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8.1 The optical spectrum analyzer !

The most common OSAs for fiber optic applications use diffraction gratings as the basis for a tun-
able optical filter. Figure 8.1 shows what a diffraction-grafting-based OSA might look like. In the
monochromator, a diffraction grating (a minor with finely spaced corrugated lines on the surface)
separates the different wavelengths of light. The diffracted light comes off at an angle proportional
to wavelength. The result is similar to the rain bow produced by visible light passing through
a prism. In the infrared, prisms do not work very well because the dispersion (in other words,
change of refractive index versus wavelength) of glass in the Ito 2 pm wavelength range is small.

Diffraction
Grating

Fiber input e

Photodiode

Digital A/D
Display Processing Converter

Exit Slit

Figure 8.1: Concept of diffraction-gratIng-based OSA.

Diffraction gratings are used instead. They provide a greater separation of wavelengths allowing
for better wave length resolution. A diffraction grating is made up of an array of equidistant par-
allel slits (in the case of a transmissive grating) or reflectors (in the case of a reflective grating).
The spacing of the slits or reflectors is on the order of the wavelength of the light for which the
grating is intended to be used. The grating separates the different wavelengths of light because
the grating lines cause the reflected rays to undergo constructive interference only in very specific
directions, Only the wavelength that passes through the aperture reaches the photodetector to be
measured. The angle of the grating determines the wavelength to which the OSA is tuned. The
size of the input and output apertures together with the size of the beam on the diffraction grating
determines the spectral width of the optical filter.

IChapter 3 (Page 90 - 91) - Fiber optic test and measurement - Derickson, Dennis- New Jersey : Prentice Hall,
1998
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8.2 Spontaneous emission noise and mode density >

Optical resonators, like their low-frequency, radio-frequency, and microwave counterparts, are used
primarily in order to build up large field intensities with moderate power inputs. They consist
in most cases of two, or more, curved mirrors that serve to “trap,” by repeated reflections and
refocusing, an optical beam that thus becomes the mode of the resonator. A universal measure of
this property is the quality factor @ of the resonator. @ is defined by the relation

field energy stored by resonator

Q=wx (8.2.1)

power dissipated by resonator

As an example, consider the case of a simple resonator formed by bouncing a plane TEM wave
between two perfectly conducting planes of separation [ so that the field inside is

e(z,t) = Esinwtsin kz (8.2.2)

And the average electric energy stored in the resonator is

Ae I ,rT
eelectric = ﬁA A G(Z,t)dZdt (823)

where A is the cross-sectional area, e is the dielectric constant, and T' = 27 /w is the period. Using
(8.2.2) we obtain

1
Celectric = gEEQV (824)

where V' = I' A is the resonator volume. Since the average magnetic energy stored in a resonator is
equal to the electric energy, the total stored energy is

1
¢ = Z6E2V (8.2.5)

Thus, recognizing that in steady state the input power is equal to the dissipated power, and
designating the power input to the resonator by P, we obtain from (8.2.1)

weE?V
= 8.2.6
Q=" (5.2
The peak field is given by
4QP
E = 8.2.7
weV ( )

Mode Density in Optical Resonators

The main challenge in the optical frequency regime is to build resonators that possess a very
small number, ideally only one, high @Q modes in a given spectral region. The reason is that for a
resonator to fulfill this condition, its dimensions need to be of the order of the wavelength.

Mode control in the optical regime would thus seem to require that we construct resonators
with volume ~ A\3(~ 107!2 cm? at A = 1um) . This is not easily achievable. An alternative is to
build large (L > \) resonators but to use a geometry that endows only a small fraction of these
modes with low losses (a high @). In our two-mirror example, any mode that does not travel
normally to the mirror will “walk off” after a few bounces and thus will possess a low @ factor.
We will show later ’that when the resonator contains an amplifying (inverted population) medium,
oscillation will occur preferentially at high Q modes, so that the strategy of modal discrimination
by controlling @ is sensible. We shall also find that further modal discrimination is due to the fact
that the atomic medium is capable of amplifying radiation only within a limited frequency region
so that modes outside this region, even if possessing high @, do not oscillate.

One question asked often is the following: Given a large (L > ) optical resonator, how many
of its modes will have their resonant frequencies in a given frequency interval, say, between v and
v+ Av? To answer this problem, consider a large, perfectly reflecting box resonator with sides,

2Chapter 4 (Page 121 - 125) - Optical Electronics in Modern Communications- Fifth Edition - Amnon Yariv -
Oxford University Press, 1997
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a, b, c along the x,y, z directions. Without going into modal details, it is sufficient for our purpose
to take the amplitude field solution in the form

E(z,y,z) o« sinkzasin kyysink, 2 (8.2.8)

(Resonators of different shapes will differ in detail, but for large, L > ), resonators, the results
are similar.)

2
2 2 2 _ (W
ky +k, +k; = <Cn> (8.2.9)
For the field to vanish at the boundaries, we thus need to satisfy
t
k, = Tl,ky = %T,kz =T r, s,t any integers (8.2.10)
a c

With each such mode, we may thus associate a propagation vector k = &k, + gk, + Zk.. The
triplet 7, s,t defines a mode. Since replacing any integer with its negative does not, according to
Equation (8.2.8), generate an independent mode, we will restrict, without loss of generality, r, s, t
to positive integers. It is convenient to describe the modal distribution in k space, as in Figure
8.2. Since each (positive) triplet r, s,t generates an independent mode, we can associate with each
mode an elemental volume in k space.

7'l'3 7T3
Vmode = % = 7 (8211)

where V is the physical volume of the resonator. We recall that the length of the vector k satisfies
Equation (8.2.10), rewritten here as

2mv(r, s,t)
—In

k(r,s,t) =
c

(8.2.12)

r—1,5,t+1) (r—1,s+1,+1)

(r,s.)

BIE]
SE]

BYE!
SIE

k;

Figure 8.2: k space description of modes. Every positive triplet of integers r, s, ¢ defines a unique
mode. We can thus associate a primitive volume 73 /abc in k space with each mode.

To find the total number of modes with k values between 0 and k, we divide the corresponding
volume in k space by the volume per mode:

(4) %5 BV

3 2
= (s

N(k) = (8.2.13)

(The factor 1/8 is due to the restriction of r,s,t > 0.) We next use (8.2.12) to obtain the number
of modes with resonant frequencies between 0 and v:

4m3n3V
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The mode density, that is, the number of modes per unit v near v in a resonator with volume
V(> \3), is thus

dN (v 8m12ndV
p(v) = di ) = = (8.2.15)

where we multiplied the final result by 2 to account for the two independent orthogonally polarized
modes that are associated with each r, s, ¢ triplet.
The number of modes that fall within the interval dv centered on v is thus

8r2n3V

N ~ dv (8.2.16)

3

where V is the volume of the resonator.

p
Example: Number of modes in a typical laser resonator

For the case of V =1 ecm3,v = 3 x 10! Hz and dv = 3 x 1019, as an example, (8.2.16) yields
N ~ 2 x 10% modes. If the resonator were closed, all these modes would have similar values
of Q. This situation is to be avoided in the case of lasers, since it will cause the atoms to
emit power (thus causing oscillation) into a large number of modes, which may differ in their
frequencies as well as in their spatial characteristics .

A\ J

This objection is overcome to a large extent by the use of open.resonators, which consist
essentially of a pair of opposing flat or curved reflectors. In such resonators the energy of the
vast majority of the modes does not travel at right angles to the mirrors and will thus be lost in
essentially a single traversal. These modes will consequently possess a very low @. If the mirrors
are curved, the few surviving modes will, as shown below, have their energy localized near the axis;
thus the diffraction losses caused by the open sides can be made small compared with other loss
mechanisms such as mirror transmission.

8.3 Fundamental laser linewidth 3

The Phase Noise
An ideal monochromatic radiation field can be written as

&(t) = Re[Epe!“ot+9)] (8.3.1)

where wg the radian frequency, Fy the field amplitude, and 6 are constants. A real field including
that of lasers undergoes random phase and amplitude fluctuations that can be represented by
writing

E(t) = Re|E(t)e!@ot+0())] (8.3.2)

where E(t) and 6(t) vary only “slightly” during one optical period.

There are many reasons in a practical laser for the random fluctuation in amplitude and phase.
Most of these can be reduced, in theory, to inconsequence by various improvements such as ultra-
stabilization of the laser cavity length and the near elimination of microphonic and temperature
variations. There remains, however, a basic source of noise that is quantum mechanical in origin.
This is due to spontaneous emission that continually causes new power to be added to the laser
oscillation field. The electromagnetic field represented by this new power, not being coherent with
the old field, causes phase, as well as amplitude, fluctuations. These are responsible ultimately for
the deviation of the evolution of the laser field from that of an ideal monochromatic field, i.e., for
the quantum mechanical noise.

Let us consider the effect of one spontaneous emission event on the electromagnetic field of
a single oscillating laser mode. A field such as (8.3.1) can be represented by a phasor of length

3Chapter 10 (Page 393 - 396) - Optical Electronics in Modern Communications- Fifth Edition - Amnon Yariv -
Oxford University Press, 1997
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Ey rotating with an angular (radian) rate wp In a frame rotating at wy we would see a constant
vector Eg. Since EZ o fi, the average number of quanta in the mode, we shall represent the
laser field phasor before a spontaneous emission event by a phasor of length /n as in Figure 8.3.
The spontaneous emission adds one photon to the field, and this is represented, according to our
conversion, by an incremental vector of unity length. Since this field increment is not correlated
in phase with the original field, the angle ¢ is a random variable . (i.e., it is distributed uniformly
between zero and 27). The resulting change A# of the field phase can be approximated for 7 > 1
by

Aeone emission — % COSs ¢ (833)
Next consider the effect of NV spontaneous emissions on the phase of the laser field. The problem
is one of random walk, since ¢ may assume with equal probability any value between 0 and 2.
We can then write

<[A9(N)]2> = ((Abone cmission)2>N (8.3.4)

and from (8.3.3)

([AB(N)]?) = %@os? ¢)N (8.3.5)

where () denotes an ensemble average taken over a very large number of individual emission events.

Equation (8.3.4) is a statement of the fact that in a random walk problem the mean squared
distance traversed after N steps is the square of the size of one step times N. The mean deviation
(AG(N)) after N spontaneous emissions is, of course, zero. Any one experiment, however, will
yield a nonzero result. The mean squared deviation is thus nonzero and is a measure of the phase
fluctuation. To obtain the root-mean-square (rms) phase deviation in a time ¢, we need to calculate
the average number of spontaneous emission events N (t) into a single laser mode in a time ¢.

Imaginary
part of field

1 = field increment due
to one photon

Real part I
of field

Figure 8.3: The phasor model for the effect of a single spontaneous emission event on the laser
field phase.

The total number of spontaneous transitions per second into all modes is Na/tspont, Where Ny
is the total number of atoms in the upper laser level 2 and tspont is the spontaneous lifetime of an
atom in 2. The total number of transitions per second into one mode is thus

Nspont N2

= 8.3.6
second-mode  tspontP ( )
where 27 3
8rviAvVn
p= 0073 (8.3.7)

is the number of modes interacting with the laser transition, i.e., partaking in the spontaneous
emission. V is the mode volume, and Av is the line width of the atomic transition responsible for
the laser gain. We can rewrite (8.3.7) as

Nspont o ( Ny > (ANt) (838)

second-mode  \ AN, tspontD
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where ANy is the population inversion (Ny — N7) at threshold.

tS on
AN, = Plspont (8.3.9)
te
where t. is the photon lifetime in the resonator, and obtain
Ni on N: N:
spont __ H uz( 2 ___(No): (8.3.10)
second-mode ¢, AN, (Ny — Nyp);

The number of spontaneous transitions into a single mode in a time 7 is thus

N(r) = ’z—T (8.3.11)

We recall here that in an ideal four-level laser Ny = 0 and AN; = Ny i.e. pu = 1 In a three-
level laser, on the other hand, mu. can be appreciably larger than unity. In a ruby laser at room
temperature, for example, p =~ 50. This reflects the fact that for a given gain the total excited
population Ns of a three-level laser must exceed that of a four-level laser by the factor f.L, since
gain is proportional to No — N; Equation(8.3.10) is also equivalent to stating that above threshold
there are p spontaneously emitted photons present in a laser mode.

Using (8.3.11) in (8.3.5), we obtain for the root-mean-square phase deviation after 7 seconds

AG(t) = ([AB(N)2)2 = ’/%% (8.3.12)

The maximum time t available for such an experiment is the integration time T of the measuring
apparatus so that
1 uT
AY(T) =) —— 8.3.13
@ =y/35 (:3.13)
The rms frequency excursion caused by A#f is

(Aw) rars = M:;T) AY(T) = ,/%’ZCT (8.3.14)

We can cast the last result in a more familiar form by using the relations
nhuw 1
n 0 B= —

te 2T

Here P, is the power emitted by the atoms (i.e., the sum of the useful power output plus any
power lost by scattering and absorption), and B is the bandwidth in hertz of the phase-measuring

apparatus. The result is
AJ(T) phwg
= = 3.1
(Aw)rums T AO(T) \/;gB (8.3.16)

From the experimental point of view (Aw)gras is the root-mean-square deviation of the reading
of an instrument whose output is the frequency w(t) = df/dt. We will leave it as an exercise for
the student to design an experiment that measures (Aw)rms-

Ring laser gyroscopes sense rotation by comparing the oscillation frequencies of two counter-
propagating modes in a rotating ring resonator. Their sensitivity, i.e., the smallest rotation rate
that they can sense, is thus limited by any uncertainty Aw in the laser frequency. Experiments
have indeed demonstrated a rotation measuring sensitivity approaching the quantum limit as given
by (8.3.16).

[At the end it is also should be mentioned that it is conventional to write (Aw)gras in form of

P, =

(8.3.15)

spectral density with the following definition:

_ Awhs phwo

S@) ==£ :( Pet2> (8.3.17)

4

In Figure 8.4 one can find the Typical spectral density of a diode laser }

4This part is added by authors
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Figure 8.4: Typical power spectral densities S, (f) and Sv(f) of a diode laser near 850 nm as
function of the Fourier frequency f according to with different regimes. A: 1/f fluctuations. B:
fluctuations of tbe carrier density. C: relaxation oscilations. D: fluctuation of the spontaneous
emission.

8.4 The random intensity noise °

Intensity Noise
Spontaneous emission causes laser radiation to have random fluctuations in power as well as
phase. Thus, the output power of a single-mode laser is described by

P(t) = P + AP(t) (8.4.1)

P, is the average output power and AP(t) is the fluctuation at time ¢ of the power from its
average value. As usual (X) denotes the average over the ensemble of all possible values of X. We
will assume that the “random process” AP(t) is stationary and ergodic, so that (AP(¢)AP(t+ 7))
is independent of ¢ and ensemble averages are equal to time averages .

A conventional measure of power fluctuations is the relative intensity noise (RIN)

RIN(w) = S;,g“) (8.4.2)

out

where the spectral power density S,(w) is defined in this context as the Fourier transform of the
autocorrelation function (AP(t)AP(t+ 7)):

Sp(w) = /OO (AP(t)AP(t +7))e”“Tdr (8.4.3)

—0o0

From the inverse Fourier transform of (8.4.4) we have®

1 o0 .
(AP()AP(t+ 1)) = —/ Sp(w)e™ ™ dw (8.4.4)
21 J_ o
and in particular the relative mean-square power fluctuation is
(AP?) _ ([P(t) — Pow]?) _ (AP(H)AP()) 1 =
Po2ut B Po2ut B P02ut B 27-‘-Pc?ut —00 Sp (W)dw
1 (oo}
= %/_OO RIN(w)dw (8.4.5)

from which we can define a laser signal-to-noise ratio:

P2 V2
SNRj = out  _ 8.4.6
V@R T RN (540

5Chapterl5 (Pages 771 - 772) - Laser Physics - Peter W. Milonni, Joseph H. Eberly - Hoboken, New Jersey :
John Wiley & Sons Ltd, 2010

6The fact that the spectral density and the autocorrelation function are Fourier transforms of each other is the
WienerKhintchine theorem.
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8.5 Laser gyroscope and the fundamental linewidth; sensi-
tivity estimate *

4_/‘? Folding mirrors
AN \
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Figure 8.5: Three types of Gyroscope.

The toy gyroscope sketched in Figure 8.6 demonstrates an important property of a mechanical
gyroscope: the axis about which the wheel spins maintains its direction when the frame of the
gyroscope is tilted. A gyroscope on a ship likewise maintains its orientation as the ship rolls in
rough water, and thereby provides information on the degree of roll. Gyroscopes are also used on
aircraft as compasses and in automatic pilot systems, in torpedoes for steering to the target, and
for the inertial guidance of missiles . In a sense the earth itself is a kind of gyroscnpe: its rotation
axis maintains its orientation as the earth orbits about the sun. It is this fixed orientation. of
course , that is responsible for changes of season.

In general we can define a gyroscope as a device capable of sensing angular velocity: indeed the
word gyroscope itself means “viewing rotation”. A gyroscope therefore need not have a spinning
wheel, nor need it be a purely mechanical instrument. In this section we will describe how a ring
laser may be used to sense angular velocity, or in other words how it may be used as a gyroscope.

spinnin:
v‘l)heelg R

Figure 8.6: A mechanical gyroscope. The axis about which the wheel spins stays fixed as the
frame of the gyroscope is rotated.

First let us consider a thought experiment in which we have somehow managed to get two
monochromatic waves propagating in a circular path of radius R, one propagating clockwise and
the other counterclockwise, as illustrated in Figure 8.7a. The time taken to complete the circular
path of circumference 27 R is
_27R

Cc

¢ (8.5.1)

This transit time is the same for the two counterpropagating waves.
Suppose. however. that the plane of the circular path is rotating with angular velocity 2, as in
Figure 8.7b. In this case a point A on the circle is moving with tangential velocity v = QR. The

"Chapter 16 (Page 589 - 594) - Lasers - Peter W. Milonni, Joseph H. Eberly - New York [etc.] : Wiley, cop.
1988
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light propagating in the same sense as the rotation takes a time ¢, to go from point A to point B
in Figure 8.7b, where

(a) (b)

Figure 8.7: (a) A thought experiment in which two waves propagate on a circular loop. one
clockwise and the other counterclockwise. (b) The case in which the plane or the circular loop is
rotating. In this case the two waves take different amounts of time to transverse the arc between
two points A and B.

2R

ty = T aRn (8.5.3)
The left side of (8.5.2) is the circumference of the circle plus the distance along the circle between
points A and B. Thus ¢, is greater than the transit time (8.5.1) when there is no rotation, because
during the transit time of the light the reference point A moves from A to B, and so the light must
travel the extra distance 2Rt to complete a round trip as reckoned by an observer at rest on the
circle. The light propagating in the sense opposite to the rotation, however. takes a shorter time,
t_ . to complete a fOund trip :

27R — (QR)t_ = ct_ (8.5.4)
or o
m
= (8.5.5)

According to an observer sitting at a point on the circle, therefore, the two waves have gone
different distances in making a round trip: their path difference is

1 1
AL=c(ty —t_) = 27TRC<C_QR - c+QR>

2QR
=2 e
4 R?%Q)
~ ”Ij (8.5.6)

where the approximation in the last step is based on the assumption that the tangential velocity
of a point on the circle is much less than the velocity of light (i.e. IR < ¢).
The path difference (8.5.6) corresponds to a phase difference

AL  812R*Q)
Ag=2m— =
8T AQ
= e (8.5.7)

where A = mR? is the area enclosed by the circular loop. Actually (8.5.7) is the correct result (to
first order in v/c) for a closed loop of any shape. For instance, it applies to the three-mirror ring
arrangement shown in Figure 8.8. And so we can forget the artificial constraints of our thought
experiment with a circular loop and consider such a triangular ring. for example. By measuring
interferometrically the phase difference A¢, between two counterpropagating light beams at a fixed
point on the ring, we can measure the angular velocity . In other words, we can make an optical
gyroscope.
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7 X

Figure 8.8: A threemirror ring forming a closed loop for the propagation of light. Equation (8.5.7)
applies to any such closed loop. whether it is a circle. triangle, square, etc.

7 5

gain cell

Figure 8.9: A three-mirror ring laser that can be used as an optical gyroscope.

The ability to sense rotation in this way is called the Sagnac effect, after George Sagnac, who
in 1913 first demonstrated it using a rapidly rotating table. The main difficulty in using a “Sagnac
interferometer” as a gyroscope is that the phase shift A¢, is typically very small, because the path
difference AL of the counterpropagating waves is small compared with the wavelength A. After
Sagnac’s demonstration Michelson used about 5 miles of (evacuated) sewer pipes to construct a
Sagnac interferometer for detecting the earth’s rotation. Without large loop areas (A) or large
angular velocities (£2), the phase shift (8.5.7) is too small to be measured accurately.

Suppose we put a gain cell inside the three-mirror resonator of Figure 8.8 to make a ring laser
(Figure ?77?). In this case the two counterpropagating beams required for the Sagnac interferom-
eter are generated by laser action inside the gain cell. Like the ordinary two-mirror, linear laser
resonator, the ring resonator must satisfy the condition that the total round-trip distance L must
be equal to an integral number m of wavelengths, or in other words

v=mc/L (8.5.8)
In particular, a small change AL in L results in a change Av in v given by

vAL  cAL

Av=—-=77

(8.5.9)

Unlike a linear laser resonator, however, the two counterpropagating waves in a ring laser need not
have the same frequency. In fact, if the ring is rotating about an axis perpendicular to its plane,
the two waves “see” different round-trip distances Ly = ¢ty and L_ = ct_ , and they will have a
frequency difference (8.5.9) with AL given by (8.5.6). That is, the two counterpropagating waves
in a rotating ring laser have the frequency difference

c A
_ ¢ 81 A
T onL Ac

_4AQ
AL

(8.5.10)

where (Q is the angular velocity of rotation and A is the area enclosed by the ring of perimeter L.

8See Dana Z. Anderson. ”Optical Gyroscopes.” Scientific American 254. April 1986. p. 94.
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e )
Example: Frequency shift for a an optical gyroscope in earth rotation.

Let us consider a numerical example. For a ring resonator of the type shown in Figure 8.8
with side d = 10 cm, we have A = /3d?/4 ~ 43.3 cm? by simple geometry. If the angular
velocity Q = 15 deg/hr = 7.3 x 107° rad/sec. the rotation rate of the Earth, then (8.5.7) gives

A¢p =42 x107° rad (8.5.11)

for the He-Ne laser wavelength A\ = 6328A. This corresponds to a ratio AL/A = A¢/21 =
6.7x 1079, and so for this loop area and rotation rate the measurement of A¢, is a formidable
task indeed. From (8.5.10) for the ring laser gyro, on the other hand, we compute for the
same parameters

Av =20 Hz (8.5.12)

which is readily measured by optical heterodyning. even though it represents a tiny fraction
( ~ 4 x 10~14) of the optical frequency v.

J

A great advantage of laser gyroscopes, as compared with conventional spinning- mass gyros,
is that they have no moving parts to produce mechanical stress and wear. They can furthermore
be operated. in the “strapped-down mode” in which they are rigidly fixed to a vehicle without
any gimbals. Laser-gyro construction is relatively simple and inexpensive. Typically the ring
resonator and a He-Ne gain tube are enclosed in a single drilled-out quartz block small enough to
be held in one’s hand. Attached to the block is the “readout” apparatus, which uses a partially
transmitting mirror to combine parts of the two counterpropagating beams and measure their
frequency difference interferometrically. For navigational purposes the measured rotation rate is
integrated to give the total angle of rotation over a given time.

A problem with laser gyroscopes is called lock-in. It occurs at low rotation rates, and causes
low beat frequencies to tend to lock together at a single intermediate frequency. (This locking
phenomenon often arises in coupled oscillatory systems.) Lock-in obviously destroys the ability to
measure small rotation rates. One technique used to alleviate the lock-in problem is to “dither”
the gyro, i.e., to rotate it back and forth rapidly enough that lock-in cannot occur. On average
the back and forth motions cancel, and what is left after a number of dithering periods is just the
rotation rate one wants to measure.

Laser gyroscopes are now used on commercial airliners, and several nations are using them in
military vehicles. Another type of optical rotation sensor that uses the same principles of operation
is based on an optical fiber loop instead of a ring laser to form a Sagnac interferometer.
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