


Modules of the 2024 Course

Topics covered No Lecture/Date
Introductory presentation; Basic of laser operation I: dispersion theory, atoms 1 11. 09. 2024
Basic of laser operation II: dispersion theory, atoms 2 18. 09. 2024
Laser systems I: 3 and 4 level lasers, gas lasers, solid state lasers, applications 3 25. 09. 2024
Laser systems II: semi-conductor lasers, external cavity lasers, applications 4 02. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (1) 5 09. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (2) 6 16. 10. 2024
Optical detection 7 30. 10. 2024
Optical fibers: light propagation in fibers, specialty fibers and dispersion (GVD) 8 06. 11. 2024
Ultrafast lasers I.: Passive mode locking and ultrafast lasers 9 13. 11. 2024
Ultrafast lasers II: mode locking, optical frequency combs / frequency metrology 10 20. 11. 2024
Ultrafast lasers III: pulse characterization, applications 11 27. 11. 2024
Nonlinear frequency conversion I: theory, frequency doubling, applications 12 04. 12. 2024
Nonlinear frequency conversion II: optical parametric amplification (OPA) 13 11. 12. 2024
Laboratory visits (lasers demo) 14 20. 12. 2024

Lasers: theory and modern applications October 29, 2024 2 / 1



Amplitude Modulation

Amplitude modulation:

UAM(t) =
(

U0 + ∆U0 cos (ωmt)
)

cos ω0t

PAM = U0
[
eiω0t + M

2 ei(ω0+ωm)t + M
2 ei(ω0−ωm)t

]
M ≡

∆U0

U0

PAM ∝ |U0|2
[

1 +
M2

2

]
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Phase Modulation

Application note: Principle of phase
modulator

Phase modulation
UPM(t) = U0 cos φ = U0 cos

[
ω0t + δ cos (ωmt)

]
ω(t) = ω0 + ωmδ sin (ωmt) ≡ ω0 − ∆ω sin (ωmt)
∆ω ≡ ωmδ

Sideband picture

UP M (t) = U0

∞∑
n=−∞

R

{
inJn(δ)e[

(iω0+nωm)t]
}

exp
[
iδ cos (ωmt)

]
= J0(δ) + 2iJ1(δ) cos (ωmt)

J1(δ) =
δ

2
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Phase Modulation

Application note: Quadrature Amplitude
Modulation (QAM) is a combination of two

modulation techniques: Amplitude
Modulation (AM) and Phase Modulation
(PM). To explain QAM we will start with

a brief explanation of AM and PM.

Phase modulation
UPM(t) = U0 cos φ = U0 cos

[
ω0t + δ cos (ωmt)

]
ω(t) = ω0 + ωmδ sin (ωmt) ≡ ω0 − ∆ω sin (ωmt)
∆ω ≡ ωmδ

Sideband picture

UP M (t) = U0

∞∑
n=−∞

R

{
inJn(δ)e[

(iω0+nωm)t]
}

exp
[
iδ cos (ωmt)

]
= J0(δ) + 2iJ1(δ) cos (ωmt)

J1(δ) =
δ

2
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Phase Modulator. Zoom in
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Amplification, noise figure and detectors
Learning outcomes Fiber amplifiers

1 Understand the Gain of an Amplifier
2 Understand the Noise figure concept (NF)
3 Understand where the Noise originates from
4 Understand the fundamental limit of the noise figure

Learning outcomes Detectors
1 Understand the different detector types
2 How to detect a signal? Understand the noise (shot noise, thermal)
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Detectors

1 Photomultiplier
2 Photoconductive detector
3 Photodiode (Avalanche

Photodiode)
4 The Eye
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Photoelectric effect
Review: photoelectric effect
Historically, the photoelectric effect is associated with Albert Einstein, who
relied upon the phenomenon to establish the fundamental principle
of quantum mechanics, in 1905,[3] an accomplishment for which Einstein
received the 1921 Nobel Prize.

First observed by Heinrich Hertz in 1887,[2]

the phenomenon is also known as the “Hertz
effect”,[3][4], although the latter term has fallen out
of general use.

In the free electron model, non-interacting electrons
bounce around inside a potential well of depth U .
The Fermi Level is the highest energy level that is
occupied by electrons. Here EF is defined relative
to the bottom of the potential well, and the work
function W is the energy required to eject the electron
in the Fermi Level.
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Detectors: Phototube

Simplest possible detector is a phototube
that utilizes the photoelectric effect.

1 Photomultiplier
2 Photoconductive detector
3 Photodiode (Avalanche Photodiode)
4 The Eye
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Photomultiplier tube (PMT)
Photomultiplier tubes (photomultipliers or PMTs for short), members of the class of vacuum tubes, and
more specifically phototubes, are extremely sensitive detectors of light in the ultraviolet, visible, and
near-infrared ranges of the electromagnetic spectrum. These detectors multiply the current produced
by incident light by as much as 100 million times (i.e., 160 dB), in multiple dynode stages, enabling
(for example) individual photons to be detected when the incident flux of light is very low.
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Photomultiplier tube
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Photoconductive detectors

As evident from the chart most materials have a work function that is so high, that it requires
light of visible or UV to achieve photoelectron emission.
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Photoconductive detector
In a photoconductive detector, an optical photon increases the conductivity of a doped
semiconductor, leading to a drop in resistance.
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Photodiode
Detectors converts a photon (i.e. a quanta of electromagnetic energy into one or more
electrons). Common detectors are:
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Photodiodes

Detector converts a photon (i.e. a quanta of electromagnetic energy into one or more
electrons). Common detectors are:
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Photodiode and Avalanche Photodiode (APD)
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Human eye

Cones: 560 nm peaks sensitivity
Rods: 510 nm peak sensitivitity

The experiment by Pirenne revealed that a rod
can detect a single photon (!).
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Review: Poisson distribution
Variance of the Poisson distribution:

∆n =
√

⟨n⟩ p(n) =
⟨n⟩ne−n

n!

In probability theory and statistics, the Poisson distribution (or
Poisson law of small numbers) is a discrete probability distribution
that expresses the probability of a given number of events occurring
in a fixed interval of time and/or space if these events occur with
a known average rate and independently of the time since the last event.
(The Poisson distribution can also be used for the number of events
in other specified intervals such as distance, area or volume.)

The Poisson distribution approaches a Gaussian Distribution for large mean values.

f(x) =
1

σ
√

2π
e

− (x−µ)2

2σ2
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The Poisson distribution (Background)
Proof of the Poisson distribution

P (t)∆t = αI(t)∆t

Let Pn(t) be the probability of counting n photons
during a time t(0 ≤ t ≤ T )

Pn−1(t)p(t)∆t = (probability of n − 1 photons in time t) × (probability of 1 photon in ∆t)

Pn(t)[1 − p(t)∆t] = (probability of n photons in time t) × (probability of no photon in ∆t)

Pn(t + ∆t) = Pn−1(t)p(t)∆t + Pn(t)[1 − p(t)∆t]
Pn(t + ∆t) − Pn(t)

∆t
=
[
Pn−1(t) − Pn(t)

]
p(t)

dPn

dt
= αI(t)

[
Pn−1(t) − Pn(t)

]
Pn(T ) =

(n̄)n

n!
e−n̄

p(n) =
⟨n⟩ne−n

n!〈
∆n(T )2

〉
= n̄
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Brief review shot noise in optical detection
Shot noise can be viewed in three (equivalent) ways.

1 As a consequence of the particle nature of light
2 As a consequence of the fact that current is composed of individual

electrons
3 As a consequence of the interference of the signal beam with the

vacuum fields of other electromagnetic modes
A quick and simple derivation of shot noise:

SNR =
PSignal
PNoise

=

(
N√
N

)2
=
(√

N
)2

PSignal = R(eN/T )2

PNoise = R
〈

∆I2
〉
= R

(
e2

T 2

〈
∆N2

〉)
= R · e2

T 2 N

Number of detected photons:
N = P /2 h̄ωB

Bandwidth: B = 1/2T

SNR =
PSignal
PNoise

= P
2 h̄ωB

Noise figure (NF)
NF [dB] = 10 log10

(
SNRin
SNRout

)
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Johnson or Nyquist Noise

In 1927, J. B. Johnson observed random fluctuations in the voltages across electrical resistors. A year
later H. Nyquist published a theoretical analysis of this noise which is thermal in origin. Hence this type
of noise is variously called Johnson noise, Nyquist noise, or thermal noise.

p(V )dV ∝ Exp
[

−2V 2

σ2

]
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Johnson or Nyquist Noise

v2
n = 4kBTR

The voltage fluctuations
on a resistor are directly linked to
the thermal Brownian motion
of the electrons.

v2
x = kBT /m

R = d
σA = md

Ne2τ0A

ith =

√
4kT ∆f

R
[A]

1
2mv̄2 =

3
2kT

Lasers: theory and modern applications October 29, 2024 23 / 1



Electronic shot noise / quantum noise

Spectral density of current
fluctuations

isn =
√

2qIdc∆f [A]

∆Nrms =
√

N isn = q∆Nrms
∆t

Idc = qN̄
∆t isn =

√
qIdc

∆t

Random intensity noise (RIN)

RIN =

〈
∆i2
〉

I2

[
Hz−1

]

Introducing the band-with:
∆f = 1

2∆t [Hz]

Application note: electronic shot
noise

The concept of shot noise was
first introduced in 1918 by

Walter Schottky who studied
fluctuations of current in vacuum

tubes.[1]
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Electronic shot noise

Spectral density of current fluctuations

i2
N (ν) ≡ S(ν)∆ν = 2eĪ∆ν

Electronic shot noise and the definition of
the spectral density

i2
N (ν) ≡ S(ν)∆ν = 2eĪ∆ν
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Detector noise

itotal =

√
4kT ∆f

R
+ 2qIdc∆f + I2

dc RIN ∆f [A]

(thermal) (shot) (intensity)
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Noise equivalent power

Noise-equivalent power (NEP) is a measure of the sensitivity
of a photodetector or detector system. It is defined as the signal
power that gives a signal-to-noise ratio of one in a one hertz
output bandwidth

The units of NEP are watts per square root hertz.

For example, a detector with an NEP of 1 pW can detect
a signal power of one picowatt with a signal-to-noise ratio (SNR)
of one after one half second of averaging

Pmin = NEP (λ) ·
√

B
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Detecting weak signals: Heterodyne detection

Heterodyne detection (also called coherent detection) is
a detection method which was originally developed
in the field of radio waves and microwaves. There, a weak
input signal is mixed with some strong “local oscillator”.
The frequency of the mixing product is the sum
or the difference of the frequencies of the signal and
the local oscillator.

S

N
=

〈
I2
〉

signal〈
I2〉

noise
=

ηm

(
ηqe
hv

)2
2PsPlo

2e
ηqe
hv PloB

=
ηq

hv Ps

B

A remaining problem of heterodyne detection is that excess noise of the local oscillator wave
directly affects the signal. This is avoided with a balanced heterodyne setup.
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Detecting the phase: balanced homodyne detection
In a balanced homodyne detector, the beam splitter must have a reflectivity of precisely 50%. With a simple
electronic circuit, one can obtain the difference of the two photocurrents. A key advantage is that difference is
to first order not influenced by noise of the local oscillator.

Beamsplitter

Eout1 = (ELO + Es) /
√

2

Eout2 = (ELO − Es) /
√

2

Difference photocurrent

|Eout2|2 − |Eout1|2 = (ELO + ES)
2 /2 − (ELO − ES) /2 = 2ELOES

Transmission matrix

A =

(
t −r
r t

) Energy conservation

t2 + r2 = 1

50:50 beamsplitter
A =

1√
2

(
1 i
i 1

)
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Homodyne measurement (1/2)

Detected photocurrent

Es = Eseiωt+δθ(t),
∆I(t) ∝ |E1|2 + |E2|2 = 1

2 (iEs + iEL0) (Es + EL0) − 1
2 (iEs − iELO) (Es − ELO) = E∗

s ELO + EsE∗
LO

Photocurrent for 90 degree shift between LO and signal
ELO = ELOeiΦ

∆I(t) ∝ |ELO|
(

Ese−iϕ − E∗
s e+iϕ

)
Photocurrent for 90 degree shift between LO and signal
∆I(t) ∝ |ELO|

(
Es − E∗

s

)
∆I(t) ∝ δθ
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Homodyne measurement (2/2)

Transmission matrix
50:50 beamsplitter

A =
1√
2

(
1 i
i 1

)
Application Note: Homodyne receivers are used in mobile phones and deep
space missions
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The signal to noise ratio for the input field

Amplifier noise figure

NF = log10

(
SNRin
SNRout

)

What is the signal to noise of the input
of the amplifier?

Amplified signal modulation
Signal to Noise: SHOT NOISE and
AMPILFIER ADDED NOISE

Input signal modulation
Signal to noise SHOT NOISE
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ASE Noise in a Fiber Amplifier

The ASE gives rise to:

Electronic shot noise
Signal spontaneous beat noise (SSE)
Spontaneous-Spontaneous Noise (SSN)

The Noise in an Fiber Amplifier originates from
the amplified spontaneous emission noise (ASE)

PASE = 2nsphv(G − 1)B0

nsp =
σeN2

σeN2 − σaN1

Photocurrent noise of versus the power
of an amplified signal:
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Amplified spontaneous emission noise
Where does the ASE Noise originate from?

dP = γP dz

Optical gain
γ(v) = (N2 − N1)

c2g(v)

8πn2v2tspont

Spontaneous emission noise

PN =
N2hvAdz

tspont

Total noise in the volume
and in interval V . . . V + ∆V

(dP )′ = 1
2 · N2hvg(v)∆vA

tspont
dΩ
4π dz (Rewrite

expression with optical gain)
(dΩ)min = (dΩ)b = πϑ2

b = λ2

n2A

Diffraction angle (Gaussian ebeam optics)

ϑb =
λ

π2ω1

The spontaneous emission noise yields
the expression

(dP )′ =
N2γhv

N2 − N1
∆v · dz
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Spontaneous emission noise (1/2)

dP = γP dz
γ(v) = (N2 − N1)

c2g(v)

8πn2v2tspont (dP )′ =
N2γhv

N2 − N1
∆vdz

Inversion factor

µ =
N2

N2 − N1
= nsp

Bandwith

2B0 = ∆v

Gain

G = eγz
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Spontaneous emission noise (2/2)

Both signal and noise are being amplified
dP
dz = γP + N2

N2−N1
γhv∆v,

P (z) = P0eγz + µhv∆v (eγz − 1) =
= ampl. sign. + ampl. noise

The pre-factor has an important
consequence: minimum noise is expected
if all ions are inverted! Never run
an amplifier with low pump current.
Also: never run an amplifier without input
signal.

ESA Noise of the Amplifier

PNoise = µ2hvB(G − 1)

Signal to noise at the output of the amplifier(
S

N

)
output

=
P0

µhv2B

G

G − 1

NF =
(

S
N

)
in

/
(

S
N

)
out

= P0
hvB / P0

µhv2B
G

G−1 = 2µG−1
G
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Spontaneous emission noise

A more accurate calculation yields
(valid also for low gain)

NF = 2µ
(G − 1)

G
+

1
G

Consequently, it is very important that
the amplifier is operated in a mode,

where all ions are invert (and thus
the amplifier gain is high),
where the amplified input signal is
large compared to the ASE.
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Supplementary Info: spontaneous emission noise
The total spontaneous emission in a bandwidth B is given by

PASE = 2nsphv(G − 1)B0.

Consequently, there is a beatnote between spontaneous emission and the
signal (si-sp noise):

Sisg−sp
(f) = 4 Re2 GPsρASE

[
A2/Hz

]
.

A second contribution of noise on a photodetector is that of the shot noise
of the signal:

Sp(f)
∣∣
shot =

2hvidc

Re = 2hv⟨P ⟩
[
W2/Hz

]
.

The total noise (SNR in versus out) figure is thus:

NF =
2ρASE
GhV

+
1
G

, NF = 2nsp
(G − 1)

G
+

1
G

.
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Supplementary: Fundamental limit on amplifiers (1/2)

Position momentum uncertainty
∆p · ∆x ≥ h̄/2

“If one wants to be clear about what is meant by ‘position
of an object,’ for example of an electron. . . , then one has
to specify definite experiments by which the ‘position
of an electron’ can be measured; otherwise this term has no
meaning at all.” – Heisenberg, in uncertainty paper, 1927

Let the cone of light rays leaving the microscope lens
and focusing on the electron make an angle
with the electron. Then, according to the laws of classical
optics

∆x =
λ

sin
(

ε
2

)

Photon-number phase
uncertainty

∆ϕ · ∆n ≥ 1/2
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Supplementary: Fundamental limit on amplifiers (2/2)

When a photon strikes an electron, the latter has a Compton recoil with momentum proportional to

∆px ≈ h

λ
sin
(

ε

2

)
∆x∆px ≈ λ

sin
(

ε
2

) · h

λ
sin
(

ε

2

)
= h
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Supplementary info: Number-phase uncertainty

Input noise
(minimum uncertainty state)

∆n1∆Φ1 =
1
2

Amplification process (Gain G)

(n2 ± ∆n2) = G (n1 ± ∆n1)

(Φ1 ± ∆Φ1) = (Φ2 ± ∆Φ2)

Uncertainty in the output fluctuations:

∆n2∆Φ2 = (G∆n1) ∆Φ1

∆n1∆Φ1 =
1
G

· 1
2

This violates the photon
number uncertainty relation!

Any linear amplifier must
therefore add noise.

Photon-number phase
uncertainty

∆ϕ · ∆n ≥ 1/2
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