability of the
opposite of A, AF:

P{A|B} = 1 — P{A|B} = 1 — P{A} = P{A°}

= Hence, if A and B are independent, then also A€ and B€ are.

Sometimes this property can be extremely useful.
LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap 2.5

aqua C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics
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We refer to this definition of independent events when discussing independent random

variables.
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Appendix 8.A — Multivariate Distributions: Marginal Distributions

P(X=1x)
= Fordiscrete RVs X and Y, the marginal (or unconditional) PMF of
X is given by: T *

P{X=x}=ZP{X=x,Y=y}
y

(distribution of X alone by summing over all Y)
= |n the same way, the marginal CDF of X is obtained by:

Fx(x) =P{X<x}=1lim P X<x,Y<y}=
y—)OO

= lim Fxy(x,y)
Y00

Marginal PMF example

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.1

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 72 ePrFL

Marginal and Conditional distributions are summarised in this Appendix, for those who
would like to know more.

Top & image: the marginal PMF is indeed the sum along Y (not the projection!).

Bottom: the marginal CDF can indeed also be obtained as the limit of the joint CDF when
y — 0,
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Appendix 8.A — Multivariate Distributions: Marginal Distributions

* For continuous RVs X and Y with joint PDF fx y, the marginal PDF

of X is given by: PX=x)

fx(x) = ffx,Y(X'Y) dy

* In the more general case of more than two RVs, all that needs to  ~ Yoo | .
be done is an integration along the unwanted RVs. For example, if ’ ‘ ‘
we have the joint PDF of X, Y, W and Z, but we want the joint PDF
of the distributions in X and W

fx,w(x. w) = f ffx,y,w,z(x:y. w,z) dy dz

—00 —00

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Chap. 7.2

aqua C. Brusc E. Charbon | 2025

Sie 13 EPFL

letrology: Elements of Statistics

NB: the image should actually show the marginal distribution for continuous variables.
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Appendix 8.A — Multivariate Distributions: Conditional Distributions

Conditional PMF of Y given
= For discrete RVs X and Y, the conditional PMF of Y . X=x
given X = x is given by:

P{X =xY =y}

PY =y|lX=x} = PIX = T_.a
. =

(we observe the value of X and want to update our distribution” - I 1

of Y to reflect this information)

= |tis possible to obtain the conditional PMF of X givenY =y
also using Bayes’ rule or the law of total probability (LOTP):
P{X =x|Y =y} P{Y = y}
P{X = x}

P{Y =y|X =x} =

P(X =x} = ) PIX =xlY = y}P(Y =)
y

[LL]) J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.1

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 7 ePrFL

Conditional distributions:

just note that P{X = x} with which we renormalize is simply the marginal PMF defined
two slides before!

Same thing for fx(x) on the next slide with respect to the definition of marginal PDF for
continuous RVs.
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Appendix 8.A — Multivariate Distributions: Conditional Distributions

* For continuous RVs X and Y with joint PDF fy y, the
conditional PDF of Y for X = x is given by:

_ fxy(x, )

fY|x(}’|x) = W

= The continuous analogs of Bayes’ rule or the LOTP are given by:

fur Gily) fr@)
fY|X(J/|x) = XlYfXT)Y
fx00 = | Fuw Gl fy ) dy

Conditional PDF of Y given

LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 7.2 X=x

aqua C. Brusc E. Charbon | 2025 Metrology: Elements of Statistics Slide 75
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Example target photograph 0 Reconstructed 3D image Depth ('1“0) Photon COinCidenceS
5 EE 5
10
H 8 . . . .
518 ) Coincidence detection is a
20 .
25| gmmg 6 well-known technique
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An example of a multivariate distribution as applied to the measurement of time-of-
flight and the design of a bespoke sensor is provided here in Appendix 8.B, as a
complement to slide 8.4.3, for those who would like to know more.

Coincidence detection is a well-known technique which utilizes spatio-temporal
correlation of photons within a laser pulse to filter out background noise photons which
are uniformly distributed in time. The figure above conceptually explains this technique
with an example scene and a measured 3D image reconstruction.

The main idea is to exploit the fact that the signal photons reflected from the target are
temporally correlated and thus, most likely to be concentrated within a time-window
coarsely equal to the total system full width at half maximum, FWHM, of the laser
pulse....

Instead of letting the sensor integrate events over a long measurement window,
imposing this time constraint, referred to as the “coincidence window”, reduces the
likelihood of acquiring noise events whose probability of occurrence within that window
is very low, thus, electrically enhancing the signal to background noise ratio, SBR.
Coincidence may be implemented at the sensor level over clusters/groups of closely-
spaced pixels, exploiting a “more-likely” fact that neighboring pixels may belong to
similar target depths (and thus, TOFs), as depicted in the figure for the object labelled
[4].
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Appendix 8.B — Multivariate Distributions — Example: LIDAR A possible pixel (and/or
sensor) arrangement:
subgroups (sg) of 8x4 SPADs,
- : Subgroup, sg (i)| clustered into 4 minigroups
s Il ) (mg) of 8 SPADs each

i" pixel
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The sensor may be visualized as an array of modules, called, subgroups, where every
subgroup is clustered into an array of M = 4 x 8 SPADs in this example capable of
performing photon detection. The subgroup, sg (M pixels), is further clustered into N
minigroups, mg, comprising of (M/N) number of pixels each.

Arrival of the first event starts a coincidence window, twindow. There is an event
counter in every subgroup which tracks the number of photons within a coincidence
window. A comparator logic is used to compare the output of the event counter with a
predefined (and variable) coincidence threshold, th. Whenever the event count exceeds
th, a signal is considered valid.
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Subgroup, sg (i)
minigroup, mg (i)
i" pixel
Iy z} Iy Iy Iy 1} i Iy
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(1 = p_npixel (i) ) % p_spixel (i)

L] P. Padmanabhan et al., Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LIDAR Applications, Sensors 2019
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(a) Detect 1st signal photon
at ith pixel
Mathematically:

p_s.(i) = P(detecting th
number of valid signal
events within t_window) =

Probability of detecting a
signal event in a pixel i, =
p—spixel(i)'

given that no noise photon
is detected at pixel j,

= (1 - p_npixe/(i) )’

and...
s = signal, n = noise

side 78 EPFL
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Subgroup, sg (i)| (b) Detect (th-1) photons in

minigroup, mg (i) | mg(i)
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Appendix 8.B — Multivariate Distributions — Example: LIDAR

Subgroup, sg (i)
minigmup, mg (i)
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(c) Detect (th-1) photons in
sg(i) - mg(i)

... orin the rest of the subgroup,
sg(i) - mg(i),

= p_Su.559(i)-mg(i)
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Appendix 8.B — Multivariate Distributions — Example: LIDAR
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The probability of detecting “th” number of valid signal events within twindow can be
calculated as a conditional probability of detecting a signal event in a pixel, i, given that
no noise photon is detected at pixel i and (th - 1) signal events are detected in the rest of
the subgroup.

-> The final conditional probability of detecting th-1 signal photons in the subgroup.....
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