
Chapter 8

Schawlow Townes limit and
Spectral densities

8.1 The optical spectrum analyzer 1

The most common OSAs for fiber optic applications use diffraction gratings as the basis for a tun-
able optical filter. Figure 8.1 shows what a diffraction-grafting-based OSA might look like. In the
monochromator, a diffraction grating (a minor with finely spaced corrugated lines on the surface)
separates the different wavelengths of light. The diffracted light comes off at an angle proportional
to wavelength. The result is similar to the rain bow produced by visible light passing through
a prism. In the infrared, prisms do not work very well because the dispersion (in other words,
change of refractive index versus wavelength) of glass in the Ito 2 µm wavelength range is small.
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Figure 3.4 Michelson-interferome-
ter-based OSA. 

3.2.3 Interferometer-Based Optical Spectrum Analyzers 
Another type of spectrum analyzer is based on the Michelson interferometer as shown in 
Figure 3.4. The input signal is split into two paths. One path is fixed in length and one is 
variable. The Michelson interferometer creates an interference pattern between the signal 
and a delayed version of itself at the detector. The resulting waveform is the autocorrela-
tion function of the input signal and is often referred to as an interferogram. Michelson-

spectrum analyzers make direct measurements of coherence length. 
Other types of OS As cannot make direct coherence-length measurements. If the period of 
the zero crossings in the interferogram are accurately measured by comparison to a wave-
length standard. the wavelength of the unknown signal can be determined with high accu-
racy. It is the potential for high wavelength accuracy that distinguishes this instrument. A 
state of the art wavelength meter can measure wavelength to less than I part per million. 
A 1550 nm laser could be measured to ±O.OO15 nm. 

The Michelson interferometer can also provide displays of power versus wave-
length. To determine the power spectra of the input signal. a Fourier transform is per-
formed on the interferogram. The resolution of the instrument is determined by the path-
length delay that is used to create the interferogram. Because this instrument does not 
depend on a tunable bandpass filter for wavelength identification. Michelson-interferometer-
based designs cannot be used in applications where a true bandpass filter is required. This 
type of analyzer also tends to have less dynamic range than diffraction-grating-based 
OS As due to the shot noise that is always present in the optical receiver for large input 
signals. Chapter 4 discusses instruments based on the Michelson-interferometer in more 
detail. 

3.2.4 Dlffractlon-Gratlng-Based Optical Spectrum Analyzers 

The most common OS As for fiber optic applications use diffraction gratings as the basis 
for a tunable optical filter. Figure 3.5 shows what a diffraction-grafting-based OSA might 
look like. In the monochromator. a diffraction grating (a mirror with finely spaced corru-
gated lines on the surface) separates the different wavelengths of light. The diffracted 
light comes off at an angle proportional to wavelength. The result is similar to the rain-
bow produced by visible .light passing through a prism. In the infrared. prisms do not 
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Figure 3.5 Concept of diffraction-grating-based OSA. 
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work very well because the dispersion (in other words. change of refractive index versus 
wavelength) of glass in the I to 2 11m wavelength range is small. Diffraction gratings are 
used instead. They provide a greater separation of wavelengths allowing for better wave-
length resolution. A diffraction grating is made up of an array of equidistant parallel slits 
(in the case of a transmissive grating) or reflectors (in the case of a reflective grating). The 
spacing of the slits or reflectors is on the order of the wavelength of the light for which the 
grating is intended to be used. The grating separates the different wavelengths of light be-
cause the grating lines cause the reflected rays to undergo constructive interference only 
in very specific directions. Only the wavelength that passes through the aperture reaches 
the photodetector to be measured. The angle of the grating determines the wavelength to 
which the OSA is tuned. The size of the input and output apertures together with the size 
of the beam on the diffraction grating determines the spectral width of the optical filter. 

3.3 ANATOMY OF A DIFFRACTION-GRATING-BASED OPTICAL 
SPECTRUM ANALYZER 

In this section. the optical portion of a grating-based OSA will be dissected and an intro-
duction to the function of each of the components will be given. This section will be use-
ful to the reader unfamiliar with the internal workings of monochromators and spectrome-
ters and the terms describing each of the components involved. Section 3.4 will describe 
some of the parameters that are important in a spectral measurement and relate them back 
to the workings of the monochromator. 

3.3.1 Basic OSA Block DIagram 

Figure 3.6 shows the various optical components in a basic OSA.I Here one can see that 
an OSA contains (in the order of the light propagating through the system) an entrance (or 
input) slit. collimating optics. a diffraction grating. optics. an exit (or output) slit. 

Figure 8.1: Concept of diffraction-gratIng-based OSA.

Diffraction gratings are used instead. They provide a greater separation of wavelengths allowing
for better wave length resolution. A diffraction grating is made up of an array of equidistant par-
allel slits (in the case of a transmissive grating) or reflectors (in the case of a reflective grating).
The spacing of the slits or reflectors is on the order of the wavelength of the light for which the
grating is intended to be used. The grating separates the different wavelengths of light because
the grating lines cause the reflected rays to undergo constructive interference only in very specific
directions, Only the wavelength that passes through the aperture reaches the photodetector to be
measured. The angle of the grating determines the wavelength to which the OSA is tuned. The
size of the input and output apertures together with the size of the beam on the diffraction grating
determines the spectral width of the optical filter.

1Chapter 3 (Page 90 - 91) - Fiber optic test and measurement - Derickson, Dennis- New Jersey : Prentice Hall,
1998
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102 CHAPTER 8. SCHAWLOW TOWNES LIMIT AND SPECTRAL DENSITIES

8.2 Spontaneous emission noise and mode density 2

Optical resonators, like their low-frequency, radio-frequency, and microwave counterparts, are used
primarily in order to build up large field intensities with moderate power inputs. They consist
in most cases of two, or more, curved mirrors that serve to “trap,” by repeated reflections and
refocusing, an optical beam that thus becomes the mode of the resonator. A universal measure of
this property is the quality factor Q of the resonator. Q is defined by the relation

Q = ω × field energy stored by resonator

power dissipated by resonator
(8.2.1)

As an example, consider the case of a simple resonator formed by bouncing a plane TEM wave
between two perfectly conducting planes of separation l so that the field inside is

e(z, t) = E sinωt sin kz (8.2.2)

And the average electric energy stored in the resonator is

Eelectric =
Aε

2T

∫ l

0

∫ T

0

e(z, t)dzdt (8.2.3)

where A is the cross-sectional area, e is the dielectric constant, and T = 2π/ω is the period. Using
(8.2.2) we obtain

Eelectric =
1

8
εE2V (8.2.4)

where V = IA is the resonator volume. Since the average magnetic energy stored in a resonator is
equal to the electric energy, the total stored energy is

E =
1

4
εE2V (8.2.5)

Thus, recognizing that in steady state the input power is equal to the dissipated power, and
designating the power input to the resonator by P , we obtain from (8.2.1)

Q =
ωεE2V

4P
(8.2.6)

The peak field is given by

E =

√
4QP

ωεV
(8.2.7)

Mode Density in Optical Resonators
The main challenge in the optical frequency regime is to build resonators that possess a very

small number, ideally only one, high Q modes in a given spectral region. The reason is that for a
resonator to fulfill this condition, its dimensions need to be of the order of the wavelength.

Mode control in the optical regime would thus seem to require that we construct resonators
with volume ∼ λ3(∼ 10−12 cm3 at λ = 1µm) . This is not easily achievable. An alternative is to
build large (L � λ) resonators but to use a geometry that endows only a small fraction of these
modes with low losses (a high Q). In our two-mirror example, any mode that does not travel
normally to the mirror will “walk off” after a few bounces and thus will possess a low Q factor.
We will show later ’that when the resonator contains an amplifying (inverted population) medium,
oscillation will occur preferentially at high Q modes, so that the strategy of modal discrimination
by controlling Q is sensible. We shall also find that further modal discrimination is due to the fact
that the atomic medium is capable of amplifying radiation only within a limited frequency region
so that modes outside this region, even if possessing high Q, do not oscillate.

One question asked often is the following: Given a large (L� λ) optical resonator, how many
of its modes will have their resonant frequencies in a given frequency interval, say, between ν and
ν + ∆ν? To answer this problem, consider a large, perfectly reflecting box resonator with sides,

2Chapter 4 (Page 121 - 125) - Optical Electronics in Modern Communications- Fifth Edition - Amnon Yariv -
Oxford University Press, 1997



8.2. SPONTANEOUS EMISSION NOISE AND MODE DENSITY 103

a, b, c along the x, y, z directions. Without going into modal details, it is sufficient for our purpose
to take the amplitude field solution in the form

E(x, y, z) ∝ sin kxx sin kyy sin kzz (8.2.8)

(Resonators of different shapes will differ in detail, but for large, L � λ, resonators, the results
are similar.)

k2
x + k2

y + k2
z =

(
ω

c
n

)2

(8.2.9)

For the field to vanish at the boundaries, we thus need to satisfy

kx =
rπ

a
, ky =

sπ

b
, kz =

tπ

c
r, s, t any integers (8.2.10)

With each such mode, we may thus associate a propagation vector k = x̂kx + ŷky + ẑkz. The
triplet r, s, t defines a mode. Since replacing any integer with its negative does not, according to
Equation (8.2.8), generate an independent mode, we will restrict, without loss of generality, r, s, t
to positive integers. It is convenient to describe the modal distribution in k space, as in Figure
8.2. Since each (positive) triplet r, s, t generates an independent mode, we can associate with each
mode an elemental volume in k space.

Vmode =
π3

abc
=
π3

V
(8.2.11)

where V is the physical volume of the resonator. We recall that the length of the vector k satisfies
Equation (8.2.10), rewritten here as

k(r, s, t) =
2πν(r, s, t)

c
n (8.2.12)

124 OPTICAL RESONATORS 

(r-1 ,s+ 1 ,t+ 1) .-----::::>"P 

Figure 4-1 k space description of modes. Every positive triplet of integers r,s,t defines a 
unique mode. We can thus associate a primitive volume 'f'i31abc ink space with each mode. 

To find the total number of modes with k values between 0 and k, we divide 
the corresponding volume in k space by the volume per mode: m k'V 

N(k) = 7T3 67T2 

v 
(The factor 1/8 is due to the restriction of r,s,t > 0.) 

We next use (4.0-10) to obtain the number of modes with resonant frequencies 
between 0 and v: 

The mode density, that is, the number of modes per unit v near v in a resonator 
with volume A 3), is thus 

dN( v) 81rvn3V 
p(v) = _d_v_ = -c-:-3- (4.0-11) 

where we multiplied the final result by 2 to account for the two independent or-
thogonally polarized modes that are associated with each r,s,t triplet. 

The number of modes that fall within the interval dv centered on v is thus 

81rn3vV d N= v c3 (4.0-12) 

where Vis the volume of the resonator. For the case of V = 1 cm3, v = 3 X 1014 

Hz and dv = 3 X 1010
, as an example, (4.0-12) yields N-- 2 X 109 modes. If the 

resonator were closed, all these modes would have similar values of Q. This situation 
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is to be avoided in the case of lasers, since it will cause the atoms to emit power 
(thus causing oscillation) into a large number of modes, which may differ in their 
frequencies as well as in their spatial characteristics . 

This objection is overcome to a large extent by the use of open.resonators, which 
consist essentially of a pair of opposing flat or curved reflectors. In such resonators 
the energy of the vast majority of the modes does not travel at right arigles to the 
mirrors and will thus be lost in essentially a single traversal. These modes will 
consequently possess a very low Q. If the mirrors are curved, the few surviving 
modes will, as shown below, have their energy localized near the axis; thus the 
diffraction losses caused by the open sides can be made small compared with other 
loss mechanisms such as mirror transmission. (This point is considered in detail in 
Section 4.9. The subject of losses is also considered in Section 4.7.) 

4.1 FABRY-PEROT ETALON 

The Fabry-Perot etalon, or interferometer, named after its inventors [3], can be 
considered as the archetype of the optical resonator. It consists of a plane-parallel 
plate of thickness l and index n that is immersed in a medium of index n 1 •

1 Let a 
plane wave be incident on the etalon at an angle 8 1 to the normal, as shown in Figure 
4-2(a). We can treat the problem of the transmission (and reflection) of the plane 
wave through the etalon by considering the infinite number of partial waves produced 
by reflections at the two end surfaces. The phase delay between two partial waves-
which is attributable to one additional round trip-is given, according to Figure 
4-2(a), by 

5 
= 47Tnl cos () 

A 
(4.1-1) 

where A is the vacuum wavelength of the incident wave and () is the internal angle 
of incidence. If the complex amplitude of the incident wave is taken as A;, then the 
partial reflections, B 1, B 2, and so forth, are given by 

where r is the reflection coefficient (ratio of reflected to incident amplitude), t is the 
transmission coefficient for waves incident from n 1 toward n, and r 1 and t 1 are the 
corresponding quantities for waves traveling from n toward n 1 • The complex am-
plitude of the (total) reflected wave is Ar = B 1 + B 2 + B 3 + ···,or 

Ar = {r + ttlrleiB(l + rl2eiB + rl4e2i8 + .. ·)} Ai 

For the transmitted wave, 

(4.1-2) 

1 In practice, one often uses etalons made by spacing two partially reflecting mirrors a distance l apart so 
that n = n' = 1. Another common form of etalon is produced by grinding two plane-parallel (or curved) 
faces on a transparent solid and then evaporating a metallic or dielectric layer (or layers) on the surfaces. 

Figure 8.2: k space description of modes. Every positive triplet of integers r, s, t defines a unique
mode. We can thus associate a primitive volume π3/abc in k space with each mode.

To find the total number of modes with k values between 0 and k, we divide the corresponding
volume in k space by the volume per mode:

N(k) =

(
1
8

)
4π
3 k

3

π3

V

=
k3V

6π2
(8.2.13)

(The factor 1/8 is due to the restriction of r, s, t > 0.) We next use (8.2.12) to obtain the number
of modes with resonant frequencies between 0 and ν:

N(ν) =
4πν3n3V

3c3
(8.2.14)
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The mode density, that is, the number of modes per unit ν near ν in a resonator with volume
V (� λ3), is thus

p(ν) =
dN(ν)

dν
=

8πν2n3V

c3
(8.2.15)

where we multiplied the final result by 2 to account for the two independent orthogonally polarized
modes that are associated with each r, s, t triplet.

The number of modes that fall within the interval dν centered on ν is thus

N ' 8πν2n3V

c3
dν (8.2.16)

where V is the volume of the resonator.

Example: Number of modes in a typical laser resonator

For the case of V = 1 cm3, ν = 3× 1014 Hz and dν = 3× 1010, as an example, (8.2.16) yields
N ∼ 2 × 109 modes. If the resonator were closed, all these modes would have similar values
of Q. This situation is to be avoided in the case of lasers, since it will cause the atoms to
emit power (thus causing oscillation) into a large number of modes, which may differ in their
frequencies as well as in their spatial characteristics .

This objection is overcome to a large extent by the use of open.resonators, which consist
essentially of a pair of opposing flat or curved reflectors. In such resonators the energy of the
vast majority of the modes does not travel at right angles to the mirrors and will thus be lost in
essentially a single traversal. These modes will consequently possess a very low Q. If the mirrors
are curved, the few surviving modes will, as shown below, have their energy localized near the axis;
thus the diffraction losses caused by the open sides can be made small compared with other loss
mechanisms such as mirror transmission.

8.3 Fundamental laser linewidth 3

The Phase Noise
An ideal monochromatic radiation field can be written as

E(t) = Re[E0e
i(ω0t+θ)] (8.3.1)

where ω0 the radian frequency, E0 the field amplitude, and θ are constants. A real field including
that of lasers undergoes random phase and amplitude fluctuations that can be represented by
writing

E(t) = Re[E(t)ei(ω0t+θ(t))] (8.3.2)

where E(t) and θ(t) vary only “slightly” during one optical period.
There are many reasons in a practical laser for the random fluctuation in amplitude and phase.

Most of these can be reduced, in theory, to inconsequence by various improvements such as ultra-
stabilization of the laser cavity length and the near elimination of microphonic and temperature
variations. There remains, however, a basic source of noise that is quantum mechanical in origin.
This is due to spontaneous emission that continually causes new power to be added to the laser
oscillation field. The electromagnetic field represented by this new power, not being coherent with
the old field, causes phase, as well as amplitude, fluctuations. These are responsible ultimately for
the deviation of the evolution of the laser field from that of an ideal monochromatic field, i.e., for
the quantum mechanical noise.

Let us consider the effect of one spontaneous emission event on the electromagnetic field of
a single oscillating laser mode. A field such as (8.3.1) can be represented by a phasor of length

3Chapter 10 (Page 393 - 396) - Optical Electronics in Modern Communications- Fifth Edition - Amnon Yariv -
Oxford University Press, 1997



8.3. FUNDAMENTAL LASER LINEWIDTH 105

E0 rotating with an angular (radian) rate ω0 In a frame rotating at ω0 we would see a constant
vector E0. Since E2

0 ∝ n̄, the average number of quanta in the mode, we shall represent the
laser field phasor before a spontaneous emission event by a phasor of length

√
n as in Figure 8.3.

The spontaneous emission adds one photon to the field, and this is represented, according to our
conversion, by an incremental vector of unity length. Since this field increment is not correlated
in phase with the original field, the angle φ is a random variable . (i.e., it is distributed uniformly
between zero and 2π). The resulting change ∆θ of the field phase can be approximated for n̄� 1
by

∆θone emission =
1√
n̄

cosφ (8.3.3)

Next consider the effect of N spontaneous emissions on the phase of the laser field. The problem
is one of random walk, since φ may assume with equal probability any value between 0 and 2π.
We can then write

〈[∆θ(N)]2〉 = 〈(∆θone emission)2〉N (8.3.4)

and from (8.3.3)

〈[∆θ(N)]2〉 =
1

n̄
〈cos2 φ〉N (8.3.5)

where 〈〉 denotes an ensemble average taken over a very large number of individual emission events.
Equation (8.3.4) is a statement of the fact that in a random walk problem the mean squared

distance traversed after N steps is the square of the size of one step times N . The mean deviation
〈∆θ(N)〉 after N spontaneous emissions is, of course, zero. Any one experiment, however, will
yield a nonzero result. The mean squared deviation is thus nonzero and is a measure of the phase
fluctuation. To obtain the root-mean-square (rms) phase deviation in a time t, we need to calculate
the average number of spontaneous emission events N(t) into a single laser mode in a time t.

394 NOISE IN OPTICAL DETECTION AND GENERATION 

There are many reasons in a practical laser for the random fluctuation in am-
plitude and phase. Most of these can be reduced, in theory, to inconsequence by 
various improvements such as ultrastabilization of the laser cavity length and the 
near elimination of microphonic and temperature variations. There remains, how-
ever, a basic source of noise that is quantum mechanical in origin. This is due to 
spontaneous emission that continually causes new power to be added to the laser 
oscillation field. The electromagnetic field represented by this new power, not being 
coherent with the old field, causes phase, as well as amplitude, fluctuations. These 
are responsible ultimately for the deviation of the evolution of the laser field from 
that of an ideal monochromatic field, i.e., for the quantum mechanical noise. 

Let us consider the effect of one spontaneous emission event on the electro-
magnetic field of a single oscillating laser mode. A field such as (10.7-1) can be 
represented by a phasor of length E0 rotating with an angular (radian) rate w0 • In a 
frame rotating at w0 we would see a constant vector E0 • Since ex: n, the average 
number of quanta in the mode, we shall represent the laser field phasor before a 
spontaneous emission event by a phasor of length Vn as in Figure 10-11. The 
spontaneous emission adds one photon to the field, and this is represented, according 
to our conversion, by an incremental vector of unity length. Since this field increment 
is not correlated in phase with the original field, the angle 4> is a random variable . 
(i.e., it is distributed uniformly between zero and 2?T). The resulting change AO of 
the field phase can be approximated for n 1 by 

1 
A (j one emission = Vn COS l/> (1 0.7-3) 

Next consider the effect of N spontaneous emissions on the phase of the laser field. 
The problem is one of random walk, since 4> may assume with equal probability any 
value between 0 and 2?T. We can then write 

([A(J(N)f) = ((A(Jone emissionf) N (10.7-4) 

and from (10.7-3) 

1 
([AO(N)f) = = (cos2 4>) N 

n 

where ( ) denotes an ensemble average taken over a very large number of individual 
emission events. 

Equation (10.7-4) is a statement of the fact that in a random walk problem the 
mean squared distance traversed after N steps is the square of the size of one step 
times N. The mean deviation (A O(N)) after N spontaneous emissions is, of course, 
zero. Any one experiment, however, will yield a nonzero result. The mean squared 
deviation is thus nonzero and is a measure of the phase fluctuation. To obtain the 
root-mean-square (rms) phase deviation in a timet, we need to calculate the average 
number of spontaneous emission events N(t) into a single laser mode in a time t. 

The total number of spontaneous transitions per second into all modes is 
Nit spont• where N 2 is the total number of atoms in the upper laser level 2 and t spont 

Imaginary 
part of field 
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Real part 
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Figure 1 0-11 The phasor model for the effect of a single spontaneous emission event on the 
laser field phase. 

is the lifetime of an atom in 2. The total number of transitions per 
second mto one mode is thus 

Nspont = 
second-mode t spontP ( 10. 7-5) 

where 

( 10. 7-6) 

is the number o.f with the laser transition, i.e., partaking in the 
V 1s the mode volume, and A v is the line width of the atomic 

transition responsible for the laser gain. We can rewrite (10.7-5) as 

Nspont _ ( N2) (ANr) 
second-mode - il.Nr spont (10.7-7) 

where il.Nt is the population inversion (N 2 - N 1) at threshold. Next we use the result 
(6.1-11) 

Jl.N = ptspont 
t 

tc 
where tc is the photon lifetime in the resonator, and obtain 

Nspont 
second-mode tc (10.7-8) 

The number of spontaneous transitions into a single mode in a time r is thus 

JLT N(r) =-
tc (10.7-9) 

We recall here that in an ideal four-level laser N = o and fl.N = N · = 1 I thr 1 I r 2• I.e., JL • 
n a ee- evellaser, on the other hand, p. can be appreciably larger than unity. In 

a ruby laser at room temperature, for example (see Section 7.2), p. = 50. This reflects 

Figure 8.3: The phasor model for the effect of a single spontaneous emission event on the laser
field phase.

The total number of spontaneous transitions per second into all modes is N2/tspont, where N2

is the total number of atoms in the upper laser level 2 and tspont is the spontaneous lifetime of an
atom in 2. The total number of transitions per second into one mode is thus

Nspont

second-mode
=

N2

tspontp
(8.3.6)

where

p =
8πν2

0∆νV n3

c3
(8.3.7)

is the number of modes interacting with the laser transition, i.e., partaking in the spontaneous
emission. V is the mode volume, and ∆ν is the line width of the atomic transition responsible for
the laser gain. We can rewrite (8.3.7) as

Nspont

second-mode
=

(
N2

∆Nt

)
(∆Nt)

tspontp
(8.3.8)
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where ∆Nt is the population inversion (N2 −N1) at threshold.

∆Nt =
ptspont

tc
(8.3.9)

where tc is the photon lifetime in the resonator, and obtain

Nspont

second-mode
=
µ

tc
µ ≡ (N2)t

∆Nt
=

(N2)t
(N2 −N1)t

(8.3.10)

The number of spontaneous transitions into a single mode in a time τ is thus

N(τ) =
µτ

tc
(8.3.11)

We recall here that in an ideal four-level laser N1 = 0 and ∆Nt = N2 i.e. µ = 1 In a three-
level laser, on the other hand, mu. can be appreciably larger than unity. In a ruby laser at room
temperature, for example, µ ≈ 50. This reflects the fact that for a given gain the total excited
population N2 of a three-level laser must exceed that of a four-level laser by the factor f.L, since
gain is proportional to N2−N1 Equation(8.3.10) is also equivalent to stating that above threshold
there are µ spontaneously emitted photons present in a laser mode.

Using (8.3.11) in (8.3.5), we obtain for the root-mean-square phase deviation after τ seconds

∆θ(t) ≡ 〈[∆θ(N)]2〉1/2 =

√
1

2n̄

µt

tc
(8.3.12)

The maximum time t available for such an experiment is the integration time T of the measuring
apparatus so that

∆θ(T ) =

√
1

2n̄

µT

tc
(8.3.13)

The rms frequency excursion caused by ∆θ is

(∆ω)RMS =
∆θ(T )

T
∆θ(T ) =

√
µ

2n̄tcT
(8.3.14)

We can cast the last result in a more familiar form by using the relations

Pe =
n̄~ω0

tc
B =

1

2T
(8.3.15)

Here Pe is the power emitted by the atoms (i.e., the sum of the useful power output plus any
power lost by scattering and absorption), and B is the bandwidth in hertz of the phase-measuring
apparatus. The result is

(∆ω)RMS =
∆θ(T )

T
∆θ(T ) =

√
µ~ω0

Pet2c
B (8.3.16)

From the experimental point of view (∆ω)RMS is the root-mean-square deviation of the reading
of an instrument whose output is the frequency ω(t) = dθ/dt. We will leave it as an exercise for
the student to design an experiment that measures (∆ω)RMS.

Ring laser gyroscopes sense rotation by comparing the oscillation frequencies of two counter-
propagating modes in a rotating ring resonator. Their sensitivity, i.e., the smallest rotation rate
that they can sense, is thus limited by any uncertainty ∆ω in the laser frequency. Experiments
have indeed demonstrated a rotation measuring sensitivity approaching the quantum limit as given
by (8.3.16).[
At the end it is also should be mentioned that it is conventional to write (∆ω)RMS in form of

spectral density with the following definition:

S(Ω) ≡ ∆ω2
RMS

B
=

(
µ~ω0

Pet2c

)
(8.3.17)

In Figure 8.4 one can find the Typical spectral density of a diode laser
]

4

4This part is added by authors
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Figure 8.4: Typical power spectral densities Sy(f) and Sν(f) of a diode laser near 850 nm as
function of the Fourier frequency f according to with different regimes. A: 1/f fluctuations. B:
fluctuations of tbe carrier density. C: relaxation oscilations. D: fluctuation of the spontaneous
emission.

8.4 The random intensity noise 5

Intensity Noise
Spontaneous emission causes laser radiation to have random fluctuations in power as well as

phase. Thus, the output power of a single-mode laser is described by

P (t) = Pout + ∆P (t) (8.4.1)

Pout is the average output power and ∆P (t) is the fluctuation at time t of the power from its
average value. As usual 〈X〉 denotes the average over the ensemble of all possible values of X. We
will assume that the “random process” ∆P (t) is stationary and ergodic, so that 〈∆P (t)∆P (t+ τ)〉
is independent of t and ensemble averages are equal to time averages .

A conventional measure of power fluctuations is the relative intensity noise (RIN)

RIN(ω) =
Sp(ω)

P 2
out

(8.4.2)

where the spectral power density Sp(ω) is defined in this context as the Fourier transform of the
autocorrelation function 〈∆P (t)∆P (t+ τ)〉:

Sp(ω) =

∫ ∞

−∞
〈∆P (t)∆P (t+ τ)〉e−iωτdτ (8.4.3)

From the inverse Fourier transform of (8.4.4) we have6

〈∆P (t)∆P (t+ τ)〉 =
1

2π

∫ ∞

−∞
Sp(ω)eiωτdω (8.4.4)

and in particular the relative mean-square power fluctuation is

〈∆P 2〉
P 2
out

=
〈[P (t)− Pout]

2〉
P 2

out

=
〈∆P (t)∆P (t)〉

P 2
out

=
1

2πP 2
out

∫ ∞

−∞
Sp(ω)dω

=
1

2π

∫ ∞

−∞
RIN(ω)dω (8.4.5)

from which we can define a laser signal-to-noise ratio:

SNRL =

√
P 2

out

〈∆P 2〉 =

√
2π√∫∞

−∞RIN(ω)dω
(8.4.6)

5Chapter15 (Pages 771 - 772) - Laser Physics - Peter W. Milonni, Joseph H. Eberly - Hoboken, New Jersey :
John Wiley & Sons Ltd, 2010

6The fact that the spectral density and the autocorrelation function are Fourier transforms of each other is the
WienerKhintchine theorem.
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8.5 Laser gyroscope and the fundamental linewidth; sensi-
tivity estimate 7

Figure 8.5: Three types of Gyroscope.

The toy gyroscope sketched in Figure 8.6 demonstrates an important property of a mechanical
gyroscope: the axis about which the wheel spins maintains its direction when the frame of the
gyroscope is tilted. A gyroscope on a ship likewise maintains its orientation as the ship rolls in
rough water, and thereby provides information on the degree of roll. Gyroscopes are also used on
aircraft as compasses and in automatic pilot systems, in torpedoes for steering to the target, and
for the inertial guidance of missiles . In a sense the earth itself is a kind of gyroscnpe: its rotation
axis maintains its orientation as the earth orbits about the sun. It is this fixed orientation. of
course , that is responsible for changes of season.

In general we can define a gyroscope as a device capable of sensing angular velocity: indeed the
word gyroscope itself means “viewing rotation”. A gyroscope therefore need not have a spinning
wheel, nor need it be a purely mechanical instrument. In this section we will describe how a ring
laser may be used to sense angular velocity, or in other words how it may be used as a gyroscope.

588 SOME LASER APPLICATIONS 

echo technique. Interferometric methods are essentially just variations of the Mich-
elson interferometer discussed in Section 15.10. Equations (\5.10.8) show that if 
the arm separation of the interferometer is changed by "1>./2. the interference max-
ima and minima are interchanged. Thus the magnitude of this change in the arm 
separation can be determined in terms of the wavelength "I>. by counting the number 
of. fringe shifts in the interference pattern as the change occurs. The advantage of 
usmg laser radiation lies in the fact that much greater coherence lengths are attain-
able than in the case of ordinary sources. Thus much greater arm separdtions can 
be used before the interference fringes get smeared out, and so much larger dis-
tances can be measured. Relative accuracies of 10- 6 are readily achieved and 

of distance measurement are used routinely in length cal-
IbratIOns and machmmg applications. In practice such methods are limited to 
lengths less than about 100 m because of density fluctuations (and consequent 
refractive-index fluctuations) in the atmosphere. 

Lasers may .be used. to measure velocities by taking advantage of the Doppler 
effect. The baSIC Idea IS the same as that used in radar-equipped police cars. If a 
laser beam :requency v is directed at a moving target as in Figure 16.3, the 
reflected radiatIOn has a Doppler-shifted frequency (Section 3.11) 

(16.2.1 ) 

The Doppler shift vv / c can be detected by optical heterodyning: two signals, 
G I cos WI t and G2 cos W2 t, for instance, are combined at a square-law detector 

. (one sensitive to total light intensity) to produce an intensity 

1= EOC (GI cos WI t + G2 cos w,t)2 

= EoC (G; cos' Wit + cos2 w2t + 2GIG, cos Wit cos W2t) 

= Eo C [! f, (I + cos 2w It) + ! G (I + cos 2W2 t ) 

+ GIG2 cos (WI + + GIG2 cos (WI - ( 16.2.2) 

The oscillations at frequencies 2WI' 2W2' and WI + W2 arc too rapid to be followed 

velocity v 

v' v(I-*) 

Figure 11i.3 The wave reflected from a moving object undergoes a Doppler shift in fre· 
quency. 
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by available detectors . The frequency 1 WI - w21. however. is typically in the 
range of tens of megahertz in velocity measurements. and such oscillations are 
slow enough to be registered. The detector will thus record the intensity 

(16.2.3 ) 

In a velocity measurement the frequency difference is the Doppler shift: 

(16.2.4) 

By measuring the beat frequency between the emitted and reflected laser beams, 
therefore, we can determine the velocity of the moving target. 

An important advantage of lasers over conventional light sources for such ve-
locity measurements is the nearly monochromatic character of laser radiation-
bandwidths in perhaps the megahertz range, as opposed to the gigahertz band-
widths typical of nonlaser sources. For accurate heterodyne detection of a Doppler 
shift 1 v' - vi, the radiation should have a bandwidth smaller than 1 v' - v I· This 
limits conventional light sources to the measurement of velocities greater than 
about 600 m/sec ('" 1400 mph) (Problem 16.2). With frequency-stabilized lasers, 
on the other hand, velocities as small as 10 - 3 cm/sec can be measured. Laser 
velocimeters have many applications, such as the measurement of fluid flow rates, 
the speed of aluminum extrusions, and the velocity of aircraft with respect to 
ground. 

16.3 THE LASER GYROSCOPE 

The toy gyroscope sketched in Figure 16.4 demonstrates an important property of 
a mechanical gyroscope: the axis about which the wheel spins maintains its direc-

Figure 16.4 A mechanical gyroscope. The axis about 
which the wheel spins stays fixed as the frame of the 
gyroscope is rotated. 

Figure 8.6: A mechanical gyroscope. The axis about which the wheel spins stays fixed as the
frame of the gyroscope is rotated.

First let us consider a thought experiment in which we have somehow managed to get two
monochromatic waves propagating in a circular path of radius R, one propagating clockwise and
the other counterclockwise, as illustrated in Figure 8.7a. The time taken to complete the circular
path of circumference 2πR is

t =
2πR

c
(8.5.1)

This transit time is the same for the two counterpropagating waves.
Suppose. however. that the plane of the circular path is rotating with angular velocity Ω, as in

Figure 8.7b. In this case a point A on the circle is moving with tangential velocity ν = ΩR. The

7Chapter 16 (Page 589 - 594) - Lasers - Peter W. Milonni, Joseph H. Eberly - New York [etc.] : Wiley, cop.
1988
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light propagating in the same sense as the rotation takes a time t+, to go from point A to point B
in Figure 8.7b, where

2πR+ (ΩR)t+ = ct+ (8.5.2)
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tion when the frame of the gyroscope is tilted. A gyroscope on a ship likewise 
maintains its orientation as the ship rolls in rough water, and thereby provides 
information on the degree of roll. Gyroscopes are also used on aircraft as com-
passes and in automatic pilot systems, in torpedoes for steering to the target, and 
for the inertial guidance of missiles . In a sense the earth itself is a kind of gyro-
scnpe: its rotation axis maintains its orientation as the earth orbits about the sun. 
It is thi s fixed orientation. of course , that is responsible for changes of season. 

In general we can define a gyroscope as a device capable of sensing angular 
velocity: indeed the word gyroscope itself means "viewing rotation." A gyro-
scope therefore need not have a spinning wheel, nor need it be a purely mechanical 
instrument. In this section we will describe how a ring laser (Section 11.6) may 
be used to sense angular velocity, or in other words how it may be used as a 
gyroscope. 

First let us consider a thought experiment in which we have somehow managed 
to get two monochromatic waves propagating in a circular path of radius R, one 
propagating clockwise and the other counterclockwise, as illustrated in Figure 
16 .5a. The time taken to complete the circular path of circumference 27rR is 

hR 1 =--
C 

This transit time is the same for the two counterpropagating waves. 

(16.3.1 ) 

Suppose. however. that the plane of the circular path is rotating with angular 
velocity n, as in Figure 16.Sb. In this case a point A on the circle is moving with 
tangential velocity (J = OR. The light propagating in the same sense as the rotation 
takes a time I, to go from point A to point B in Figure 16.5b, where 

27rR + (OR)I, = el, ( 16.3 .2a) 

B 

(0 ) (b) 

Figure 16.5 (a) A thought experiment in which two waves propagate on a circular loop. 
one clockwise and the other counterclockwise. (h) The case in which the plane or the cir· 
cular loop is rotating. In this case the 1v.,l0 waves take diO"ercnl amounts of time to tran vcrs(' 
the arc between two points A and B. 
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or 

f + = " -c---O- R- ( 16.3.2b) 

The left side of (l6.3.2a) is the circumference of the circle plus the distance along 
the circle between points A and B. Thus '+ is greater than the transit time (16.3.1) 
when there is no rotation, because during the transit time of the light the reference 
point A moves from A to B, and so the light must travel the extra distance ORI + 
to complete a round trip as reckoned by an observer at rest on the circle. The light 
progagating in the sense opposite to the rotation, however. takes a shorter time, 
t _ . to complete a fOund trip : 

( 16.3.3a) 

or 

hR 
( 16.3.3b) 1_ =---

c + OR 

According to an observer sitting at a point on the circle, therefore, the two waves 
have gone different distances in making a round trip: their path difference is 

Do L = dl , _ I ) = 27rRe(_I- __ 1_) 
- e - OR c + OR 

2f2R 
= 27rRc (' 2 _ 02 R2 

(16.3.4) 
(' 

where the approximation in the last step is based on the assumption that the tan-
gential velocity of a point on the circle is much less than the velocity of light (i.e., 
OR « e). 

Thc path difference (16.3.4) corresponds to a phase difference 

DoL 87r 2R 20 

87rAO 
he 

( 16.3.S) 

where A = 7rR2 is the area enclosed by the circular loop. Actually (16.3.5) is the 
correct result (to first order in Ii / e) for a closed loop of any shape. For instance, 

Figure 8.7: (a) A thought experiment in which two waves propagate on a circular loop. one
clockwise and the other counterclockwise. (b) The case in which the plane or the circular loop is
rotating. In this case the two waves take different amounts of time to transverse the arc between
two points A and B.

t+ =
2πR

c− ΩR
(8.5.3)

The left side of (8.5.2) is the circumference of the circle plus the distance along the circle between
points A and B. Thus t+ is greater than the transit time (8.5.1) when there is no rotation, because
during the transit time of the light the reference point A moves from A to B, and so the light must
travel the extra distance ΩRt+ to complete a round trip as reckoned by an observer at rest on the
circle. The light propagating in the sense opposite to the rotation, however. takes a shorter time,
t− . to complete a fOund trip :

2πR− (ΩR)t− = ct− (8.5.4)

or

t− =
2πR

c+ ΩR
(8.5.5)

According to an observer sitting at a point on the circle, therefore, the two waves have gone
different distances in making a round trip: their path difference is

∆L = c(t+ − t−) = 2πRc

(
1

c− ΩR
− 1

c+ ΩR

)

= 2πRc
2ΩR

c2 − Ω2R2

≈ 4πR2Ω

c
(8.5.6)

where the approximation in the last step is based on the assumption that the tangential velocity
of a point on the circle is much less than the velocity of light (i.e. ΩR� c).

The path difference (8.5.6) corresponds to a phase difference

∆φ = 2π
∆L

λ
=

8π2R2Ω

λc

=
8πAΩ

λc
(8.5.7)

where A = πR2 is the area enclosed by the circular loop. Actually (8.5.7) is the correct result (to
first order in v/c) for a closed loop of any shape. For instance, it applies to the three-mirror ring
arrangement shown in Figure 8.8. And so we can forget the artificial constraints of our thought
experiment with a circular loop and consider such a triangular ring. for example. By measuring
interferometrically the phase difference ∆φ, between two counterpropagating light beams at a fixed
point on the ring, we can measure the angular velocity Ω. In other words, we can make an optical
gyroscope. 8
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Figure 16.6 A three·mirror ring forming a 
closed loop for the propagation of light. 
Equation (16.3.5) applies to any such closed 
loop. whether it is a circle. triangle, square, 
etc. 

Figure 16.7 A three-mirror ring laser that 
can be used as an optical gyroscope. 

it applies to the three-mirror ring arrangement shown in Figure 16.6. And so we 
can forget the artificial constraints of our thought experiment with a circular loop 
and consider such a triangular ring. for example. By measuring interferometrically 
the phase difference fl q, between two counterpropagating light beams at a fixed 
point on the ring, we can measure the angular velocity O. In other words, we can 
make an optical gyroscope. 1 

The abil ity to sense rotation in this way is called the Sagnac effect, after George 
Sagnac, who in 1913 first demonstrated it using a rapidly rotating table. The main 
difficulty in using a "Sagnac interferometer" as a gyroscope is that the phase shift 
flq, is typically very small, because the path difference flL of the counterpropa-
gating waves is small compared with the wavelength A. After Sagnac's demon-
stration Michelson used about 5 miles of (evacuated) sewer pipes to construct a 
Sagnac interferometer for detecting the earth's rotation. Without large loop areas 
(A) or large angular velocities (0), the phase shift (16.3.5) is too small to be 
measured accurately. 

Suppose we put a gain cell inside the three-mirror resonator of Figure 16.6 to 
make a ring laser (Figure 16.7). In this case the two counterpropagating beams 
required for the Sagnac interferometer are generated by laser action inside the gain 
cell. Like the ordinary two-mirror, linear laser resonator, the ring resonator must 
satisfy the condition that the total round-trip distance L must be equal to an integral 
number m of wavelengths, or in other words 

• = mc/L (16.3.6) 

In particular, a small change flL in L results in a change fll' in I' given by 
(Problem 16.3) 

v flL c flL fl. =-- =--
L AL 

( 16.3.7) 

I. See Dana Z. Anderson. "Optical Gyroscopes." Scientific American 254. April 1986. p. 94. 
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Unlike a linear laser resonator, however, the two counterpropagating waves in a 
ring laser need not have the same frequency. In fact, if the ring is rotating about 
an axis perpendicular to its plane, the two waves "see" different round-trip dis-
tances L+ = ct+ and L _ = cL , and they will have a frequency difference (16.3.7) 
with flL given by (16.3.4). That is, the two counterpropagating waves in a rotating 
ring laser have the frequency difference 

AL 21r 

= (8.nAO) 
27rL AC 

4AO 
= --

AL ( 16.3.8) 

where 0 is the angular velocity of rotation and A is the area enclosed by the ring 
of perimeter L. 

Let us consider a numerical example. For a ring resonator of the type shown in 
Figure 16.6 with side d = 10 cm, we have A = J3d 2/4 '" 43.3 cm2 by simple 
geometry. If the angular velocity 0 = 15 deg/hr = 7.3 X 10- 5 rad/sec. the 
rotation rate of the Earth, then (16.3.5) gives 

flq, = 4.2 X IO- R rad {l6.3.9} 

for the He-Ne laser wavelength A = 6328 A. This corresponds to a ratio flL/A 
= flq,/27r = 6.7 X 10- 9 , and so for this loop area and rotation rate the measure-
ment of flq, is a formidable task indeed. From (16.3.8) for the ring laser gyro, on 
the other hand, we compute for the same parameters 

flv = 20 Hz (16.3.10) 

which is readily measured by optical heterodyning. even though it represents a tiny 
fraction ( '" 4 x 10- 14) of the optical frequency v. 

A great advantage of laser gyroscopes, as compared with conventional spin-
ning-mass gyros, is that they have no moving parts to produce mechanical stress 
and wear. They can furthermore be operated. in the "strapped-down mode" in 
which they are rigidly fixed to a vehicle without any gimbals. Laser-gyro construc-
tion is relatively simple and inexpensive. Typically the ring resonator and a He-
Ne gain tube are enclosed in a single drilled-out quartz block small enough to be 
held in one's hand. Attached to the block is the "readout" apparatus, which uses 
a partially transmitting mirror to combine parts of the two counterpropagating 
beams and measure their frequency difference interferometrically. For navigational 
purposes the measured rotation rate is integrated to give the total angle of rotation 
over a given time. 

Figure 8.8: A threemirror ring forming a closed loop for the propagation of light. Equation (8.5.7)
applies to any such closed loop. whether it is a circle. triangle, square, etc.
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Figure 16.6 A three·mirror ring forming a 
closed loop for the propagation of light. 
Equation (16.3.5) applies to any such closed 
loop. whether it is a circle. triangle, square, 
etc. 

Figure 16.7 A three-mirror ring laser that 
can be used as an optical gyroscope. 

it applies to the three-mirror ring arrangement shown in Figure 16.6. And so we 
can forget the artificial constraints of our thought experiment with a circular loop 
and consider such a triangular ring. for example. By measuring interferometrically 
the phase difference fl q, between two counterpropagating light beams at a fixed 
point on the ring, we can measure the angular velocity O. In other words, we can 
make an optical gyroscope. 1 

The abil ity to sense rotation in this way is called the Sagnac effect, after George 
Sagnac, who in 1913 first demonstrated it using a rapidly rotating table. The main 
difficulty in using a "Sagnac interferometer" as a gyroscope is that the phase shift 
flq, is typically very small, because the path difference flL of the counterpropa-
gating waves is small compared with the wavelength A. After Sagnac's demon-
stration Michelson used about 5 miles of (evacuated) sewer pipes to construct a 
Sagnac interferometer for detecting the earth's rotation. Without large loop areas 
(A) or large angular velocities (0), the phase shift (16.3.5) is too small to be 
measured accurately. 

Suppose we put a gain cell inside the three-mirror resonator of Figure 16.6 to 
make a ring laser (Figure 16.7). In this case the two counterpropagating beams 
required for the Sagnac interferometer are generated by laser action inside the gain 
cell. Like the ordinary two-mirror, linear laser resonator, the ring resonator must 
satisfy the condition that the total round-trip distance L must be equal to an integral 
number m of wavelengths, or in other words 

• = mc/L (16.3.6) 

In particular, a small change flL in L results in a change fll' in I' given by 
(Problem 16.3) 

v flL c flL fl. =-- =--
L AL 

( 16.3.7) 

I. See Dana Z. Anderson. "Optical Gyroscopes." Scientific American 254. April 1986. p. 94. 
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Unlike a linear laser resonator, however, the two counterpropagating waves in a 
ring laser need not have the same frequency. In fact, if the ring is rotating about 
an axis perpendicular to its plane, the two waves "see" different round-trip dis-
tances L+ = ct+ and L _ = cL , and they will have a frequency difference (16.3.7) 
with flL given by (16.3.4). That is, the two counterpropagating waves in a rotating 
ring laser have the frequency difference 

AL 21r 

= (8.nAO) 
27rL AC 

4AO 
= --

AL ( 16.3.8) 

where 0 is the angular velocity of rotation and A is the area enclosed by the ring 
of perimeter L. 

Let us consider a numerical example. For a ring resonator of the type shown in 
Figure 16.6 with side d = 10 cm, we have A = J3d 2/4 '" 43.3 cm2 by simple 
geometry. If the angular velocity 0 = 15 deg/hr = 7.3 X 10- 5 rad/sec. the 
rotation rate of the Earth, then (16.3.5) gives 

flq, = 4.2 X IO- R rad {l6.3.9} 

for the He-Ne laser wavelength A = 6328 A. This corresponds to a ratio flL/A 
= flq,/27r = 6.7 X 10- 9 , and so for this loop area and rotation rate the measure-
ment of flq, is a formidable task indeed. From (16.3.8) for the ring laser gyro, on 
the other hand, we compute for the same parameters 

flv = 20 Hz (16.3.10) 

which is readily measured by optical heterodyning. even though it represents a tiny 
fraction ( '" 4 x 10- 14) of the optical frequency v. 

A great advantage of laser gyroscopes, as compared with conventional spin-
ning-mass gyros, is that they have no moving parts to produce mechanical stress 
and wear. They can furthermore be operated. in the "strapped-down mode" in 
which they are rigidly fixed to a vehicle without any gimbals. Laser-gyro construc-
tion is relatively simple and inexpensive. Typically the ring resonator and a He-
Ne gain tube are enclosed in a single drilled-out quartz block small enough to be 
held in one's hand. Attached to the block is the "readout" apparatus, which uses 
a partially transmitting mirror to combine parts of the two counterpropagating 
beams and measure their frequency difference interferometrically. For navigational 
purposes the measured rotation rate is integrated to give the total angle of rotation 
over a given time. 

Figure 8.9: A three-mirror ring laser that can be used as an optical gyroscope.

The ability to sense rotation in this way is called the Sagnac effect, after George Sagnac, who
in 1913 first demonstrated it using a rapidly rotating table. The main difficulty in using a “Sagnac
interferometer” as a gyroscope is that the phase shift ∆φ, is typically very small, because the path
difference ∆L of the counterpropagating waves is small compared with the wavelength λ. After
Sagnac’s demonstration Michelson used about 5 miles of (evacuated) sewer pipes to construct a
Sagnac interferometer for detecting the earth’s rotation. Without large loop areas (A) or large
angular velocities (Ω), the phase shift (8.5.7) is too small to be measured accurately.

Suppose we put a gain cell inside the three-mirror resonator of Figure 8.8 to make a ring laser
(Figure ??). In this case the two counterpropagating beams required for the Sagnac interferom-
eter are generated by laser action inside the gain cell. Like the ordinary two-mirror, linear laser
resonator, the ring resonator must satisfy the condition that the total round-trip distance L must
be equal to an integral number m of wavelengths, or in other words

ν = mc/L (8.5.8)

In particular, a small change ∆L in L results in a change ∆v in v given by

∆ν =
ν∆L

L
=
c∆L

λL
(8.5.9)

Unlike a linear laser resonator, however, the two counterpropagating waves in a ring laser need not
have the same frequency. In fact, if the ring is rotating about an axis perpendicular to its plane,
the two waves “see” different round-trip distances L+ = ct+ and L− = ct− , and they will have a
frequency difference (8.5.9) with ∆L given by (8.5.6). That is, the two counterpropagating waves
in a rotating ring laser have the frequency difference

∆ν =
c

λL

(
λ

2π
∆φ

)

=
c

2πL

(
8πAΩ

λc

)

=
4AΩ

λL
(8.5.10)

where Ω is the angular velocity of rotation and A is the area enclosed by the ring of perimeter L.

8See Dana Z. Anderson. ”Optical Gyroscopes.” Scientific American 254. April 1986. p. 94.
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Example: Frequency shift for a an optical gyroscope in earth rotation.

Let us consider a numerical example. For a ring resonator of the type shown in Figure 8.8
with side d = 10 cm, we have A =

√
3d2/4 ≈ 43.3 cm2 by simple geometry. If the angular

velocity Ω = 15 deg/hr = 7.3×10−5 rad/sec. the rotation rate of the Earth, then (8.5.7) gives

∆φ = 4.2× 10−8 rad (8.5.11)

for the He-Ne laser wavelength λ = 6328Å. This corresponds to a ratio ∆L/λ = ∆φ/2π =
6.7×10−9 , and so for this loop area and rotation rate the measurement of ∆φ, is a formidable
task indeed. From (8.5.10) for the ring laser gyro, on the other hand, we compute for the
same parameters

∆ν = 20 Hz (8.5.12)

which is readily measured by optical heterodyning. even though it represents a tiny fraction
( ≈ 4× 10−14) of the optical frequency ν.

A great advantage of laser gyroscopes, as compared with conventional spinning- mass gyros,
is that they have no moving parts to produce mechanical stress and wear. They can furthermore
be operated. in the “strapped-down mode” in which they are rigidly fixed to a vehicle without
any gimbals. Laser-gyro construction is relatively simple and inexpensive. Typically the ring
resonator and a He-Ne gain tube are enclosed in a single drilled-out quartz block small enough to
be held in one’s hand. Attached to the block is the “readout” apparatus, which uses a partially
transmitting mirror to combine parts of the two counterpropagating beams and measure their
frequency difference interferometrically. For navigational purposes the measured rotation rate is
integrated to give the total angle of rotation over a given time.

A problem with laser gyroscopes is called lock-in. It occurs at low rotation rates, and causes
low beat frequencies to tend to lock together at a single intermediate frequency. (This locking
phenomenon often arises in coupled oscillatory systems.) Lock-in obviously destroys the ability to
measure small rotation rates. One technique used to alleviate the lock-in problem is to “dither”
the gyro, i.e., to rotate it back and forth rapidly enough that lock-in cannot occur. On average
the back and forth motions cancel, and what is left after a number of dithering periods is just the
rotation rate one wants to measure.

Laser gyroscopes are now used on commercial airliners, and several nations are using them in
military vehicles. Another type of optical rotation sensor that uses the same principles of operation
is based on an optical fiber loop instead of a ring laser to form a Sagnac interferometer.
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