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Waveguides



TRAPPING OF LIGHT - 
WAVEGUIDES



Trapping of Light



Snell’s Law

Reflection angles

Snell’s Refraction Law

n1

n2

θ1 = θ′�1

n1sinθ1 = n2sinθ2



Total Internal Reflection (TIR)

John Tyndall  
1820-1893

Critical Angle  
for TIR

n1sinθc = n2 ⇒ θc = arcsin(
n2

n1
)



Slab Waveguide

n1 = ncore > ncladding = n2

Step index profile
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Propagation in a Slab Waveguide



Optical Fiber

Thickness of human 
hair fiber ~ 50-70 µm

Wavelength ~1.55 µm 
Optical fiber length ~ m-Km



Optical Fibers

TIR in an optical fiber



OPTICAL EIGENMODES



Fourier Optics

Plane waves as eigenmodes of free space



Pythagorian Harmonics



Harmonics



Wave motion of a string

t = 0 t > 0



Vibrating string

1st harmonic

2nd harmonic

3rd harmonic



Eigenmodes of Harmonic oscillator



Eigenmodes of an optical fiber



Concept of an Eigenstate

ψn(x, z) = ei z

|ψn(x, z) |2 = |un(x) |2

Stationary Ansatz

The intensity of an eigenmode
is invariant with respect to z

βn

Eigenvalue

un(x)

Eigenstate 
Profile

Ĥun = βnun

Eigenvalue 
Problem



Paraxial Diffraction Equation for Waveguides

i
∂A
∂z

+
1
2k

(
∂2A
∂x2

+
∂2A
∂y2

) + k0δn(x, y)A = 0

Optical potential term

Weakly guiding Approximation:

n(x, y) = ncl + δn(x, y)

δn ≪ ncl

Step index 
Fiber

Graded index 
Fiber



GRIN Fibers - Harmonic Oscillator



Eigenmodes of a Waveguide

We are looking for eigenstate solutions of the form:

i
∂A
∂z

+
∂2A
∂x2

+
∂2A
∂y2

+ V(x, y)A = 0

A(x, y, z) = un(x, y)eiβnz Eigenmode Ansatz

∂2un

∂x2
+

∂2un

∂y2
+ V(x, y)un = βnun Eigenvalue problem

Orthogonality condition

∫
+∞

−∞ ∫
+∞

−∞
u*m(x, y)un(x, y)dxdy = δnm

Finite number of guided modes - Bound eigenstates



Spectrum of a Waveguide

We can project any input field to our basis: 

Superposition Principle

Projection Coefficients

cn = ∫
+∞

−∞ ∫
+∞

−∞
u*n (x, y)A(x, y,0)dxdy

A(x, y, z) =
N

∑
n=1

cnun(x, y)eiβnz + ∫k
c(k)uk(x, y)eiβ(k)z

Guided modes Radiation modes

Initial Condition



FINITE DIFFERENCE METHOD



Finite Differences

d2y
dx2

≈
yn+1 − 2yn + yn−1

(Δx)2

x → [x1 x2 . . . xn . . . xN]
y(x) → [y1 y2 . . . yn . . . yN]

Finite difference
 Derivative

x-grid

n = 1,2,...,N
x ∈ [a, b]
h ≡ Δx



d2u
dx2

≈
un+1 − 2un + un−1

(Δx)2

x-grid

n = 1,2,...,N x ∈ [a, b]

Discretization the Eigenvalue problem

d2u
dx2

+ V(x)u = βuContinuous
Eigenvalue problem

Cn = Vn − 2(Δx)−2

B = (Δx)−2

x → [x1 x2 . . . xn . . . xN]
u(x) → [u1 u2 . . . un . . . uN] }

un+1 − 2un + un−1

(Δx)2
+ Vnun = βun ⇒

un+1 + un−1

(Δx)2
+ [Vn −

2
(Δx)2

]un = βun ⇒

⇒V(x) → [V1 V2 . . . Vn . . . VN]

Bun+1 + Cnun + Bun−1 = βun
Discrete

Eigenvalue problem



Discretization the Eigenvalue problem

un1

. 

. 

.
= βn

un2

unN

C1
un1

. 

. 

.

un2

unN

B 0... 0
B B . . .0

0 0... CNB

un1

. 

. 

.

un2

unN

⃗u n = |un > =

C2

Eigenmode
Eigenvalue

d2un

dx2
+ V(x)un = βnun

Continuous
Eigenvalue problem

Finite difference
Discretization⃗M ⋅ ⃗u n = βn ⃗u n



Slab 1D-waveguide

V(x) = V0e−(x/w)8
Supergaussian profile

Smooth function ideal for fft calculations based on BPM

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

FWHM ≈ w



Eigenmodes of a slab waveguide
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The particular waveguide supports only 3 guided modes
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Tails
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SPLIT STEP FOURIER METHOD



Beam Propagation Method

A1 nΔx , z0 +
Δz
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( )2 2 2 / [0,..., / 2 1, / 2,..., 1]m mk p m p L N Nπ π π= ⋅ = ⋅ ⋅Δ → − − −

( )/ [0,..., 1]nx n x L N N= ⋅Δ → − ( ), 0,1,..., 1n m N= −

Symmetrized BPM for paraxial waveguides
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diffraction
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Fundamental mode - Ground State
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Excitation condition

Indeed is an eigenmode
Its intensity remains invariant

Upon propagation



Excitation of higher order modes
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Modal Interference

A(x, y, z) = u1(x, y)eiβ1z + u2(x, y)eiβ2z Superposition 
of 2 modes

I = |A |2 = I1 + I2 + u1u*2 eiΔβz + cc

Δβ ≡ β1 − β2 zx



Coupling on a waveguide
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Excitation condition

We lost some energy on the coupling
but we have mostly excited

the first order mode

|A(x, z) | z

x Radiation 
Out coupling

Losses


