Computational Optical Imaging
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Beam Propagation Method (BPM) in free space
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Paraxial Angular Spectrum
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G, F and H are Fourier transforms of g, f and h
respectively

Note that Fourier Transform of the exponential is:
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In free space paraxial BPM = Fresnel diffraction

BPM

Angular Spectrum
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Beam Propagation Method
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BPM Pseudocode

Start with BPM in a mediumwith &(x,y,z)=¢&,+A&(x,y,z):
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Beam Propagation - DO )

import numpy as np
import matplotlib.pyplot as plt

k@ = 2 * np.pi / wavelength # Free-space wavenumber
X = np.arange(-nx//2, nx//2) *x dx # Spatial grid
z np.arange(@, nz) * dz # Propagation grid

# Define the GRIN profile (parabolic index distribution)
n=n@ - delta_n % (x / (nx % dx / 2))%%2 # Parabolic index variation

# Initial field (Gaussian beam)
field = np.exp(-x*x2 / (2 * beam_waist**2))
field /= np.sqrt(np.sum(np.abs(field)**2)) # Normalize power

# Spectral components for Fourier transform
kx = np.fft.fftfreq(nx, d=dx) % 2 * np.pi
kx2 = kx**2

# Propagation loop

for zi in range(nz):
# Compute phase shift due to index variations
phase_shift = np.exp(1lj * dz * k@ * (nx*2 — n@xx2) / (2 % nQ))
field %= phase_shift # Apply phase shift in real space

# Transform to Fourier domain
field_fft = np.fft.fft(field)

# Apply free-space propagation in k-space
prop_factor = np.exp(-1j * dz * kx2 / (2 *x k@ x n@))
field_fft x= prop_factor

# Transform back to real space
field = np.fft.ifft(field_fft)
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~ def beam_propagation_method_grin(wavelength, dx, dz, nx, nz, n@, delta_n, beam_waist):

© Run




return x, np.abs(field)**x2 # Return intensity profile

# Simulation parameters
wavelength = 1.55e-6 # Wavelength (m)

dx = 0.1le-6 # Spatial step (m)
dz = le-6 # Propagation step (m)
nx = 200 # Number of spatial points

nz = 1000 # Number of propagation steps

nd = 1.5 # Central refractive index

delta_n = 0.05 # Index variation parameter for GRIN profile
beam_waist = 2e-6 # Initial beam waist (m)

# Run BPM simulation for GRIN lens
X, intensity = beam_propagation_method_grin(wavelength, dx, dz, nx, nz, n@, delta_n, beam_waist)

# Plot results

plt.plot(x * 1e6, intensity)
plt.xlabel("Position (um)")
plt.ylabel("Intensity")

plt.title("Beam Propagation in GRIN Lens")
plt.show()
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Plane wave input with A=532 nm cropped by 96 um by 96 um rectangular aperture.
A=12 pm.

Propagation profile for Tmm
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Thintransparency
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Plane wave input with A=532 nm cropped by 96 um by 96 um rectangular aperture.

A=12 um.
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Exercise 1

BPM code
GRIN lens at variable step size



Singe Lens Imaging System
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Thin Lens




Single lens imaging simulation
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Thin lens simulated by a quadratic phase multiplication:  €XP [ﬂf ]
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Single lens imaging simulation

e - The image is reproduced

. N (inverted) at 2f away from the
T lens
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Same scheme as earlier, only the lens is
now finite

The resolution of the image is worse than
before.
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Same scheme as earlier, only the lens is
now finite

The resolution of the image is worse than
before.




Object size vs finite aperture lens (not far
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Object size vs finite aperture lens (not far
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Object resolution vs varying lens aperture

Object side 0.3mm
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Object resolution vs varying lens aperture

Object side 0.3mm
Den815m. -

Dlens=2mm
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Physical implementation with quadratic surface
2D COMSOL

F=120um, 2D BPM

t=16 abs of the propagation profile
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Simulation of a thick lens using BPM

Thin lens

Thick lens

——

collimated beam

10cm
[ ]

Thick lens

EE——

diverging beam
(higher angles)

Exaggerated lens size
(real thickness = 3mm)




Exercise 2

Shape of ideal, thin lens
versus thick thick lens
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