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Figure 7.1: Relative intensity noise spectrum of a 1064-?nm Nd:YAG laser with 100 mW

7.1 Mathematical description of Noise 1

The frequency and amplitude of even the most advanced oscillators are not really constant in
time, but fluctuate. In the previous chapter we have analyzed the situation where these quantities
were modulated in a strictly deterministic way. The harmonic modulation of the amplitude of an
oscillation was found to lead to discrete sideband frequencies whereas the exponential temporal
decay of the amplitude resulted in a continuous band of frequencies. In both cases, for any instant
in the past or in the future one was able to predict the exact value of the instantaneous amplitude,
frequency and the phase. For real oscillators, however, a large variety of physical processes that
are not under control can affect these quantities in a complicated way. As a result, the amplitude,
phase or frequency of any oscillator will fluctuate in an irregular way that in general can no longer
be represented by an analytic function of time. These unwanted fluctuations are often referred
to as noise or jitter. To describe these fluctuations, statistical measures have to be applied. The
characterization of frequency standards in terms of statistical quantities nevertheless allows one to
select the most suitable standard or to infer information about possible sources that degrade the
performance of the standard.

For frequency standards one deals in general with the best available oscillators where often the
statistical modulations of amplitude and phase are small. Consequently, one uses a model of the

1Chapter 3 (Page 47-68) - Frequency Standards Basics and Applications - Fritz Riehle - WILEY-VCH Verlag
GmbH & Co. KGaA, 2004
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82 CHAPTER 7. RELAXATION OSCILLATIONS AND NOISE ANALYSIS

oscillator where the instantaneous output signal of the oscillator is written as

U(t) = [U0 + ∆U(t)] cos(2πν0t+ φ(t)) (7.1.1)

The quantity U(t) may represent, e.g., the signal from a quartz oscillator or the electric field of an
oscillator in the microwave or optical domain. ∆U0(t) represents random rather than deterministic
amplitude fluctuations around U0. Similarly, the fluctuations φ(t) of the phase result from a random
process. In (7.1.1) it is furthermore assumed that the fluctuations of the phase and amplitude are
orthogonal meaning that no amplitude fluctuations are transferred to phase fluctuations and vice
versa. To compare frequency standards operating at different frequencies ν0 it is helpful to define
the normalized phase fluctuations

x(t) ≡ φ(t)

2πν0
(7.1.2)

which are sometimes referred to as the phase time. Similarly, rather than using the fluctuations of
the instantaneous frequency itself, the instantaneous fractional (or normalized) frequency deviation

y(t) ≡ ∆ν(t)

ν0
=
dx(t)

dt
(7.1.3)

is defined where ∆ν(t) ≡ 1
2π

dφ(t)
dt has been utilized to derive the latter equation.

7.1.1 Time-domain Description of Frequency Fluctuations

Consider the time sequence of a fluctuating quantity measured as a continuous function y(t) (Fig.
7.2 a) or as series of discrete readings yi (Fig. 3.1 b). The latter may be obtained, e.g., if the mea-

48 3 Characterisation of Amplitude and Frequency Noise

3.1 Time-domain Description of Frequency Fluctuations

Consider the time sequence of a fluctuating quantity measured as a continuous function y(t)
(Fig. 3.1 a) or as series of discrete readings yi (Fig. 3.1 b). The latter may be obtained, e.g.,

Figure 3.1: a) Continuous time sequence y(t). b) Discrete time series yi of a fluctuating quantity. c)
Consecutive mean values of y(t) (see Fig. 3.1 a) where the values yi are taken during a duration τ . d)
Histogram Fy corresponding to the distribution of y in the bin size ∆y. e) Corresponding Gaussian
probability density p(y). f) yi+1 − yi used to compute the Allan variance according to (3.13).

if the measurement of y(t) was performed by using a frequency counter. As a result the
continuous function y(t) is reduced to a discrete series of consecutive measurements averaged
over the measurement time τ

yi =
1

τ

ti+τ∫

ti

y(t)dt (3.4)

(Fig. 3.1 c), referred to as the normalised frequency deviation averaged over the duration
τ . The experimental determination of these quantities will be discussed in Section 3.5. As
repeated measurements of yi in general differ from each other (see Fig. 3.1 b), we recall in
the following the statistical means usually employed to characterise such a data set. It is well
known that the mean value and the square of the experimental standard deviation are

y =
1

N

N∑

i=1

yi (3.5)

Figure 7.2: a) Continuous time sequence y(t). b) Discrete time series yi of a fluctuating quantity.
c) Consecutive mean values of y(t) (see Fig. 7.2 a) where the values yi are taken during a duration
τ . d) Histogram Fy corresponding to the distribution of y in the bin size ∆y. e) Corresponding
Gaussian probability density p(y). f) yi+1 − yi used to compute the Allan variance according to
(3.13).

surement of y(t) was performed by using a frequency counter. As a result the continuous function
y(t) is reduced to a discrete series of consecutive measurements averaged over the measurement
time τ

yi =
1

τ

∫ ti+τ

ti

y(t)dt (7.1.4)

(Fig. 7.2 c), referred to as the normalized frequency deviation averaged over the duration τ . As
repeated measurements of yi in general differ from each other (see Fig. 7.2 b), we recall in the
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following the statistical means usually employed to characterize such a data set. It is well known
that the mean value and the square of the experimental standard deviation are

y =
1

N

N∑

i=1

yi (7.1.5)

and

s2
y =

1

N − 1

N∑

i=1

(yi − y)2 =
1

N − 1

[
N∑

i=1

y2
i −

1

N

( N∑

i=1

yi

)2
]

(7.1.6)

respectively. The standard deviation of the mean is

sy =
sy√
N

(7.1.7)

sy is a measure of the width of the histogram Fy (see Fig. 7.2 d) where the values of y(t) (or yi)
have been grouped into bins of width ∆y as a function of y(t).

Often the fluctuations of y(t) are thought to result from a statistical process. If the process
causing the fluctuations of y(t) is stationary,2 according to the central-limit theorem of probability
theory one expects that for T →∞, Fy evolves into a Gaussian probability density

p(y) =
1

σ
√

2π
exp

(
− (y − y)2

2σ2

)
(7.1.8)

(Fig. 7.2 d) with variance σ2. The statistical process is characterized by the expectation value

〈y〉 ≡
∫ +∞

−∞
yp(y)dy (7.1.9)

and the variance

σ2 =

∫ +∞

−∞
(y − 〈y〉)2p(y)dy (7.1.10)

Using the notation of (7.1.9), (7.1.10) can be written as

σ2 = 〈(y − 〈y〉)2〉 = 〈y2 − 2y〈y〉+ 〈y〉2〉 = 〈y2〉 − 〈y〉2 (7.1.11)

The expectation value (7.1.9) and variance (7.1.10) of a statistical process can be only estimated
from the measured finite sequence of the fluctuating quantity in such a way that the mean value
(7.1.5) is an estimate for the expectation value 〈y〉 of the Gaussian process and the square of the
standard deviation (7.1.6) is an estimate of its variance σ2.

Besides defining mean value and standard deviation from consecutive measurements of, e.g.,
the frequency of a single oscillator, analogously, the mean value and standard deviation can be
defined as a statistical average for a sample of identical oscillators. For a stationary process such
a sample average is independent of the chosen time of the measurement. For an ergodic process,3

σ2 can be estimated either from the time average or from the sample average.4

The use of the statistical tools of mean value and standard deviation meets with difficulties if
applied to fluctuating quantities with correlations. This can be seen if one divides the times series
of Fig. 7.2 a) into equidistant intervals like in Fig. 7.2 c). A quick look reveals that the data
of Fig. 7.2 a) or b) within each subset scatter much less than the data within the total interval.

2A statistical process is called stationary if the statistical measures describing the process, e.g., the mean value
or the variance, are time independent.

3A process where the average over an infinite number of samples is identical to the infinite time average (〈y〉 = y)
is referred to as an ergodic process.

4Stationarity and ergodicity are mathematical properties that are often assigned to the statistical processes used
to model the fluctuations of real frequency standards. As a result of the limited time available for any measurements
and the limited number of identical frequency standards at hand these properties cannot be proven but merely
represent reasonable assumptions. Care has to be taken when the results derived on these assumptions are applied
to practical cases. During their lifetimes, e.g., frequency standards may become more “noisy” and stationarity may
not be granted over this time.
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The corresponding experimental standard deviations (7.1.6) calculated within each sub-interval in
general are much smaller than the one calculated from the entire data set. This indicates that the
adjacent data points are not independent of each other but are somehow correlated. Consequently,
the standard deviation of the mean is not reduced by 1/

√
N(see (7.1.7)) for N as would be the case

for uncorrelated data. Thus, the determination of standard deviations from different subsets of the
data can be used to get information about the existence of correlations. It has to be pointed out
that the statistics of a fluctuating quantity with correlations can sometimes be well described by a
Gaussian distribution and, hence, the lack of this property cannot be used to identify correlations.

7.1.2 Allan Variance

To make a meaningful estimate of the statistical process in the presence of correlations one has to
specify the number N of measurements (samples), the measuring time τ of a single sample and
the time T between consecutive measurements which may differ from τ by the dead time T − τ
(see Fig. 7.3). After having done this one can readily define a so-called N -sample variance for this
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The use of the statistical tools of mean value and standard deviation meets with difficulties
if applied to fluctuating quantities with correlations. This can be seen if one divides the times
series of Fig. 3.1 a) into equidistant intervals like in Fig. 3.1 c). A quick look reveals that
the data of Fig. 3.1 a) or b) within each subset scatter much less than the data within the
total interval. The corresponding experimental standard deviations (3.6) calculated within
each sub-interval in general are much smaller than the one calculated from the entire data
set. This indicates that the adjacent data points are not independent of each other but are
somehow correlated. Consequently, the standard deviation of the mean is not reduced by
1/

√
N (see (3.7)) for N as would be the case for uncorrelated data. Thus, the determination

of standard deviations from different subsets of the data can be used to get information about
the existence of correlations. It has to be pointed out that the statistics of a fluctuating quantity
with correlations can sometimes be well described by a Gaussian distribution and, hence, the
lack of this property cannot be used to identify correlations.

3.1.1 Allan Variance

To make a meaningful estimate of the statistical process in the presence of correlations one
has to specify the number N of measurements (samples), the measuring time τ of a single
sample and the time T between consecutive measurements which may differ from τ by the
dead time T − τ (see Fig. 3.2). After having done this one can readily define a so-called

Figure 3.2: Measurement cycle.

N -sample variance for this data set in analogy to (3.6) as 4

σ2(N, T, τ ) =
1

N − 1

N∑

i=1


yi − 1

N

N∑

j=1

yj




2

(3.12)

for a given number N of samples and given values of T and τ (see Fig. 3.2). It is now generally
agreed [25] to follow a proposition made by Dave Allan [26,27] and to select from all possible
sample variances the expectation value of the so-called two-sample variance with N = 2 and

3 Stationarity and ergodicity are mathematical properties that are often assigned to the statistical processes used to
model the fluctuations of real frequency standards. As a result of the limited time available for any measurements
and the limited number of identical frequency standards at hand these properties cannot be proven but merely
represent reasonable assumptions. Care has to be taken when the results derived on these assumptions are applied
to practical cases. During their lifetimes, e.g., frequency standards may become more “noisy” and stationarity may
not be granted over this time.

4 To be more specific, there is more than one possible definition for the N sample variance. The various definitions
differ by the pre-factor and each have their advantages for a particular type of noise [25].

Figure 7.3: Measurement cycle.
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N
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for a given number N of samples and given values of T and τ (see Fig. 7.3). It is now generally
agreed to follow a proposition made by Dave Allan and to select from all possible sample variances
the expectation value of the so-called two-sample variance with N = 2 and T = τ . Hence, this
so-called Allan variance σ2

y(2, τ, τ) which is alternatively referred to as short-hand notation σ2
y(2, τ)

or σ2
y(τ), is defined using (7.1.12) as

σ2(τ) =
〈 2∑

i=1

(
yi −

1

2

2∑

i=1

yi

)2〉
=

1

2
〈(y2 − y1)2〉 (7.1.13)

The Allan variance and its square root sometimes termed the Allan (standard) deviation is based
on differences of adjacent frequency values rather than on frequency differences from the mean
value, as is the “true” standard deviation.

Alternatively, the Allan variance can be determined from the phase deviation φ(t) or the nor-
malized phase deviation x(t). For a given measuring interval τ it follows from (7.1.3) that

yi =
xi+1 − xi

τ
(7.1.14)

which after insertion into (7.1.13) gives

σ2(τ) =
1

2τ2

〈
(xi+2 − 2xi+1 + xi)

2
〉

(7.1.15)

5To be more specific, there is more than one possible definition for the N sample variance. The various definitions
differ by the pre-factor and each have their advantages for a particular type of noise.
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7.1.3 Practical Determination of the Allan Variance

In the experiment the Allan variance of a particular oscillator 1 may be determined, e.g., from a
beat note , i.e., the frequency difference with respect to a second oscillator 2 (reference oscillator)
using a counter gated with the measuring time τ . According to the definition it has to be ensured
that there is no dead time between two adjacent measurements. From the squared normalized
frequency differences between two adjacent pairs νi and νi+1 the mean value is computed and
divided by 2 to give the Allan variance σ2

y,tot for the particular measuring time τ . To make a good
approximation of the expectation value (〈〉) of (7.1.13) a sufficiently large number of frequency
differences has to be used. The procedure has to be repeated for the different times τ and may
lead to Allan deviations such as the ones displayed in Fig. 7.4. In Fig. 7.4 the Allan deviations
σy(τ) of various frequency standards and oscillators are compared with frequencies ranging from
the microwave region to the optical regime.

In practice the Allan variance is determined in slightly different ways in order to allow for the
minimum measurement time necessary to retrieve the full information required. The counter is
set to the shortest gate time τ0 where the Allan variance is to be determined and the frequency
difference yi,τ0 between the oscillators is measured repeatedly and the data are stored making
sure that no deadtime occurs during the data acquisition (see Fig. 7.4 a). To derive the data
for longer times, e.g., τ = 3τ0 the consecutive values of y1,τ = (y1,τ0 + y2,τ0 + y3,τ0)/3 , y2,τ =
(y4,τ0 + y5,τ0 + y5,τ0)/3, y3,τ0 = · · · are determined in a post processing (Fig. 7.4 b) to estimate
the Allan variance for the time τ = 3τ0 and accordingly for all other times τ .

To make even better use of the stored data, roughly n times more values of yi,τ=nτ0 can
be obtained if the data processing is done in the way depicted in Fig. 7.4 c) where y1,τ =
(y1,τ0 + y2,τ0 + y3,τ0)/3 , y2,τ = (y4,τ0 + y5,τ0 + y5,τ0)/3, y3,τ0 = · · · are taken
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Figure 3.3: Allan deviation σy(τ) as a function of the measuring time τ for various highly
stable oscillators used as frequency standards and discussed in this book: commercial caesium
atomic clock (big squares: [28], small squares: [29]), hydrogen maser (typical, dashed line; see
also Fig. 8.5), caesium fountain (dashed dotted line) [18], sapphire loaded cavity microwave-
oscillator (thick line) [30], superconducting-cavity stabilised microwave oscillator (open circles
[30], laser stabilised to a Fabry–Pérot cavity (full circles) [31], Ca stabilised laser (asterisks)
[32].

Figure 3.4: Alternative methods of calculating the Allan variance.

If the reference oscillator is known to be of superior stability with respect to the oscillator
under test, the Allan variance is a measure of the instability of the latter one. If the Allan vari-
ance of two identical oscillators “1” and “2” is taken one is led to assume that both oscillators
contribute equally to the instability and the measured Allan variance σy,tot is attributed evenly

Figure 7.4: Allan deviation σy(τ) as a function of the measuring time τ for various highly stable
oscillators used as frequency standards and discussed in this book: commercial cesium atomic clock
(big squares, small squares), hydrogen maser (typical, dashed line), caesium fountain (dashed
dotted line) , sapphire loaded cavity microwave oscillator (thick line) , superconducting-cavity
stabilized microwave oscillator (open circles , laser stabilized to a FabryProt cavity (full circles),
Ca stabilized laser (asterisks).

If the reference oscillator is known to be of superior stability with respect to the oscillator under
test, the Allan variance is a measure of the instability of the latter one. If the Allan variance of
two identical oscillators “1” and “2” is taken one is led to assume that both oscillators contribute
equally to the instability and the measured Allan variance σy,tot is attributed evenly to both
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If the reference oscillator is known to be of superior stability with respect to the oscillator
under test, the Allan variance is a measure of the instability of the latter one. If the Allan vari-
ance of two identical oscillators “1” and “2” is taken one is led to assume that both oscillators
contribute equally to the instability and the measured Allan variance σy,tot is attributed evenly

Figure 7.5: Alternative methods of calculating the Allan variance.

oscillators as follows

σ2
y,tot(τ) = σ2

y,1(τ) + σ2
y,2(τ) and

σy,1(τ) = σy,2(τ) =
1√
2
σy,tot(τ) (7.1.16)

The Allan variance σ2
y(τ) is a useful time-domain measure of the frequency instability of an

oscillator. It allows one to select the ideal oscillator for a particular application. As an example,
consider the Allan variance of a typical hydrogen maser and one of the best frequency stabilized
lasers shown in Fig. 7.4. The latter one has an optimum stability of σy ≤ 5×10−16 for measurement
times τ between 1 s and 100 s whereas the former one reaches its optimum frequency stability at one
to several hours. In the plot of σy(τ) one often can identify regions where the frequency instability
of a particular frequency standard follows a well defined power law. We will see in Section 7.1.4
that a linear drift leads to an Allan deviation proportional to τ . The relationship between the
τ−1 and τ−1/2 dependencies recognized, e.g., in the plot of the hydrogen maser (Fig. 7.4) and
the underlying noise processes will be discussed. Besides stochastic fluctuations, deterministic
variations of the frequency of a given oscillator have a profound impact on the measured Allan
variance. In the following we will investigate two important cases, a linear frequency drift and an
harmonic frequency modulation.

7.1.4 Influence of a Linear Frequency Drift

Consider an oscillator whose normalized frequency shows a linear drift y(t) = at where a is the
slope of the drift. With y1 = [at0 + a(t0 + τ)]/2 and y2 = [a(t0 + τ) + a(t0 + 2τ)]/2 one calculates
from (7.1.13)

σy(τ) = 〈aτ/
√

2〉 =
a√
2
τ for linear frequency drift. (7.1.17)

Hence, a linear frequency drift leads to an Allan deviation that linearly increases with measuring
time τ .

7.1.5 Influence of an Harmonic Modulation

Next we consider an oscillator whose frequency is modulated with a sinusoidal modulation fre-
quency fm as6

y(t) =
∆ν0

ν0
sin(2πfmt) (7.1.18)

Calculating (7.1.13) by use of (7.1.18) leads to

σy(τ) =
∆ν0

ν0

sin(πfmt)

πfmt
for modulation with sinusoidal signal. (7.1.19)

6In this chapter modulation and Fourier frequencies are denoted by f rather than by ν to allow for better
distinction with respect to the carrier frequency.
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From (7.1.19) one finds that the influence of the frequency modulation on the Allan deviation
becomes zero for τ = 1/fm, i.e., when τ equals the modulation period 1/fm or one of its harmonics,
where the influence of the modulation is averaged to zero. It is maximal for τ ≈ n/(2fm) with n
an odd integer.

7.1.6 The Wiener-Khintchine Theorem

Commonly, any fluctuating signal B(t), e.g., y(t), U(t) or Φ(t) is decomposed into a purely fluctu-
ating contribution b(t) and a mean value B(t) as follows

B(t) = b(t) +B(t) (7.1.20)

Consider the autocorrelation function of the signal fluctuations defined by

Rb(τ) ≡ b(t+ τ)b(t) = lim
T→∞

1

2T

∫ T

−T
b(t+ τ)b(t)dt (7.1.21)

which multiplies the signal fluctuations b(t) at the instant t with the signal fluctuation b(t+ τ) at
the instant t+ τ and takes the mean over all epochs. If the fluctuations were totally uncorrected,
the time-averaged product b(t+ τ)b(t) would cancel for any τ . For stationary processes the
autocorrelation function must be an even function since Rb(−τ) = Rb(τ) holds. Comparing the
definition of the autocorrelation function (7.1.21) for τ = 0 and the right-hand side of (7.1.11) for
a purely fluctuating quantity (i.e. for 〈B〉2 = 0) the value of the autocorrelation function for τ = 0
represents the variance of the signal fluctuations

Rb(τ = 0) = σ2
b (7.1.22)

For very large times τ one may assume that the power fluctuations are not correlated and the
autocorrelation function approaches zero for τ → ∞. It has been shown in the previous chapter
that the Fourier transform of a temporal varying amplitude function represents the amplitude
spectrum in the Fourier frequency domain. In the case of the statistically fluctuating power of the
oscillator the time function U(t) is not known but the autocorrelation function Rb(τ) might have
been determined. To perform the integration in (7.1.21) we consider b(t) as the Fourier transform
b(t) = F (a(ω)) of a quantity α(ω) whose relevance will become clear later and obtain

Rb(τ) = lim
T→∞

1

2T

∫ T

−T

1

(2π)2

∫ ∞

−∞
a(ω)ei(ωt+τ)

∫ ∞

−∞
a(ω′)eiω

′tdω′dt

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
lim
T→∞

1

2T

∫ T

−T
ei(ωt+t

′)dt

]
a(ω)a(ω′)eiωτdω′dω (7.1.23)

after we have interchanged the orders of integration. In the limit T → ∞the term in square
brackets can be expressed by the Dirac delta function and, hence,

Rb(τ) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
a(ω)a(ω′)eiωτδ(ω + ω′)dωdω′

=

∫ ∞

−∞

|a(ω)a(ω′)|
2π

eiωτdω

≡
∫ ∞

−∞
Sb(f)ei2πfτdf (7.1.24)

To find the significance of Sb(f) we set τ = 0 in (7.1.24) and obtain

Rb(0) =

∫ ∞

−∞
Sb(f)df (7.1.25)

Recalling that the left-hand side of (7.1.25) is the averaged square of the fluctuating quantity b(t)
(see (7.1.21)), Sb represents a power spectral density. In the case of a fluctuating voltage the
spectral density is given in units of V2/Hz.
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The autocorrelation function Rb(τ) and the spectral density function Sb(f) form a Fourier
transform pair

S2−sided
b (f) ≡ F∗{Rb(τ)} =

∫ ∞

−∞
Rb(τ)e−i2πfτdτ (7.1.26)

Rb(τ) ≡ F{S2−sided
b (f)} =

∫ ∞

−∞
Sb(f)ei2πfτdf (7.1.27)

where the meaning of the index 2-sided will be discussed below. (7.1.26) is one form of the
so-called Wiener-Khintchine theorem and allows one to determine the spectral density function
from the autocorrelation function of the time-dependent signal amplitude.

If one chooses the power fluctuations δP (t) of the oscillator rather than the amplitude fluctua-
tions b(t), the Fourier transformation of the corresponding autocorrelation function RδP (τ) leads
to a spectral density of the square of the power fluctuations (in units of W2/Hz) 7

Similarly, the fluctuations of the phase φ(t) with time8 result in a power spectral density of
phase fluctuations in units of rad2/Hz. Caution is necessary as sometimes in the literature also
the square root of Sb(f) ∝ a(ω) (see (7.1.24)) is used.

The power spectral density of the frequency fluctuations in the Fourier domain represented by
(7.1.26) is defined for Fourier frequencies −∞ < f <∞ thereby extending to both the positive and
negative side of the frequency spectrum. Consequently, Sb(f) is referred to as the two-sided power
spectral density S2−sided

b (f). From Rb(τ) = Rb(−τ) it follows that Sb(f) is a real, non-negative and
even function, i.e. Sb(−f) = Sb(f). In experimental work, however, only positive frequencies are
of interest. Hence, a one-sided power spectral density is often introduced for Fourier frequencies
0 ≤ f <∞ (see Fig. 7.6) with

S1−sided
b (f) = 2S2−sided

b (f) (7.1.29)

3.2 Fourier-domain Description of Frequency Fluctuations 57

Khintchine relations for a one-sided spectral density function S 1−sided
b (f) are written as

S 1−sided
b (f) = 4

∞∫

0

Rb(τ ) cos(2πfτ)dτ (3.31)

Rb(τ ) =

∞∫

0

S 1−sided
b (f) cos(2πfτ)df. (3.32)

Figure 3.6: Two-sided (dots) and one-sided
(line) power spectral densities.

Figure 3.7: Different regimes in a power spec-
tral density. BW: band width.

3.2 Fourier-domain Description of Frequency Fluctuations

For a reasonable frequency-stable oscillator, the instantaneous frequency ν(t) as function of
time can be expected to deviate only slightly from the temporal mean ν and

∆ν(t) ≡ ν(t) − ν # ν (3.33)

holds.
We assume that the frequency excursions ∆ν(t) are stationary distributed, i.e., that their

distribution is time independent. Similarly as in (3.22), we define the autocorrelation function
of the frequency deviations

Rν(τ ) ≡ lim
T→∞

1

2T

T∫

−T

∆ν(t + τ )∆ν(t)dt (3.34)

as a measure of this distribution and use the Wiener–Khintchine relationship to obtain the
power spectral density of the frequency deviations from the autocorrelation of the frequency
deviations

S 2−sided
ν (f) =

∞∫

−∞

Rν(τ ) exp(−i2πfτ)dτ. (3.35)

Figure 7.6: Two-sided (dots) and one-sided (line) power spectral densities.

As the power spectral density is a real quantity, it suffices to use a real Fourier transform pair
rather than (7.1.26) and (7.1.27). Changing also the limits of the integrals the Wiener- Khintchine
relations for a one-sided spectral density function S1−sided

b (f) are written as

S1−sided
b (f) = 4

∫ ∞

0

Rb(τ) cos (2πfτ)dτ (7.1.30)

Rb(τ) =

∫ ∞

0

S1−sided
b (f) cos (2πfτ)df (7.1.31)

7This quantity is closely related to the so-called “Relative Intensity Noise” (RIN)

RIN(f) ≡ Sδp

P 2
0

(7.1.28)

often used to describe the power fluctuations of lasers oscillators.
8Power spectral densities are used not only to describe fluctuations of a physical quantity with time but also,

e.g., to characterize the roughness of a technical surface
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7.1.7 Fourier-domain Description of Frequency Fluctuations

For a reasonable frequency-stable oscillator, the instantaneous frequency ν(t) as function of time
can be expected to deviate only slightly from the temporal mean ν and

∆ν(t) ≡ ν(t)− ν � ν (7.1.32)

holds.
We assume that the frequency excursions ∆ν(t) are stationary distributed, i.e., that their

distribution is time independent. Similarly as in (7.1.21), we define the autocorrelation function
of the frequency deviations

Rν(τ) = lim
T→∞

1

2T

∫ T

−T
∆ν(t+ τ)∆ν(t)dt (7.1.33)

as a measure of this distribution and use the Wiener-Khintchine relationship to obtain the power
spectral density of the frequency deviations from the autocorrelation of the frequency deviations

S2−sided
b (f) =

∫ ∞

−∞
Rν(τ)e−i2πfτdτ (7.1.34)

Besides the power spectral density of the frequency fluctuations Sν(f) the power spectral density
Sy(f) of the fractional frequency fluctuations y(t) (see (7.1.19), (7.1.33) and (7.1.34)) can be found
as

Sy(f) =
1

ν2
0

Sν(f) (7.1.35)

Similarly one defines a power spectral density of phase fluctuations Sφ(f) and, by taking into
account that the frequency fluctuations are essentially the time derivative of the phase fluctuations
(2π∆ν(t) = d/dt∆φ(t)), one obtains by comparison with (7.1.33) and (7.1.34)

Sν(f) = f2Sφ(f) (7.1.36)

From the last two equations it follows that

Sy(f) = (
f

ν0
)2Sφ(f) (7.1.37)

Each of the defined three power spectral densities contains the same information.
In the typical power spectral density of Fig. 7.7 one can identify different regimes. The delta

function at f = 0 occurs if B(t) has a non-vanishing mean value B(t) and does not show up for
a purely fluctuating quantity b(t). The contributions at low Fourier frequencies decreasing with
increasing frequency are termed 1/f -noise. In an intermediate regime the power spectral density
of the frequency fluctuations is often independent of the frequency referred to as white frequency
noise. The total power contained in the frequency fluctuations is obtained from
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Khintchine relations for a one-sided spectral density function S 1−sided
b (f) are written as

S 1−sided
b (f) = 4

∞∫

0

Rb(τ ) cos(2πfτ)dτ (3.31)

Rb(τ ) =

∞∫

0

S 1−sided
b (f) cos(2πfτ)df. (3.32)

Figure 3.6: Two-sided (dots) and one-sided
(line) power spectral densities.

Figure 3.7: Different regimes in a power spec-
tral density. BW: band width.

3.2 Fourier-domain Description of Frequency Fluctuations

For a reasonable frequency-stable oscillator, the instantaneous frequency ν(t) as function of
time can be expected to deviate only slightly from the temporal mean ν and

∆ν(t) ≡ ν(t) − ν # ν (3.33)

holds.
We assume that the frequency excursions ∆ν(t) are stationary distributed, i.e., that their

distribution is time independent. Similarly as in (3.22), we define the autocorrelation function
of the frequency deviations

Rν(τ ) ≡ lim
T→∞

1

2T

T∫

−T

∆ν(t + τ )∆ν(t)dt (3.34)

as a measure of this distribution and use the Wiener–Khintchine relationship to obtain the
power spectral density of the frequency deviations from the autocorrelation of the frequency
deviations

S 2−sided
ν (f) =

∞∫

−∞

Rν(τ ) exp(−i2πfτ)dτ. (3.35)

Figure 7.7: Different regimes in a power spectral density. BW: band width.
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∫ ∞

0

S1−sided
ν (f)df =

∫ ∞

−∞
S2−sided
ν (f)df = 〈[∆ν(t)]2〉 = σ2

ν (7.1.38)

where we have made use of (7.1.22) and (7.1.25). From reasons of energy conservation this total
power must be finite and one therefore expects that for higher frequencies the power spectral
density of the frequency fluctuations decreases again (Fig. 7.7).

The determinations of spectral densities of different frequency sources reaching from quartz
oscillators to atomic frequency standards has shown that the observed spectral density Sy(f) can
be reasonably well modeled by a superposition of five independent noise processes obeying power
laws with integer exponents −2 ≤ α ≤ 2

Sy(f) =

2∑

α=−2

hαf
α (7.1.39)

(see Table 7.1). The particular contributions also have characteristic appearances in the time
domain (Fig. 7.8).

Table 7.1: Model of a power law of the power spectral density of fractional frequency fluctuations
Sy(f) = hαf

α and the corresponding power spectral density of phase fluctuations Sφ(f).

Sy(f) Sφ(f) Type of noise σ2
y(τ)

h−2f
−2 ν2

0h−2f
−4 Random walk (2π2h−2/3)τ+1

of frequency noise
h−1f

−1 ν2
0h−1f

−3 Flicker frequency noise 2h−1 ln 2τ0

h0f
0 ν2

0h0f
−2 White frequency noise (h0/2)τ−1

(Random walk
of phase noise)

h1f ν2
0h1f

−1 Flicker phase noise h1[1.038 + 3 ln 2πfhτ ]/(4π2)τ−2

h2f
2 ν2

0h2f
0 Flicker phase noise h1[3h2fh(4π2)]τ−2
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Table 3.1: Model of a power law of the power spectral density of fractional frequency fluctuations
Sy(f) = hαfα and the corresponding power spectral density of phase fluctuations Sφ(f). The corre-
sponding Allan variance σ2

y(τ) derived in Section 3.3 holds for a low-pass filter with cut-off frequency
fh when 2πfhτ ! 1.

Sy(f) Sφ(f) Type of noise σ2
y(τ )

h−2f
−2 ν2

0h−2f
−4 Random walk (2π2h−2/3)τ+1

of frequency noise
h−1f

−1 ν2
0h−1f

−3 Flicker frequency noise 2h−1 ln 2τ0

h0f
0 ν2

0h0f
−2 White frequency noise (h0/2)τ−1

(Random walk
of phase noise)

h1f ν2
0h1f

−1 Flicker phase noise h1[1.038 + 3 ln(2πfhτ )]/(4π2)τ−2

h2f
2 ν2

0h2f
0 White phase noise [3h2fh/(4π2)]τ−2

Figure 3.8: Time-domain signal with a) white frequency noise. b) 1/f noise. c) 1/f2 noise.

oscillators. The particular contributions listed in Table 3.1 can sometimes be identified in
frequency standards [25]. The random walk of frequency noise (α = −2) is often caused
by the influences of environmental parameters, e.g., temperature, vibrations, etc.. Flicker
frequency noise (α = −1) is observed in active devices such as quartz crystal oscillators,
hydrogen masers or laser diodes, but also in passive frequency standards like the Cs clock.
White frequency noise (α = 0) can result from thermal noise in the oscillator loop of active
standards. It is also present in passive standards and may result, e.g., from the shot noise of
the photons or atoms where it represents the quantum limit. Flicker phase noise (α = 1)
often results from contributions of noisy electronics whose level can be reduced by selected
components. White phase noise (α = 2) becomes important for high Fourier frequencies and
can be reduced by band-pass filtering the output of a frequency standard.

One has to keep in mind that the pure power laws of (3.40) represent a theoretical model,
which is not always observed in this form. The low frequency contributions to the noise

Figure 7.8: Time-domain signal with a) white frequency noise. b) 1/f noise. c) 1/f2 noise.

In a doubly logarithmic plot the particular contributions to (7.1.39) can be identified readily by
their slope, thereby allowing identification of the causes of the noise mechanisms in the oscillators.
The particular contributions listed in Table 7.1 can sometimes be identified in frequency standards.
The random walk of frequency noise (α = −2) is often caused by the influences of environmental
parameters, e.g., temperature, vibrations, etc.. Flicker frequency noise (α = −1) is observed in
active devices such as quartz crystal oscillators, hydrogen masers or laser diodes, but also in passive
frequency standards like the Cs clock. White frequency noise (α = 0) can result from thermal noise
in the oscillator loop of active standards. It is also present in passive standards and may result, e.g.,
from the shot noise of the photons or atoms where it represents the quantum limit. Flicker phase
noise (α = 1) often results from contributions of noisy electronics whose level can be reduced by
selected components. White phase noise (α = 2) becomes important for high Fourier frequencies
and can be reduced by band-pass filtering the output of a frequency standard.
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One has to keep in mind that the pure power laws of (7.1.39) represent a theoretical model,
which is not always observed in this form. The low frequency contributions to the noise sometimes
referred to as 1/f noise often follow a f−β dependence with 0.5 ≤ β ≤ 2 (see, e.g., Fig. 7.9) where
the observed power law may also be due to a superposition of several noise processes.

7.1.8 Power Spectrum of a Source with White Frequency Noise

We now consider a source whose power spectral density in the Fourier-frequency domain can be
represented as white (frequency independent) frequency noise S0

ν (see Table 7.1). Consequently,

Sφ(f) =
S0
ν

f2
=
ν2

0h0

f2
(7.1.40)

holds and the integral in the exponential and can be solved analytically using
∫∞

0
[1− cos(bx)]/x2dx =

π|b|/2 leading to

SE(ν − ν0) = E2
0

∫ ∞

−∞
e−[i2π(ν−ν0τ)] exp

(
−
∫ ∞

0

Sφ(f)[1− cos(2πfτ)]df

)
dτ

= E2
0

∫ ∞

−∞
e−[i2π(ν−ν0τ)] exp (−π2h0ν

2
0 |τ |)dτ

= 2E2
0

∫ ∞

0

e−τ [i2π(ν−ν0)+π2h0ν
2
0 ]dτ (7.1.41)

Solving the integral (7.1.41) and keeping the real part leads to the power spectral density of

SE(ν − ν0) = E2
0

h0π
2ν2

0

h2
0π

4ν4
0 + 4π2(ν − ν0)2

= 2E2
0

γ/2

(γ/2)2 + 4π2(ν − ν0)2
(7.1.42)

with γ ≡ 2h0π
2ν2

0 = 2π(πh0ν
2
0) = 2π(πS0

ν). Hence, the power spectral density of frequency
fluctuations in the carrier-frequency domain of an oscillator with white frequency noise S0

ν in the
Fourier-frequency domain, is a Lorentzian whose full width at half maximum is given by

∆νFWHM = πS0
ν (7.1.43)

Similarly, other types of phase noise spectral densities can be calculated accordingly. Godone and
Levi have furthermore treated the case of white phase noise and flicker phase noise.

7.1.9 Spectrum of a Diode Laser

As an example of white frequency noise, consider the frequency fluctuations in a laser resulting
from the spontaneous emission of photons. They lead to the so-called Schawlow-Townes linewidth

∆νQNL =
2πhν0(∆ν1/2)2µ

P
(7.1.44)

where hν0 is the photon energy, ∆ν1/2 is the full width at half maximum of the passive laser
resonator, µ ≡ N2/(N2 − N1) is a parameter describing the population inversion in the laser
medium, and P is the output power of the laser. This quantum-noise limited power spectral
density (which is enhanced for laser diodes by Henrys linewidth enhancement factor) can be found
in the measured spectral noise of a solitary diode laser (Fig. 7.9) at Fourier frequencies above a
corner frequency of about 80 kHz. At frequencies below the corner frequency the power spectral
density increases with a power law of roughly 1/f . The white frequency noise regime is also visible
above the corner frequency fc of about 200 kHz if the cavity of the diode laser is extended but
Sν(f) is reduced by about 33 dB according to the reduced linewidth ∆ν1/2 (see (7.1.44)).

As the 1/f -like behavior often results from technical noise which is present in any oscillator to
some degree it is interesting to investigate the validity of (7.1.42). OMahony and Henning have
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Figure 3.10: Measured power spectral densities of frequency fluctuations versus Fourier fre-
quency f of a diode laser without optical feedback (triangles) and with optical feedback from a
grating (squares) after [40] with permission.

corner frequency the power spectral density increases with a power law of roughly 1/f . The
white frequency noise regime is also visible above the corner frequency fc of about 200 kHz if
the cavity of the diode laser is extended (Section 9.3.2.5) but Sν(f) is reduced by about 33 dB
according to the reduced linewidth ∆ν1/2 (see (3.71)).

As the 1/f -like behaviour often results from technical noise which is present in any os-
cillator to some degree it is interesting to investigate the validity of (3.69). O’Mahony and
Henning [41] have investigated the effect of low frequency (1/f) carrier noise on the linewidth
of a semiconductor laser. From their findings Koch [40] gives a criterion that allows one
to obtain information about the lineshape from the positions of the corner frequencies fc as
follows

Sν(fc)/fc ! 1 :⇒ Lorentzian lineshape (3.72)

Sν(fc)/fc # 1 :⇒ Gaussian lineshape. (3.73)

We apply these criteria to the power spectral density of frequency noise displayed in Fig. 3.10
where one finds, for the solitary laser diode (triangles), Sν(fc)/fc > 100 and, hence, crite-
rion (3.72) applies. With (3.70) one expects a Lorentzian profile of about 5 MHz linewidth.
From the power spectral density of frequency fluctuations (squares in Fig. 3.10) of another
diode laser with extended cavity (Section 9.3.2.5) one finds Sν(fc)/fc ≈ 10−2 and hence ex-
pects a Gaussian lineshape according to criterion (3.73). The origin of the Gaussian lineshape
can be thought of as resulting from a small Lorentzian line whose width is given by (3.70)
which statistically wanders around a central frequency. The width of the Gaussian depends
on the time T of averaging, as the measurement time T also defines the lowest measurable
Fourier frequency 1/T . For a true 1/f behaviour of Sν the linewidth would be infinite as∫ ∞
1/T

Sν(f)df = ∞ holds (see (3.66)). Experimentally, however, one always finds a finite
linewidth resulting from the finite measurement time T with the low-frequency cut off 1/T .

Figure 7.9: Measured power spectral densities of frequency fluctuations versus Fourier frequency
f of a diode laser without optical feedback (triangles) and with optical feedback from a grating
(squares) after with permission.

investigated the effect of low frequency (1/f) carrier noise on the linewidth of a semiconductor
laser. From their findings Koch gives a criterion that allows one to obtain information about the
lineshape from the positions of the corner frequencies fc as follows

Sν(fc)/fc � 1 : =⇒ Lorentzian lineshape (7.1.45)

Sν(fc)/fc � 1 : =⇒ Gaussian lineshape. (7.1.46)

We apply these criteria to the power spectral density of frequency noise displayed in Fig. 7.9
where one finds, for the solitary laser diode (triangles), Sν(fc)/fc > 100 and, hence, criterion
(7.1.45) applies. With (7.1.43) one expects a Lorentzian profile of about 5MHz linewidth. From
the power spectral density of frequency fluctuations (squares in Fig. 7.9) of another diode laser
with extended cavity one finds Sν(fc)/fc ≈ 10−2 and hence expects a Gaussian lineshape according
to criterion (7.1.46). The origin of the Gaussian lineshape can be thought of as resulting from a
small Lorentzian line whose width is given by (7.1.43) which statistically wanders around a central
frequency. The width of the Gaussian depends on the time T of averaging, as the measurement
time T also defines the lowest measurable Fourier frequency 1/T . For a true 1/f behavior of Sν the
linewidth would be infinite as

∫∞
1/T

Sν(f)df =∞ holds (see (7.1.41)). Experimentally, however, one

always finds a finite linewidth resulting from the finite measurement time T with the low-frequency
cut off 1/T .

The mean frequency excursion ∆νrms (linewidth) can be computed as

∆νrms =

√∫ fc

1/T

Sν(f)df (7.1.47)

from (7.1.38). In the case of the laser with optical feedback in an extended cavity arrangement
(squares in Fig. 7.9) one derives a FWHM of the Gaussian of about 120 kHz for a measurement
time of 10 ms.

7.2 Amplitude noise: Relaxation oscillations9

7.2.1 Introduction

Thus far we have restricted our study of the laser to the case of continuous-wave, single-mode
operation . In this chapter we will consider time-dependent, transient effects, including relaxation
oscillations and Q switching. We will also extend our single-mode theory somewhat to the case
in which several or many cavity modes can oscillate simultaneously . This allows us in particular

9Chapter 12 (Page 365 - 370) - Lasers - Peter W. Milonni, Joseph H. Eberly - New York [etc.] : Wiley, cop.
1988
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to understand the important technique called mode locking, a way to obtain ultrashort pulses of
light.

7.2.2 Rate Equation for Intensities and Populations

In the preceding two chapters we have found it convenient and instructive to describe the strength
of the cavity field either in terms of intensity Iν or photon number qν . In the present chapter it
will be convenient to use the intensity description. We will therefore begin with a brief review of
the appropriate equations coupling the intensity and the laser level population densities N2 and
N1 .

In general the cavity intensity will vary both in time and space. We will continue in this chapter
to make the plane-wave approximation in which the intensity is assumed to be uniform in any plane
perpendicular to the cavity axis. Furthermore for the most common situation in which the mirror
reflectivities are large (say, > 50%), the cavity intensity is approximately unifom1 along the cavity
axis if we ignore the rapidly varying sin2 kz interference term. So it is useful again to make the
uniform-field approximation, but now to include the time dependence of the cavity intensity. First
we recall equation of Intensity-Gain:

dIν
dt

=
cl

L

(
g(ν)Iν −

1

2l
(1− r1r2)Iν

)

=
cl

L
[g(ν)− gt]Iν (7.2.1)

For simplicity we will assume that the gain cell fills the entire space between the mirrors . Then
l = L and

dIν
dt

= c[g(ν)− gt]Iν (7.2.2)

Recall that Iν = I
(+)
ν + I

(−)
ν is the sum of the two traveling-wave intensities; in the case of high

mirror reflectivities, the two are approximately equal.

In terms of the cavity intensity we can write the population rate equations

dN2

dt
= −g(ν)Iν

hν
− Γ21N2 +K2 (7.2.3a)

dN1

dt
=
g(ν)Iν
hν

+ Γ21N2 +K1 (7.2.3b)

where the rates Γ21 , K2 , and K1 are, again, level decay and pumping rates. Since N2 and N1

are populations per unit volume, the pumping rates have units of (volume)−1 (time)−1. Equations
(7.2.2) and (7.2.3) are coupled rate equations for Iν , N2, and N1. The coupling is through the gain
coefficient

g(ν) =
λ2A

8π
(N2 −N1)S(ν)

= σ(ν)(N2 −N1) (7.2.4)

where we assume for simplicity that g2/g1 = 1.

The population rate equations (7.2.3) are easily modified to suit a particular laser medium. We
have already described such modifications in the case of the stylized three- and four-level models.
Since we will be describing in this chapter some rather general phenomena that transcend specific
inversion schemes, it will be adequate to use the simple rate equations (7.2.3) for the laser level
population densities.

For many purposes the rate equations (7.2.2) and (7.2.3) may be simplified somewhat. One
simplifying assumption is that N1 � N2 , i. e ., that the lower laser level population is negligible
compared with the upper laser level population. This would be the case in a four-level laser, where
the lower level decays very rapidly compared with the stimulated emission (absorption) rate. Then
g(ν) = σ(ν)N2 , and (7.2.3) and (7.2.3a) become
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dIν
dt

= cσ(ν)N2Iν − cgtIν (7.2.5a)

dN2

dt
= −σ(ν)

hν
N2Iν − Γ21N2 +K2 (7.2.5b)

7.2.3 Relaxation Oscillation

The coupled equations (7.2.5) for Iν and N2 are simple in appearance, but they have no known
general solution. However, it is easy to find the steady-state solutions which we denote Iν and N2

These are obtained simply by replacing the left sides of (7.2.5) by zero and solving the resulting
algebraic equations, with the result

Iν = hν
(K2

g2
− Γ21

σ(ν)

)
(7.2.6a)

N2 =
gt
σ(ν)

(7.2.6b)

These solutions may also b written in a different form to show explicitly how N2 saturates with
increasing Iν .

It is possible to solve these equations approximately if the laser is operating very near to steady
state. In this case we write

Iν = Iν + ε (7.2.7a)

N2 = N2 + η (7.2.7b)

and assume

|ε| � Iν (7.2.8a)

|η| � N2 (7.2.8b)

This approximation allows the equations (7.2.5) to be linearized and solved, as follows.
Using (7.2.7) in (7.2.5a), we have

d

dt
(Iν + ε) = cσ(N2 + η)(Iν+ε)− cgt(Iν + ε) (7.2.9)

which is the same (since dIν/dt = 0) as

dε

dt
= cσ(N2 + η)(Iν + ε)− cgt(Iν + ε)

= cσ(N2Iν +N2ε+ Iνη + ηε)− cgt(Iν + ε) (7.2.10)

Now Iν and N2 are such as to make the right sides of (7.2.5) vanish. In particular

cσN2Iν − cgtIν = 0 (7.2.11)

Using this relation in (7.2.10), we obtain the much simpler equation

dε

dt
= cσηIν + cσηε (7.2.12)

This is still nonlinear (because of the term ηε) , but now the nonlinearity is very small because it
involves the product of the small quantities η and ε. Near enough to steady state [recall (7.2.8)],
such second-order-small terms can be dropped altogether without significant error. Thus we obtain
the following linear equation for the time dependence of the departure of the cavity intensity from
its steady state value:

dε

dt
= (cσIν)η (7.2.13)
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where the factor in parentheses is constant in time.
The same procedure can be applied to (7.2.5b). Again the product ηε is very small and can be

dropped, and again the definitions of Iν and N2 can be used to cancel some terms. The result is

dη

dt
= − gt

hν
ε− σK2

gt
η (7.2.14)

Equations (7.2.13) and (7.2.14) are still coupled to each other, but they are now linear and
easily solved . We use (7.2.13) to replace η in (7.2.14) by (cσIν)−1 dε/dt to get

d2ε

dt2
+ γ

dε

dt
+ ω2

0ε = 0 (7.2.15)

where we define
γ = σK2/gt (7.2.16)

and
ω2

0 =
cσgt
hν

Iν (7.2.17)

The solution to (7.2.15) is easily found to be

ε(t) = Ae−γt/2 cos(ωt+ φ) (7.2.18)

where A and φ are the initial amplitude and phase of ε(t), and the frequency of oscillation is given
by

ω =

√
ω2

0 −
γ2

4
(7.2.19)

For definiteness we assume ω > γ/2, making ω real. Thus, near to the steady state, the cavity in-
tensity oscillates about the steady-state value Iν , and gradually approaches Iν at the (exponential)
rate γ/2:

Iν = Iν +Ae−γt/2 cos (ωt+ φ) (7.2.20)

This is called a relaxation oscillation. Similar behavior is observed in a wide variety of nonlinear
systems.

Although the relaxation-oscillation solution (7.2.18) is valid only if |ε| � Iν [recall (7.2.3)],
the nature of the solution is of general importance. The critical feature oj the solution is that γ
is positive . This guarantees that the steady-state solution Iν is a stable solution. That is , if
some outside agent slightly disturbs the laser while it is running in steady state, the effect of the
disturbance decays to zero, thus returning the laser to steady state again. If γ were negative, a
small disturbance would grow , and the steady state would therefore be unstable, and thus of very
little practical significance.

We may write the period Tr and lifetime τr of the relaxation oscillations as

Tr =
2π

ω0
=

2π√
(c/τ21)(g0 − gt)

(7.2.21)

and

τr =
1

γ
=
gt
g0
τ21 (7.2.22)

where go is the small -signal gain and τ21 = Γ−1
21 is the lifetime of the upper laser level. From

(7.2.22) or (7.2.16) we see that the duration of the relaxation oscillations decreases with increasing
pumping rate K2 of the gain medium. Likewise the period Tr. of the relaxation oscillations
should decrease with increased g0. These predicted trends are consistent with many experimental
observations.

It is possible to observe relaxation oscillations in the output intensity of a laser after it is turned
on and approaches a steady-state operation. Perturbations in the pumping power can also cause
relaxation oscillations to appear spontaneously. In some cases, especially in solid-state lasers, the
relaxation time τr may be relatively large, making relaxation oscillations readily apparent on an
oscilloscope trace of the laser output intensity.
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Example: Tr and τr in Ruby laser

As an example, consider a ruby laser with mirror reflectivities r1 ≈ 1.0, r2 ≈ 0.94, and a
ruby rod of length l = 5.0 cm. For such a laser gt ≈ (1/2l)(1 − r2) = 0.006 cm−1, so that
cgt ≈ 1.8 × 108 sec −1. For ruby the upper level lifetime τ21 ≈ 2 × 10−3 sec. Assuming a
pumping level such that g0/gt = 2.0, we compute from (7.2.21) and (7.2.22) the period and
lifetime of relaxation oscillations:

Tr ≈ 21µsec (7.2.23)

τr ≈ 2 msec (7.2.24)

Relaxation-oscillation periods are often in the microsecond range, as in this example. The
damping time τr is particularly large in ruby because of its unusually long upper-level lifetime
τ21 . Relaxation oscillations are therefore particularly pronounced in ruby. The output of
a continuously pumped ruby laser typically consists of a series of irregular spikes, and this
spiking behavior is usually attributed to relaxation oscillations being continuously excited by
various mechanical and thermal perturbations.

7.3 Direct-Current Modulation of Semiconductor Lasers10

Since the main application of semiconductor lasers is as sources for optical communication systems,
the problem of high-speed modulation of their output by the high-data-rate information is one of
great technological importance.

A unique feature of semiconductor lasers is that, unlike other lasers that are modulated exter-
nally , the semiconductor laser can be modulated directly by modulating the excitation current.
This is especially important in view of the possibility of monolithic integration of the laser and the
modulation electronic circuit.

If we denote the photon density inside the active region of a semiconductor laser by P and the
injected electron (and hole) density by N , then we can write

dN

dt
=

I

eV
− N

τ
−A(N −Ntr)P

dP

dt
= A(N −Ntr)PΓa −

P

τp
(7.3.1)

where I is the total current, V the volume of the active region, τ the spontaneous recombination
lifetime, τp the photon lifetime as limited by absorption in the ing media, scattering and coupling
through the output mirrors.

The term A(N − Ntr)P is the net rate per unit volume of induced transitions. Ntr is the
inversion density needed to achieve transparency, and A is a temporal growth constant that by
definition is related to the constant B defined by the relation A = Bc/n. Γa is the filling factor
defined by (15 3-3) in Chapter 15.3 Yariv, Optical Electronics in Modern Communications and Its
presence here is to ensure that the total number, rather than the density variable used in (7.3.1),
of electrons undergoing stimulated transitions is equal to the number of photons emitted. The
contribution of spontaneous emission to the photon density is neglected since only a very small
fraction (10−4) on the spontaneously emitted power enters the lasing mode.

By setting the left side of (7.3.1) equal to zero, we obtain the steady-state solution N0 and P0

0 =
I0
eV
− N0

τ
−A(N0 −Ntr)P0

0 = A(N0 −Ntr)P0Γa −
P0

τp
(7.3.2)

10Chapter 15 (Page 582 - 587) - Optical Electronics in Modern Communications- Fifth Edition - Amnon Yariv -
Oxford University Press, 1997
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We consider the case where the current is made up of dc and ac components

I = I0 + i1e
iωmt (7.3.3)

and define the small-signal modulation response n1 and P1 by

N = N0 + n1e
iωmt P = P0 + p1e

iωmt (7.3.4)

where N0 and P0 are the dc solutions of (7.3.2).
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In a typical semiconductor laser with L = 300 J.Lm, we have from (4.7-3) TP = (nl 
c)(a - (1/L) ln R)- 1 10- 12 s, T 4 X 10-9 s, and AP0 109 s- 1 so that to a 
very good accuracy 
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Figure 15-19 (a) CW light output power versus current characteristic of a laser of length = 
120 J.Lm. (b) Modulation characteristics of this laser at various bias points indicated in the 
plot. (c) Measured relaxation oscillation resonance frequency of lasers of various cavity 
lengths as a function of VP, where Pis the cw output optical power. The points of catastrophic 
damage are indicated by downward pointing arrows. (After Reference [27].) (d) Current feed 
network for microwave modulation of high-speed lasers. (e) The corresponding frequency 
response (after Reference [41].) 
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Figure 7.10: (a) CW light output power versus current characteristic of a laser of length = 120
µm.

Using (7.3.3), (7.3.4), and the result A(N0 − Ntr) = (τpΓa)−1 from (7.3.2) In (7.3.1) leads to
the small-SIgnal algebraic equations

−iωmn1 = − I1
eV

+
(1

τ
+AP0

)
n1 +

1

τpΓa
p1

iωmp1 = AP0Γan1 (7.3.5)

Our main interest is in the modulation response p1(ωm)/i1(ωm) so that from (7.3.5) we obtaIn

p1(ωm) =
−(i1/eV )AP0Γa

ω2
m − iωm/τ − iωmAP0 −AP0/τp

(7.3.6)

A typical measurement of P1(ωm) is shown in Figure 7.10(b). The response curve is at at small
frequencies, peaks at the “relaxation resonance frequency” ωR, and then drops steeply. The ex-
pression for the peak frequency is obtained by minimizing the magnitude of the denominator of
(7.3.6)

ωR =

√
AP0

τp
− 1

2

(1

τ
+AP0

)2

(7.3.7)

In a typical semiconductor laser with L = 300 µm, we have τp ≈ (nlc)(α− (1/L) lnR)−1 10−12 s,
τ 4× 10−9 s, and AP0 109 s−1 so that to a very good accuracy

ωR =

√
AP0

τp
(7.3.8)

The last result is extremely useful, since it suggests that to increase ωR and thus increase the
useful linear region of the modulation response p1(ωm)/i1(ωm), we need to increase the optical
gain coefficient A, decrease the photon lifetime τp, and operate the laser at as high internal photon
density P0 as possIble. The observed linear dependence of the modulation resonance frequency ωR
on the square .root of the power output p

√
P is demonstrated in Figure 7.11(c) for lasers of varying
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In a typical semiconductor laser with L = 300 J.Lm, we have from (4.7-3) TP = (nl 
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Figure 15-19 (a) CW light output power versus current characteristic of a laser of length = 
120 J.Lm. (b) Modulation characteristics of this laser at various bias points indicated in the 
plot. (c) Measured relaxation oscillation resonance frequency of lasers of various cavity 
lengths as a function of VP, where Pis the cw output optical power. The points of catastrophic 
damage are indicated by downward pointing arrows. (After Reference [27].) (d) Current feed 
network for microwave modulation of high-speed lasers. (e) The corresponding frequency 
response (after Reference [41].) 
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Figure 7.11: (b) Modulation characteristics of this laser at various bias points indicated in the
plot.584 SEMICONDUCTOR LASERS-THEORY AND APPLICATIONS 
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Figure 15-19 (a) CW light output power versus current characteristic of a laser of length = 
120 J.Lm. (b) Modulation characteristics of this laser at various bias points indicated in the 
plot. (c) Measured relaxation oscillation resonance frequency of lasers of various cavity 
lengths as a function of VP, where Pis the cw output optical power. The points of catastrophic 
damage are indicated by downward pointing arrows. (After Reference [27].) (d) Current feed 
network for microwave modulation of high-speed lasers. (e) The corresponding frequency 
response (after Reference [41].) 

DIRECT-CURRENT MODULATION OF SEMICONDUCTOR LASERS 585 

,_., 
N ::r:: 
9. 
>. 
CJ c:: 
(!) 
:I 
0' 
(!) .:: 
c:: :a s 4 ::= (c) 1;l 
0 
c:: 3 0 -.:: 
CIS 
>< s 2 (!) 

1.5 2.0 2.5 

YP(rnW 112 ) 

(d) 

Figure 7.12: (c) Measured relaxation oscillation resonance frequency of lasers of various cavity
lengths as a function of

√
P , where P is the cw output optical power. The points of catastrophic

damage are indicated by downward pointing arrows.

lengths. A detailed discussion of the optimum strategy for maximizing ωr is given in Reference.
Figure 7.12(d) shows the microwave current feeding electrodes for high-frequency modulation, and
7.13( e) the corresponding frequency response.

It is somewhat tedious but straightforward to show that (7.3.7) can also be written as

ωr =

√
1 +AτpΓaNtr

ττp

( I0
Ith
− 1
)

(7.3.9)



7.3. DIRECT-CURRENT MODULATION OF SEMICONDUCTOR LASERS 99

584 SEMICONDUCTOR LASERS-THEORY AND APPLICATIONS 
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Figure 15-19 (a) CW light output power versus current characteristic of a laser of length = 
120 J.Lm. (b) Modulation characteristics of this laser at various bias points indicated in the 
plot. (c) Measured relaxation oscillation resonance frequency of lasers of various cavity 
lengths as a function of VP, where Pis the cw output optical power. The points of catastrophic 
damage are indicated by downward pointing arrows. (After Reference [27].) (d) Current feed 
network for microwave modulation of high-speed lasers. (e) The corresponding frequency 
response (after Reference [41].) 
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Figure 7.13: (d) Current feed network for microwave modulation of high-speed lasers.
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