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Solutions to homework No. 8
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1 Problem 1

1.
Critical angle condition: 

𝜃1 + 𝜃𝑐 + 90° = 180° 

𝜃1 + 𝜃𝑐 = 90° 

𝜃1 = 90°− 𝜃𝑐 

I. From air to fiber

II. Inside fiber

𝑛𝑖𝑆𝑖𝑛𝜃𝑖 = 𝑛1𝑆𝑖𝑛𝜃1 

𝑛𝑖𝑆𝑖𝑛𝜃𝑖 = 𝑛1𝑆𝑖𝑛𝜃1 = 𝑛1𝑆𝑖𝑛(90° − 𝜃𝑐) 

𝑛𝑖𝑆𝑖𝑛𝜃𝑖 = 𝑛1𝐶𝑜𝑠𝜃𝑐   (1)

𝑛1𝑆𝑖𝑛𝜃𝑐 = 𝑛2𝑆𝑖𝑛90° 

𝑛1𝑆𝑖𝑛𝜃𝑐 = 𝑛2 

𝑆𝑖𝑛𝜃𝑐 =
𝑛2

𝑛1
 (2)

From equation (1): 

𝑛𝑖𝑆𝑖𝑛𝜃𝑖 = 𝑛1√1 − 𝑆𝑖𝑛𝜃𝑐
2

Using  equation (2): 

𝑛𝑖𝑆𝑖𝑛𝜃𝑖 = 𝑛1√1 − (
𝑛2

𝑛1
)

2

𝑛𝑖𝑆𝑖𝑛𝜃𝑖 = 𝑛1√
𝑛1

2 − 𝑛2
2

𝑛1
2

𝑛𝑖𝑆𝑖𝑛𝜃𝑖 = √𝑛1
2 − 𝑛2

2 = 𝑁𝐴



Prof. T.J. Kippenberg 
Prof. C. Moser 
Fall Term 2022

N.A =
√

n2
2 − n2

1 =
√
(n2 − n1)(n2 + n1) =

√
∆ · n1 · 2 · n1 =

√
2∆ · n1

(∆ =
n2 − n1

n1
, n2 + n1 ≈ 2n1)

2.

N.A =
√

2 · 10−2 · 1.46 =
√

2 · 0.1 · 1.46 = 1.41 · 0.14 = 0.2

3.

V = 2π
a

λ0
N.A ≤ 2.405

⇒ φ = 2a ≤ 2.405λ0

πN.A
= 5.4µm

(N.A = 0.22, λtelecom)

⇒ φ ≤ 2.405λvis

πN.A
= 1.75µm

(N.A = 0.22, λ = 0.5µm)

If air surronds the solid core:

n1 = 1, N.A = 1.06

⇒ φ ≤ 2.405λ

π1.06
≈ 0.72λ

very small core
too small to be produced and too brittle, handling.
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4. 8/125 means 8µm core and 125µm cladding diameter

Vf iber = π · φ2

4
· L = π · φ′2

4
· L′

⇒ L′ = L · φ2

φ′2
= 1000 · 103 · (12.5 · 10−5

10 · 10−2 )2

⇒ L′ = 106 · (1.25)2 · 10−6 ≈ 1.45m

The preform measures 1.45m long 10cm in diameter.

5.

η = 1− e−F· Score
Stot
·α·L

Effective absorption coefficient:

αe f f = F · Score

Stot
· α

η = 1− e−αe f f ·L

dB
m

=
10log10(

Powerin
Powerout

)

length[m]

⇒ X[
dB
m

] ·
1meter︷︸︸︷
l[m] = 10log10

Pin

Pout

light propagates in core
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⇒ Pout = Pin · e−α·L

⇒ X[
dB
m

] = 10log10eα[ 1
m ]

⇒
X[ dB

m ]

10
= log10eα[ 1

m ]

⇒ 10
X[ dB

m ]
10 = eα[ 1

m ]

⇒ α = ln(10
X[ dB

m ]
10 )

(X = 55
dB
m

)⇒ α = 12.6[
1
m
]

αe f f = F · Score

Stot
· α

⇒ αe f f = 0.8 · ( 12µm
400µm

)2 · 12.6

⇒ αe f f = 0.9 · 10−2[
1
m
]

η(L = 1m) = 1− e−αe f f ·1 = 0.009

η(L = 5m) = 1− e−αe f f ·5 = 0.044

η(L = 10m) = 1− e−αe f f ·10 = 0.0861

η(L = 20m) = 1− e−αe f f ·20 = 0.1647

η(L = 50m) = 1− e−αe f f ·50 = 0.3624

2 Problem 2

1. The propagation constant of a fiber is

β`m = (n2
1k2

0 − (`+ 2m)2 π2

4a2 )
1
2 (1)

The V-parameter of a fiber is given by

V = 2π
a

λ0
NA

and the number of modes supported by the fiber with core radius a, numerical aperture
NA at wavelength λ0 is

for M� 1, M ≈ 4
π2 V2 =

4
π2 4π2 a2

λ2
0

NA2 = 16
a2

λ2
0

NA2

NA ≈ n1
√

2∆ ⇒ M = 16
a2

λ2
0

n2
12∆, withλ0 =

2π

k0

M =
4a2

π2 · 2 · k
2
0 · n2

1 · ∆ (2)

if we now insert eq. 2 into eq. 1

β`m = (n2
1k2

0 − n2
1k2

0(`+ 2m)2 2∆
M

)
1
2 = n1k0(1− 2 · (`+ 2m)2 ∆

M
)

1
2
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since ∆ is small
√

1 + δ ≈ 1 + δ
2 , |δ| � 1

β`m = n1k0(1−
(`+ 2m)2

M
· ∆)

2. v`m = dω
dβ`m

, let’s express β`m as a function of ω

n1k0 = n1 ·
2π

λ0
=

ωn1

c
and M =

4a2

π2 · 2∆ · ω2n2
1

c2

β`m ≈
ωn1

c

(
1− (`+ 2m)2 · ∆ π2

4a2
1

2∆
c2

ω2n2
1

)
=

ωn1

c
− (`+ 2m)2 · ∆ π2

4a2
1

2∆
c

ωn1

dβ`m

dω
=

n1

c
+ (`+ 2m)2 · ∆ π2

4a2
1

2∆
c2

ω2n2
1
· n1

c

=
n1

c
·
(

1 +
(`+ 2m)2

M
· ∆
)

⇒ v`m =
c

n1
·
(

1 +
(`+ 2m)2

M
· ∆
)−1

v`m =
c

n1
·
(

1 +
(`+ 2m)2

M
· ∆
)−1

M� ∆
=

c
n1
·
(

1− (`+ 2m)2

M
· ∆
)

vmax
`+2m=2
=

c
n1
·
(

1− 4
M
· ∆
)
≈ c

n1

vmin
`+2m=

√
M

=
c

n1
· (1− ∆)

3. Pulse broadening

∆τ =
1
2

(
L

νmin
− L

νmax

)
=

L
2

(
n1

c(1− ∆)
− n1

c

)
=

Ln1

2c

(
1

1− ∆
− 1
)

=
Ln1

2c

(
1− (1− ∆)

1− ∆

)
=

Ln1

2c
· ∆

1− ∆

⇒ ∆τ =
100 · 103 · 1.46

2 · 3 · 108 = 24.6 · 10−7 = 2.46µs
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4. Pulse broadening for graded index fiber

∆τ =
L
2

(
n1

c
· 1

1− ∆2

2

− n1

c

)

=
Ln1

2c

(
1

1− ∆2

2

− 1

)

=
Ln1

2c

(
2− (2− ∆2)

2− ∆2

)
=

Ln1

2c
· ∆2

2− ∆2

= 12ns

5. The gradient index fiber delivers the least temporal pulse broadening.

3 Problem 3

Ey = A · e−p(|x|−d) · e−jβz |x| ≥ d

Ey = B · cos (hx) · e−jβz |x| ≤ d

∂2

∂x2 Ey = p2 · Ey(x, z) |x| ≥ d

into wave equation:

p2 · Ey(x, z) + (k2
0n2

1 − β2)Ey(x, z) = 0⇒ p2 = β2 − k2
0n2

1

∂2

∂x2 Ey = −h2 · Ey(x, z) |x| ≤ d

into wave equation:

−h2 · Ey(x, z) + (k2
0n2

2 − β2)Ey(x, z) = 0⇒ β2 = k2
0n2

2 − h2
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