

Computational Optical Imaging

Lecture 3

Outline

Beam propagation method (BPM)

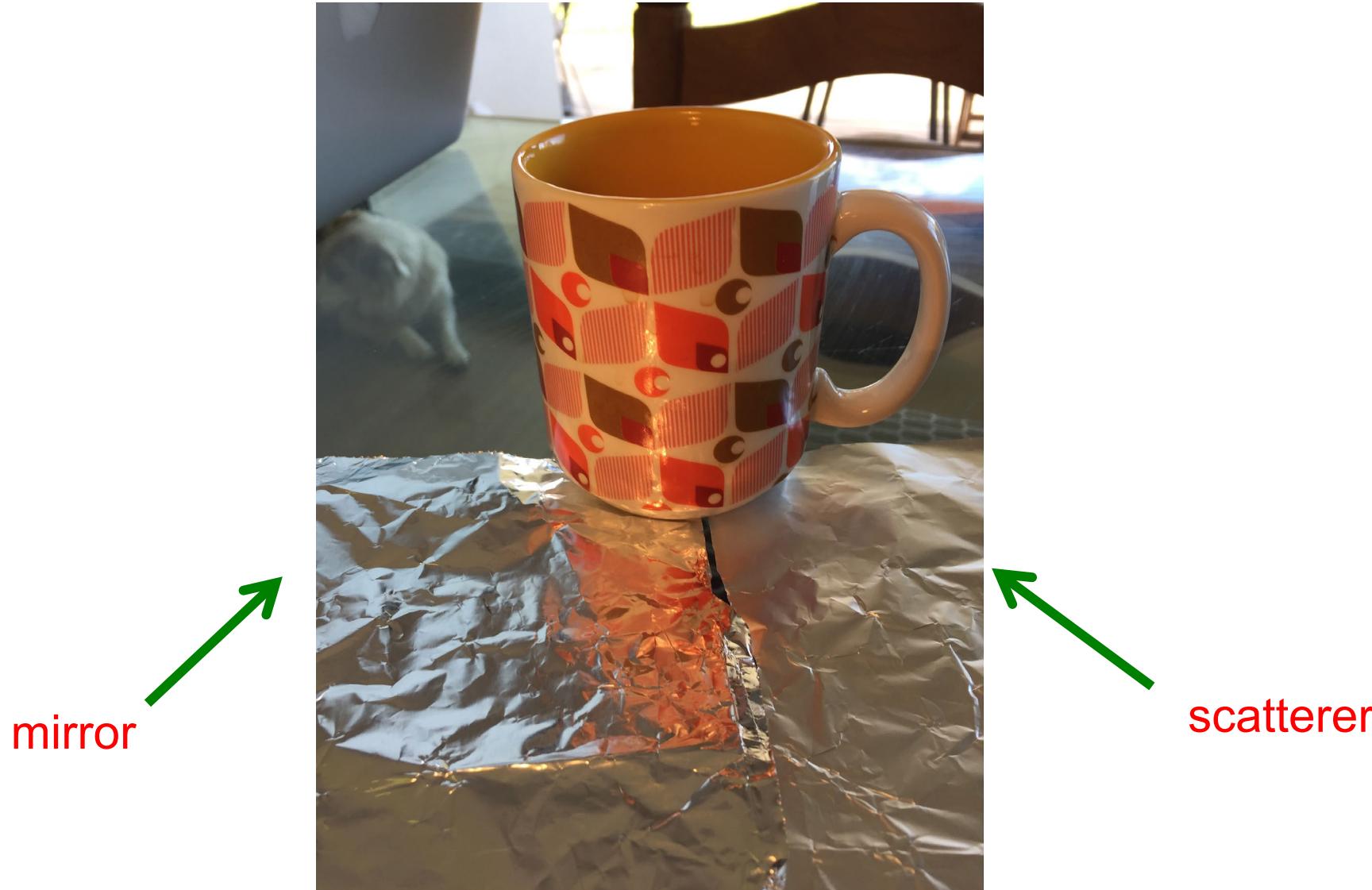
Thin media

Lenses

Imaging

Polybahn at ETHZ

Reflection at air-metal interfaces



$$\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$$

$$\nabla \times \vec{H} = \epsilon \frac{\partial \vec{E}}{\partial t} + \vec{J}$$

$$\nabla \cdot \epsilon \vec{E} = \rho$$

ϵ and n

$$D = \epsilon_0 E + P = \epsilon_0 E + \epsilon_1 E = \epsilon E$$

$$v = \sqrt{\frac{1}{\mu\epsilon}} \quad n = \frac{c}{v}$$

Beam Propagation Method (BPM) in free space

$$\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} = -\omega^2 \mu \epsilon E_x$$

Wave equation

$$E_x(x, y, z, t) = A(x, y, z) e^{j\omega t} e^{-jkz}$$

$A(x, y, z)$ is the slow varying envelope

$$\frac{\partial^2 E_x}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial A}{\partial x} \right) e^{j\omega t} e^{-jkz} = \frac{\partial^2 A}{\partial x^2} e^{j\omega t} e^{-jkz} \quad \text{same for y}$$

$$\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} + \cancel{\frac{\partial^2 A}{\partial z^2}}^{\sim 0} - 2jk \frac{\partial A}{\partial z} - k^2 A = -\omega^2 \mu \epsilon A$$

Recognizing that

$$-k^2 A = -\omega^2 \mu \epsilon A$$

$$\frac{\partial A}{\partial z} \approx -\frac{j}{2k} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right)$$

$$\frac{\partial A}{\partial z} \approx \frac{A(z + \Delta z) - A(z)}{\Delta z} \Rightarrow A(z + \Delta z) = A(z) + \frac{\partial A}{\partial z} \Delta z$$

Paraxial Angular Spectrum

$$E(x, y, z \neq 0, t) = e^{j\omega t} \iint F(u, v) e^{-j(2\pi ux + 2\pi vy + \sqrt{k^2 - (2\pi u)^2 - (2\pi v)^2} z)} du dv$$

Paraxial plane wave:

$$\tilde{A}(k_x, k_y, z) = e^{j\left[\frac{k_x^2 + k_y^2}{2k}\right]z} \tilde{A}(k_x, k_y, z=0)$$

Convolution Theorem: $g(x', y') = \int \int f(x, y) h(x' - x, y' - y) dx dy$

$$G(u, v) = F(u, v) H(u, v)$$

G, F and H are Fourier transforms of g, f and h
respectively

Note that Fourier Transform of the exponential is:

$$e^{-\pi(x^2 + y^2)} \Leftrightarrow e^{-\pi(u^2 + v^2)} \quad \text{where} \quad k_x = 2\pi u \quad k_y = 2\pi v$$

In free space paraxial BPM = Fresnel diffraction

BPM

$$\frac{\partial A}{\partial z} = -\frac{j}{2k} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right)$$

FT

Angular Spectrum

$$\tilde{A}(k_x, k_y, z) = e^{j \left[\frac{k_x^2 + k_y^2}{2k} \right] z} \tilde{A}(k_x, k_y, z=0)$$

FT

$$E_x(x', y', z, t) = A(x', y', z) e^{j\omega t} e^{-jkz} = \frac{1}{j\lambda z} e^{j\omega t} e^{-jkz} \iint A(x, y, z=0) e^{-\frac{j\pi[(x-x')^2 + (y-y')^2]}{\lambda z}} dx dy$$

Fresnel Diffraction

Beam Propagation Method

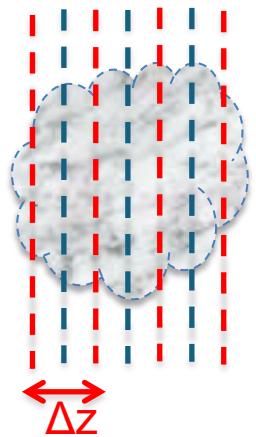
$$\frac{\partial A}{\partial z} = -\frac{j}{2k} \left(\frac{\partial A^2}{\partial x^2} + \frac{\partial A^2}{\partial y^2} \right) - \frac{j}{2k} \omega^2 \mu \Delta \epsilon(x, y, z) A$$

$$A(z + \Delta z) \approx A(z) - \frac{j}{2k} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right) \frac{\Delta z}{2} - \frac{j}{2k} \omega^2 \mu \Delta \epsilon(x, y, z) A \frac{\Delta z}{2}$$

$$A(z + \Delta z) \approx A(z) - \frac{j}{2k} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right) \frac{\Delta z}{2} - \frac{j}{2k} \omega^2 \mu \Delta \epsilon(x, y, z) A \frac{\Delta z}{2}$$

Free space

Thin phase
transparency



BPM Pseudocode

Start with BPM in a medium with $\epsilon(x, y, z) = \epsilon_0 + \Delta\epsilon(x, y, z)$:

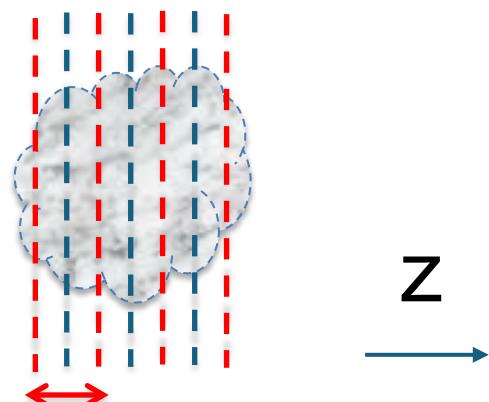
$$\frac{\partial A}{\partial z} = \frac{-j}{2k} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right) - \frac{j}{2k} \omega^2 \mu \Delta\epsilon(x, y, z) A$$

First step: Take the FT in $x - y$ assuming $\Delta\epsilon \approx 0$

$$\frac{\partial \tilde{A}}{\partial z} \approx \frac{+j}{2k} (k_x^2 + k_y^2) \tilde{A}(k_x, k_y, z) \Rightarrow \tilde{A}(k_x, k_y, z + \Delta z / 2) = \tilde{A}(k_x, k_y, z) e^{\frac{+j}{2k} (k_x^2 + k_y^2) \Delta z / 2}$$

Second step: Assume $\Delta z / 2 \approx 0$ so that diffraction is negligible

$$\frac{\partial A}{\partial z} \approx -\frac{j}{2k} \omega^2 \mu \Delta\epsilon(x, y, z) A \Rightarrow A(x, y, z + \Delta z) = A(x, y, z + \Delta z / 2) e^{-\frac{j}{2k} \omega^2 \mu \Delta\epsilon(x, y, z) \Delta z / 2}$$



X Beam Propagation


```
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def beam_propagation_method_grin(wavelength, dx, dz, nx, nz, n0, delta_n, beam_waist):
5     k0 = 2 * np.pi / wavelength # Free-space wavenumber
6     x = np.arange(-nx//2, nx//2) * dx # Spatial grid
7     z = np.arange(0, nz) * dz # Propagation grid
8
9     # Define the GRIN profile (parabolic index distribution)
10    n = n0 - delta_n * (x / (nx * dx / 2))**2 # Parabolic index variation
11
12    # Initial field (Gaussian beam)
13    field = np.exp(-x**2 / (2 * beam_waist**2))
14    field /= np.sqrt(np.sum(np.abs(field)**2)) # Normalize power
15
16    # Spectral components for Fourier transform
17    kx = np.fft.fftfreq(nx, d=dx) * 2 * np.pi
18    kx2 = kx**2
19
20    # Propagation loop
21    for zi in range(nz):
22        # Compute phase shift due to index variations
23        phase_shift = np.exp(1j * dz * k0 * (n**2 - n0**2) / (2 * n0))
24        field *= phase_shift # Apply phase shift in real space
25
26        # Transform to Fourier domain
27        field_fft = np.fft.fft(field)
28
29        # Apply free-space propagation in k-space
30        prop_factor = np.exp(-1j * dz * kx2 / (2 * k0 * n0))
31        field_fft *= prop_factor
32
33        # Transform back to real space
34        field = np.fft.ifft(field_fft)
35
```

```
return x, np.abs(field)**2 # Return intensity profile

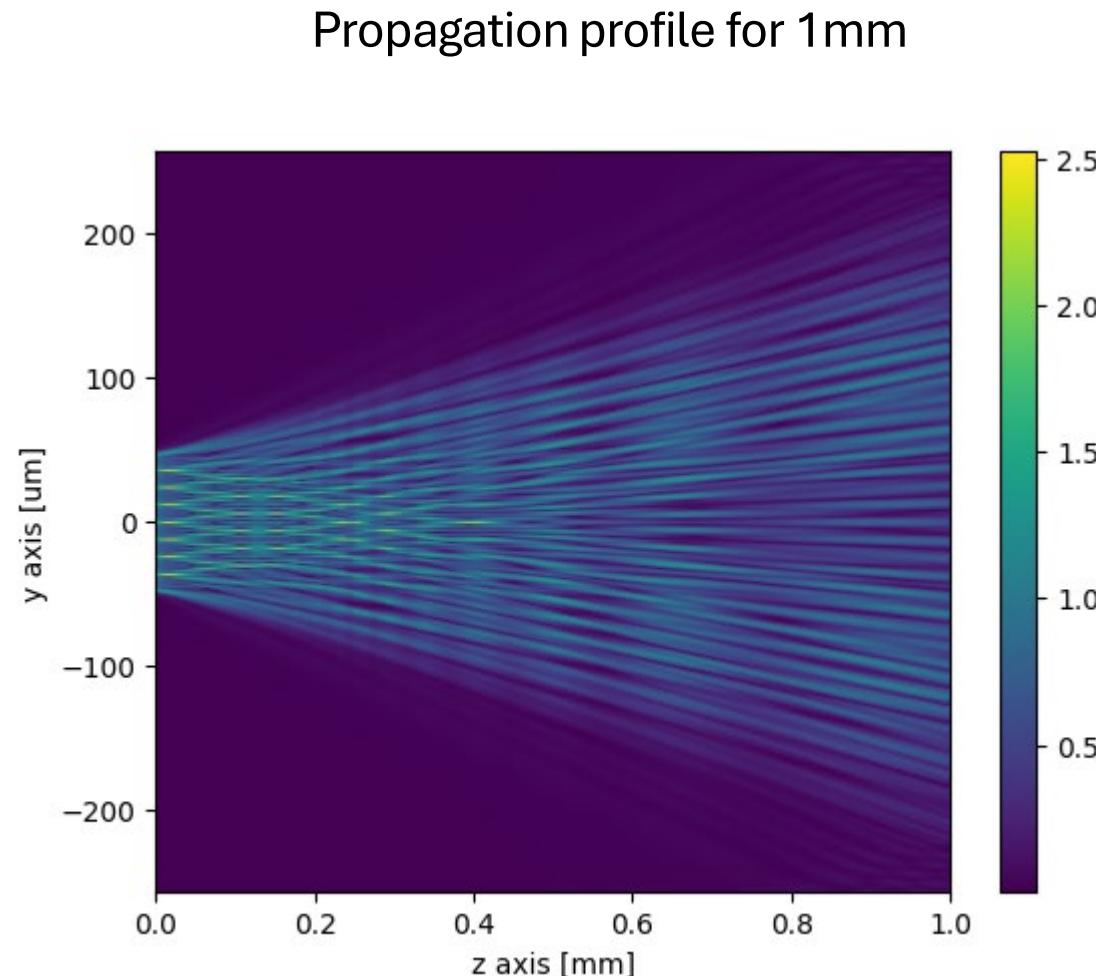
# Simulation parameters
wavelength = 1.55e-6 # Wavelength (m)
dx = 0.1e-6 # Spatial step (m)
dz = 1e-6 # Propagation step (m)
nx = 200 # Number of spatial points
nz = 1000 # Number of propagation steps
n0 = 1.5 # Central refractive index
delta_n = 0.05 # Index variation parameter for GRIN profile
beam_waist = 2e-6 # Initial beam waist (m)

# Run BPM simulation for GRIN lens
x, intensity = beam_propagation_method_grin(wavelength, dx, dz, nx, nz, n0, delta_n, beam_waist)

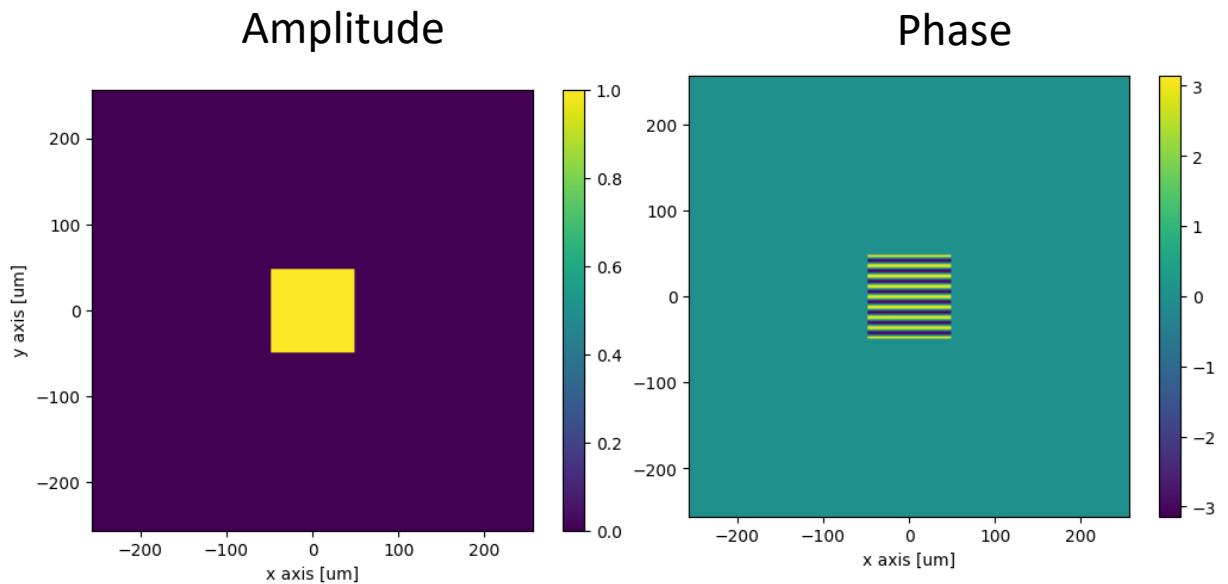
# Plot results
plt.plot(x * 1e6, intensity)
plt.xlabel("Position (μm)")
plt.ylabel("Intensity")
plt.title("Beam Propagation in GRIN Lens")
plt.show()
```

$$e^{j\pi \cos(2\pi y/\Lambda)}$$

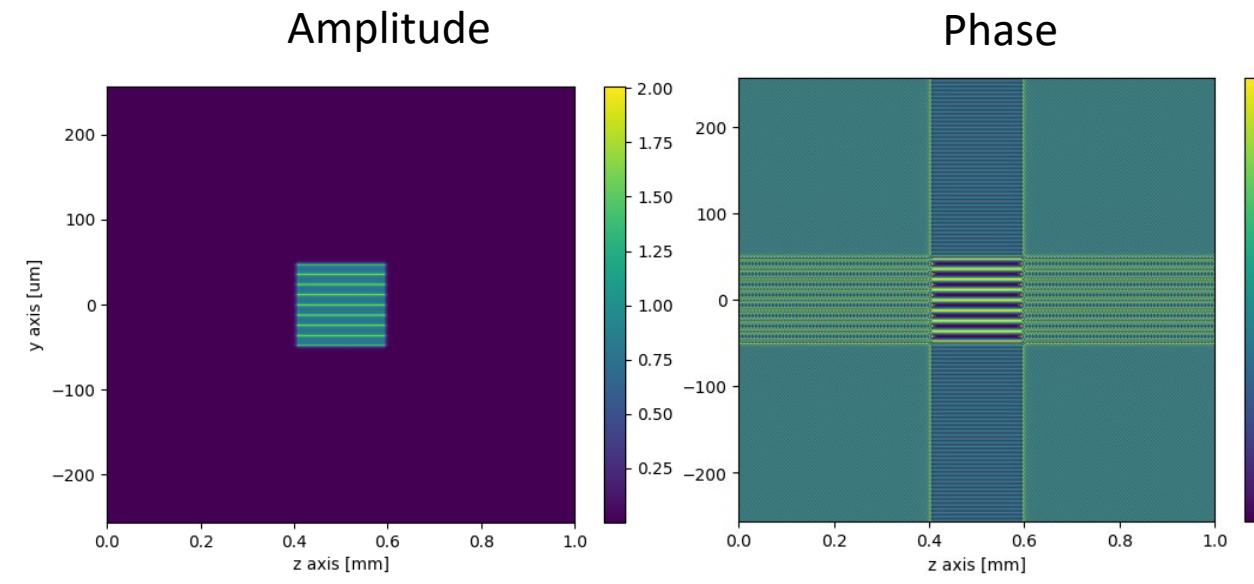
Plane wave input with $\lambda=532$ nm cropped by 96 μm by 96 μm rectangular aperture.
 $\Lambda=12$ μm .



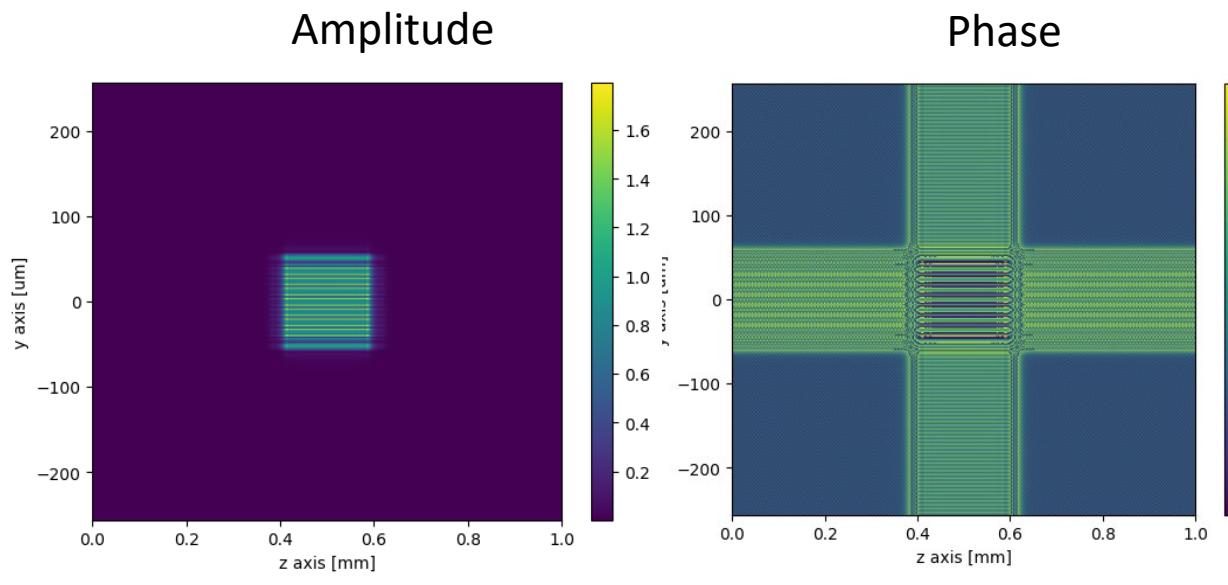
Propagation $z=0$



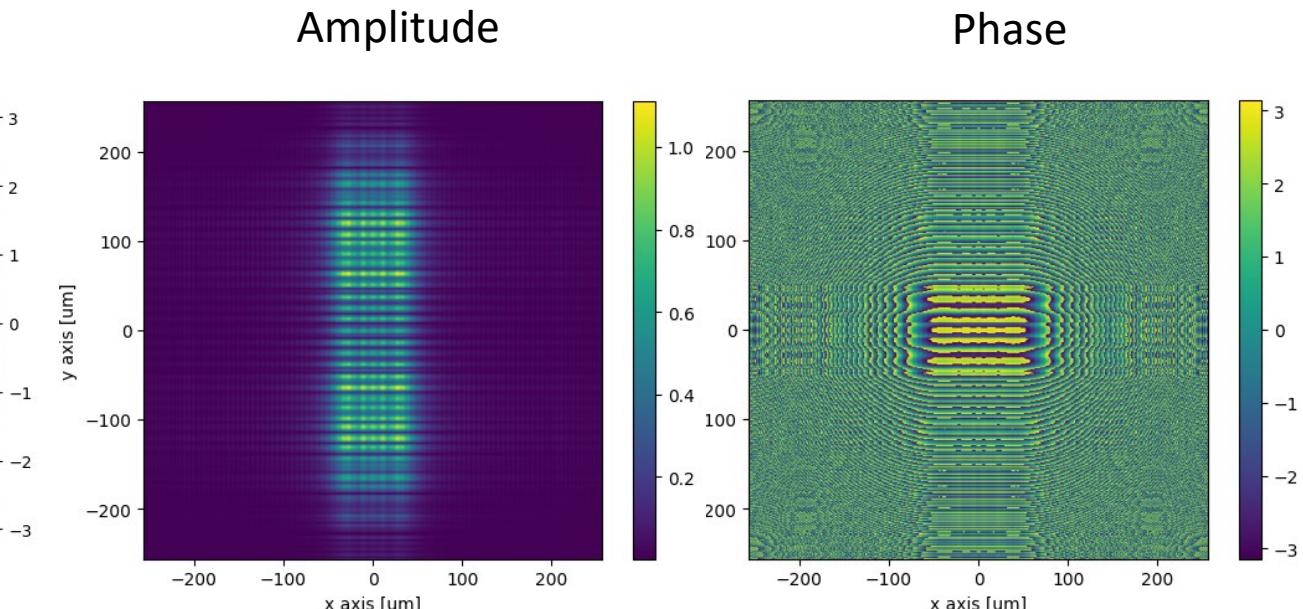
Propagation $z=10 \mu\text{m}$



Propagation $z=50 \mu\text{m}$



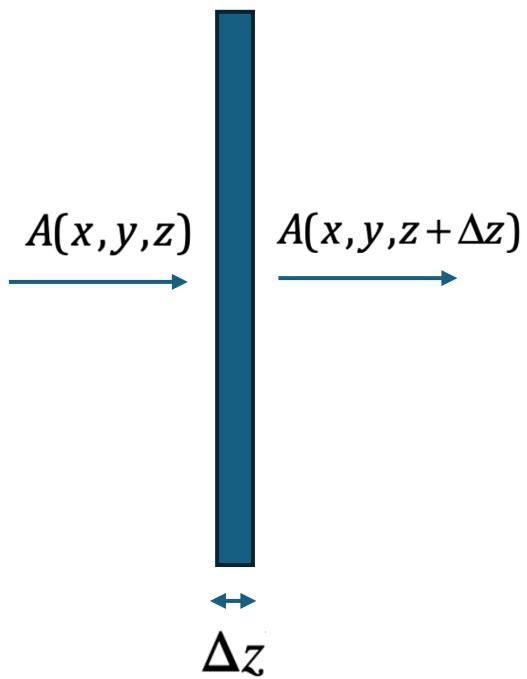
Propagation $z=1 \text{ mm}$



Thin transparency

$$t(x, y) = \frac{A(x, y, z + \Delta z)}{A(x, y, z)} = e^{-\frac{j}{2k} \omega^2 \mu \Delta \epsilon(x, y, z) \Delta z}$$

Real part of $\Delta \epsilon$ is index; imaginary part of $\Delta \epsilon$ is absorption

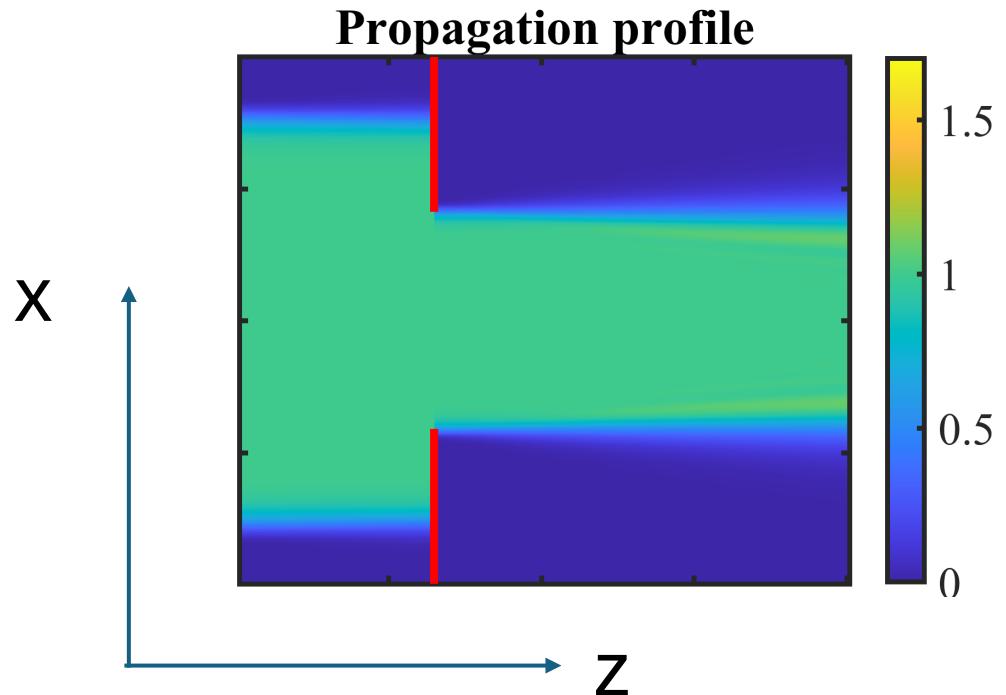
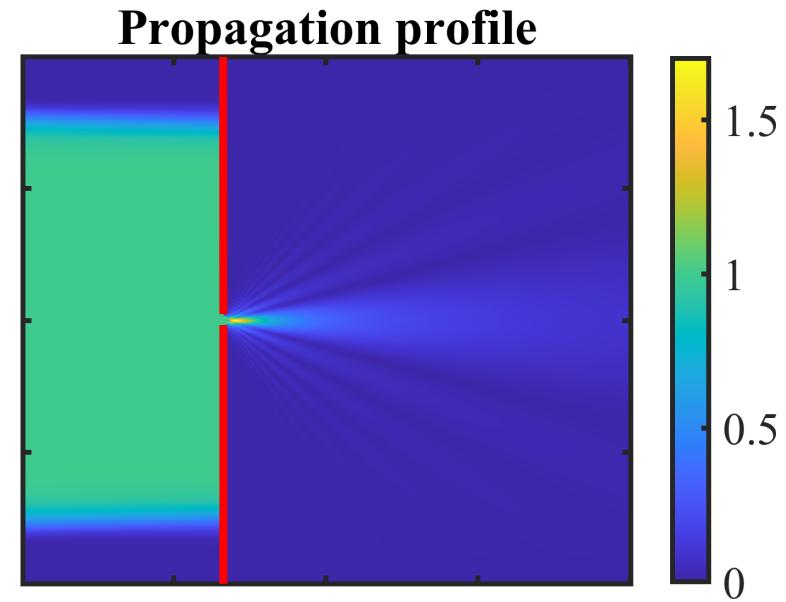


$$A(z + \Delta z) \approx A(z) - \frac{j}{2k} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right) \frac{\Delta z}{2} - \frac{j}{2k} \omega^2 \mu \Delta \epsilon(x, y, z) A \frac{\Delta z}{2}$$

Free space

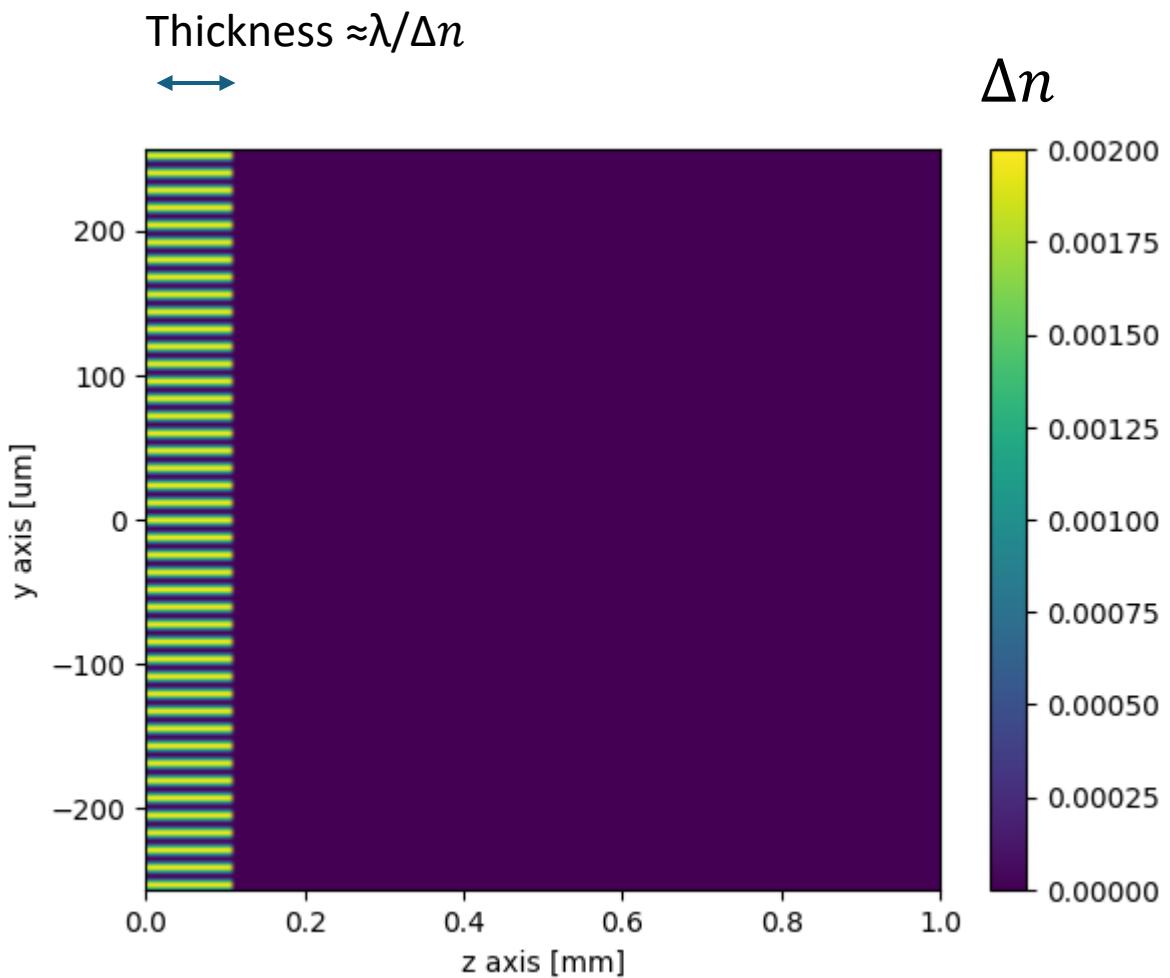
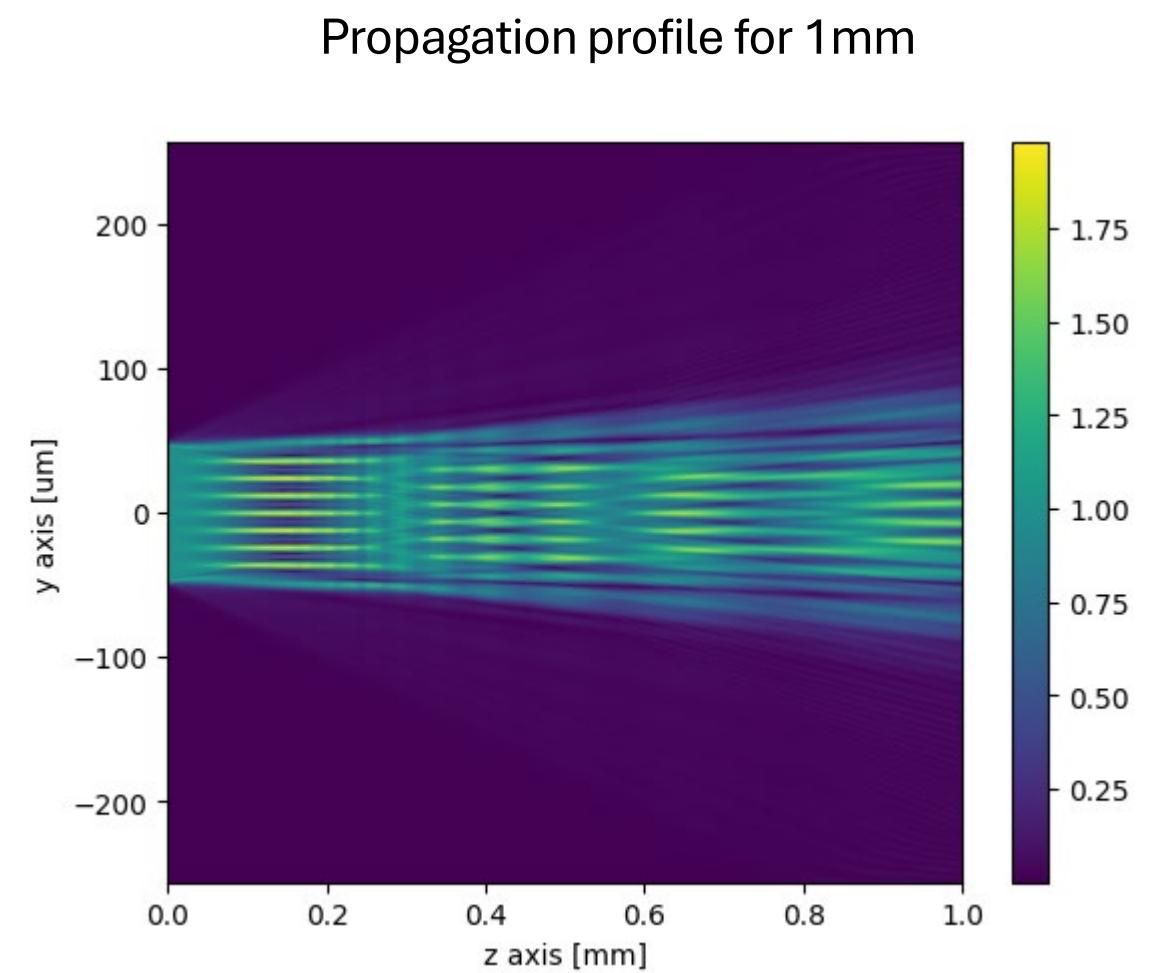
Thin phase transparency

Near field



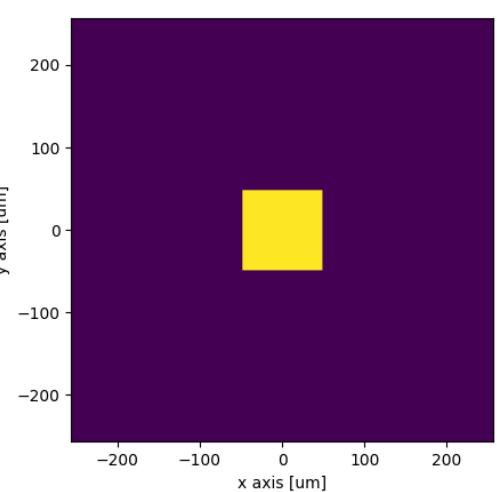
Plane wave input with $\lambda=532$ nm cropped by 96 μm by 96 μm rectangular aperture.

$\Lambda=12$ μm .

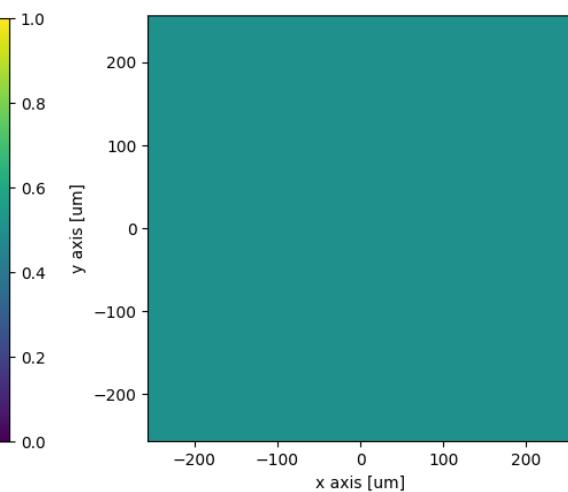


Propagation $z=0$

Amplitude

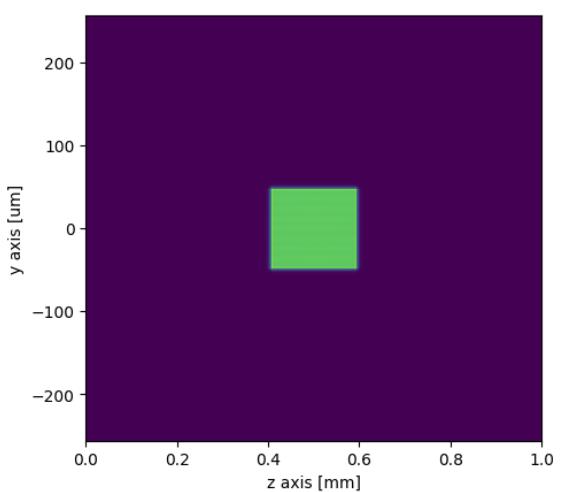


Phase

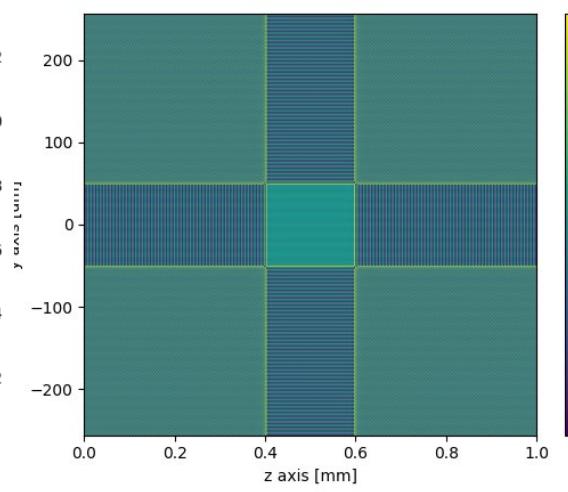


Propagation $z=10 \mu\text{m}$

Amplitude

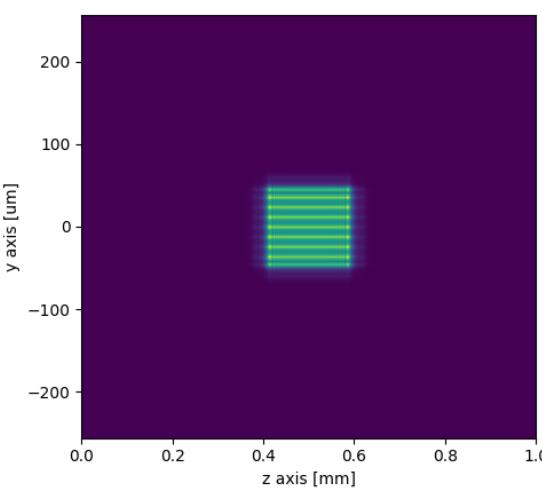


Phase

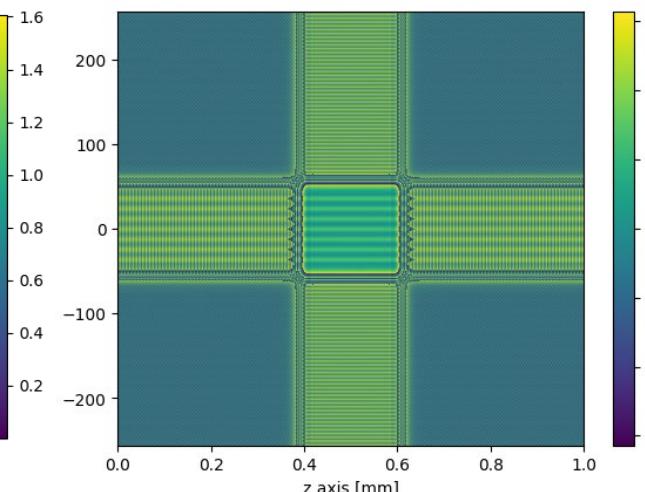


Propagation $z=50 \mu\text{m}$

Amplitude

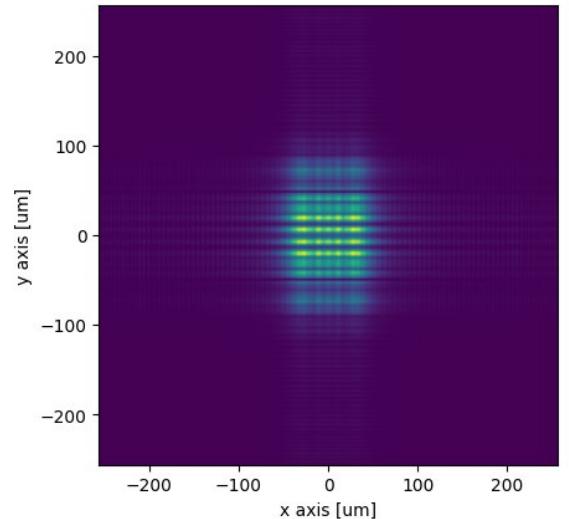


Phase

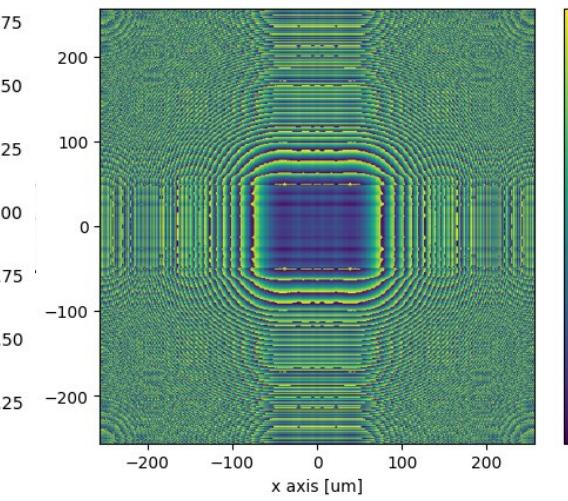


Propagation $z=1 \text{ mm}$

Amplitude

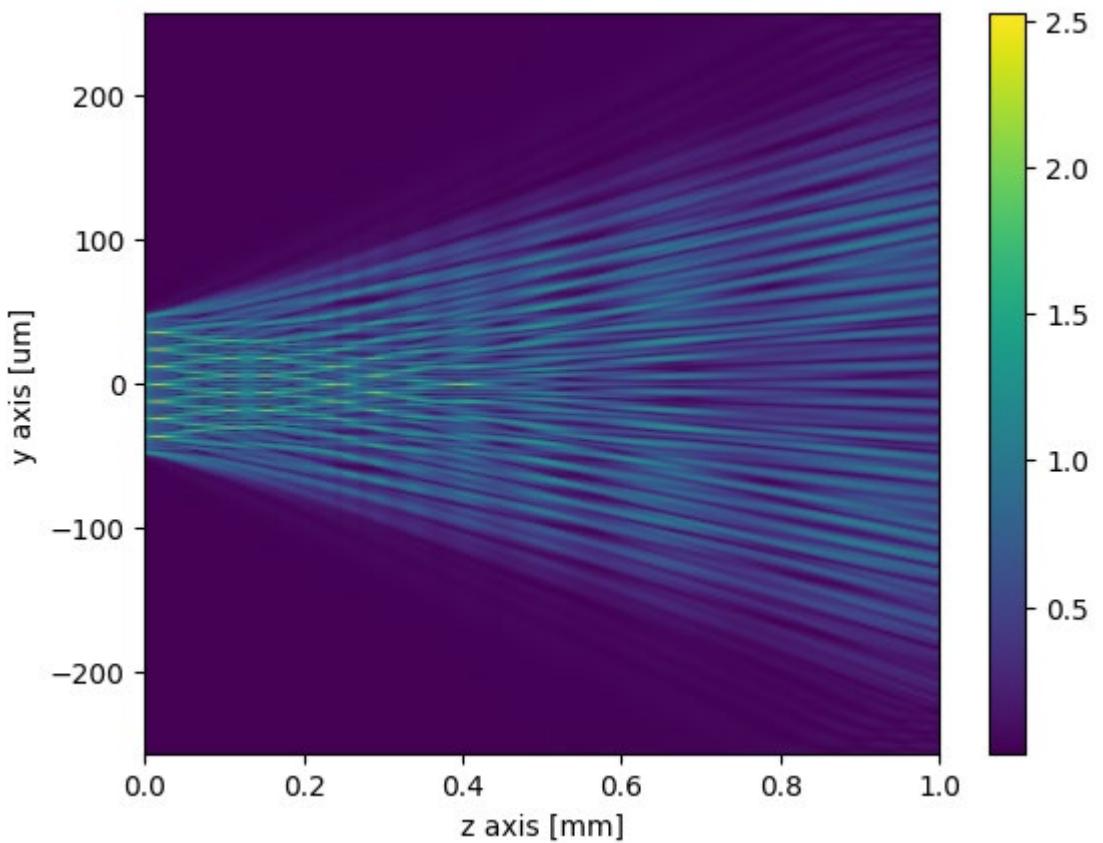


Phase

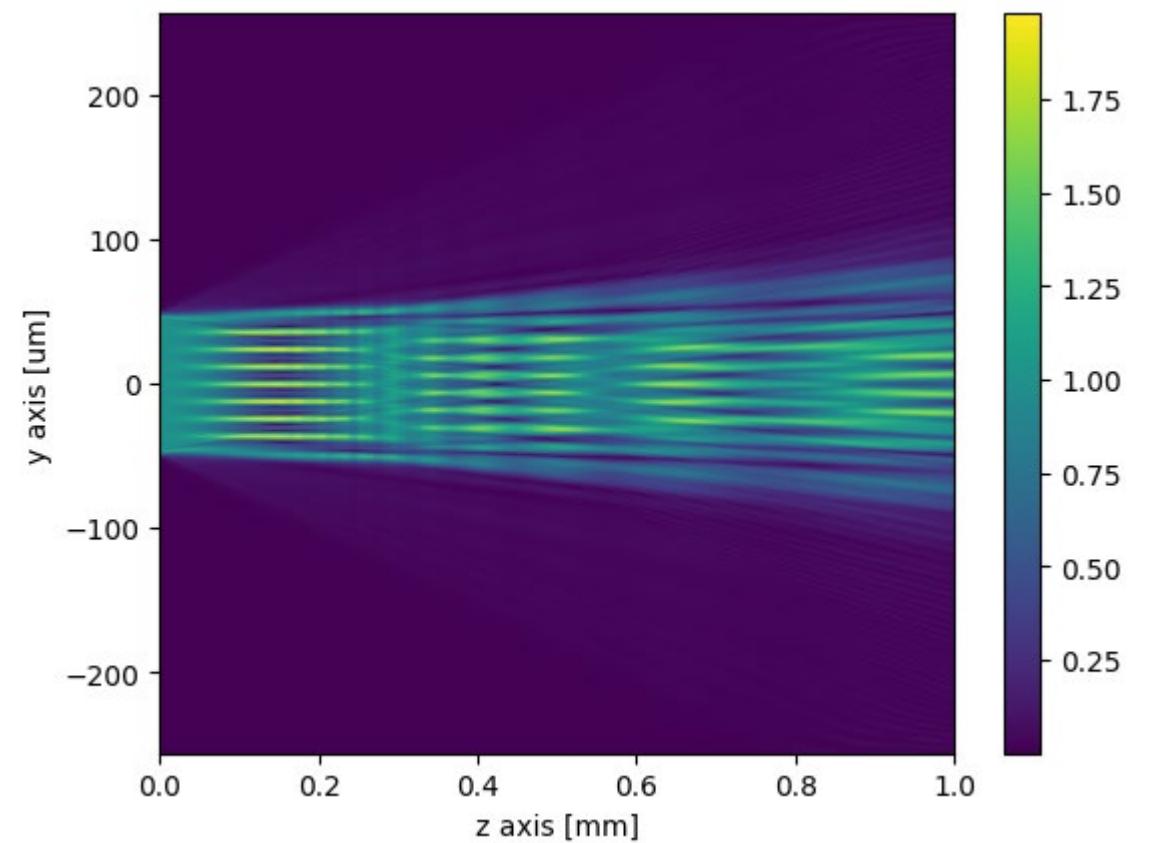


Comparison of propagation profile for 1mm

Thin



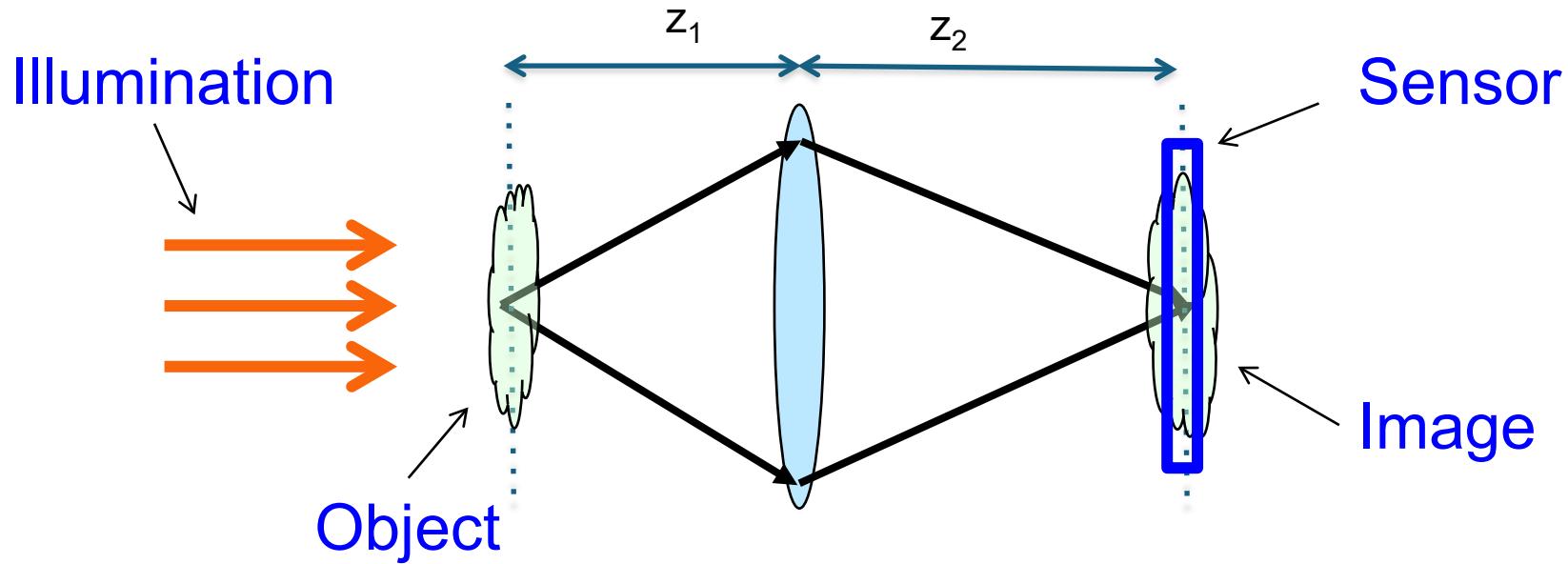
Thick



Exercise 1

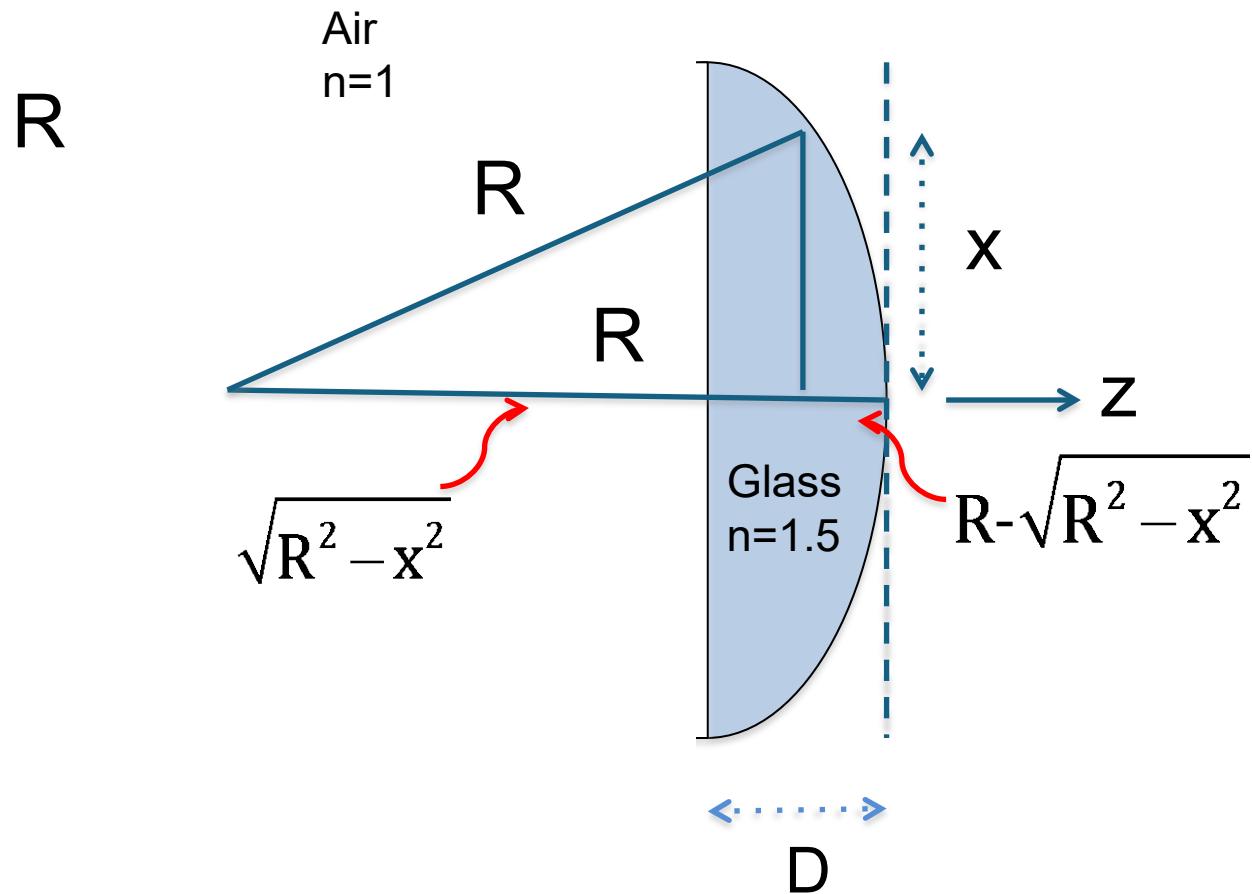
BPM code
GRIN lens at variable step size

Single Lens Imaging System



$$\frac{1}{F} = \frac{1}{z_1} + \frac{1}{z_2} \quad M = -\frac{z_2}{z_1}$$

Thin Lens

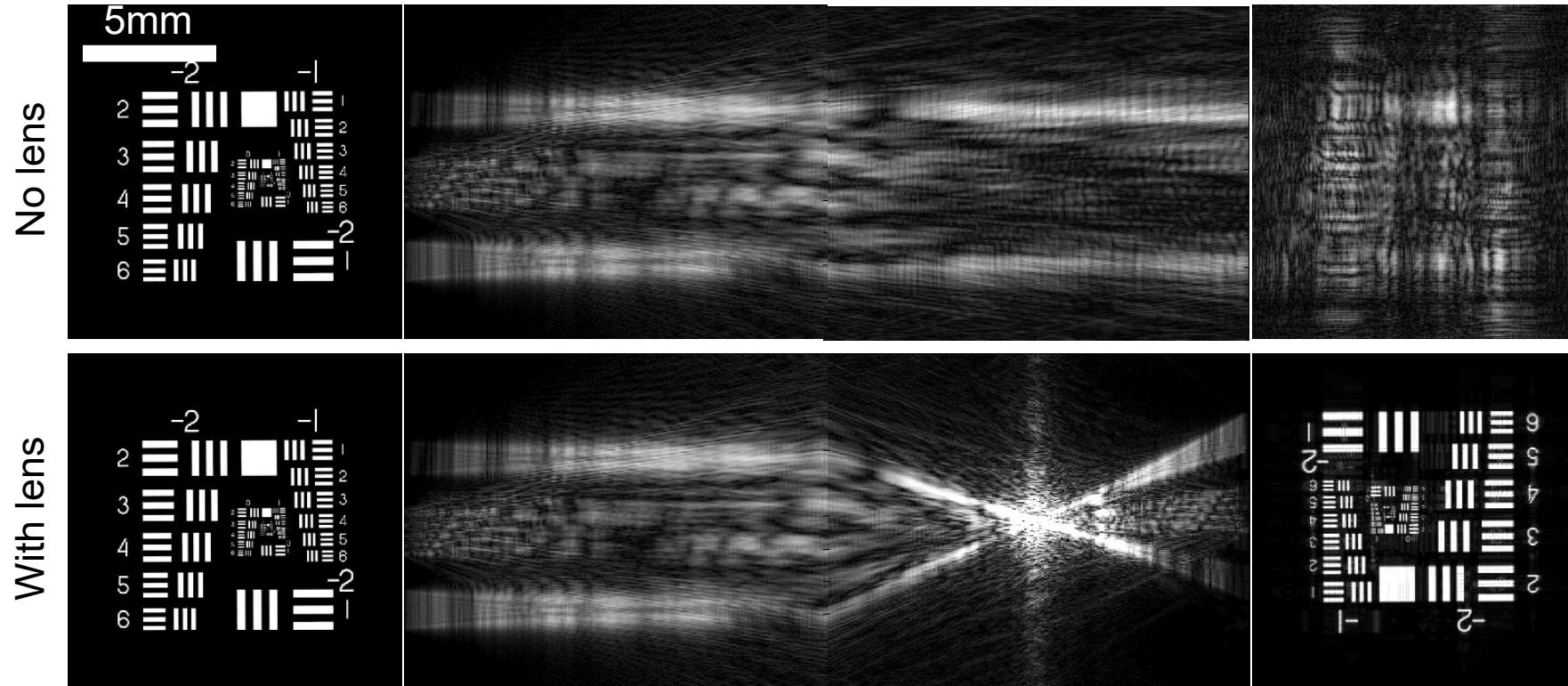


$$t_{lens} = e^{+j\frac{\pi(x^2+y^2)}{\lambda F}}$$

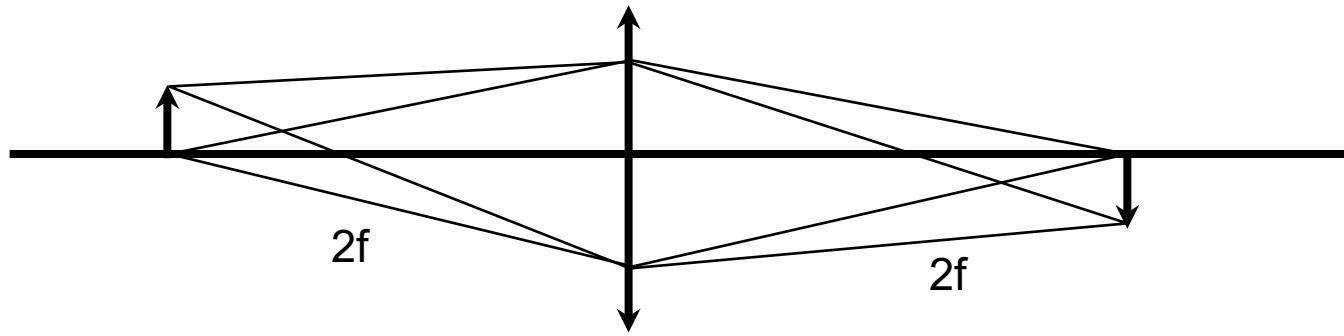
Single lens imaging simulation

Thin lens simulated by a quadratic phase multiplication:

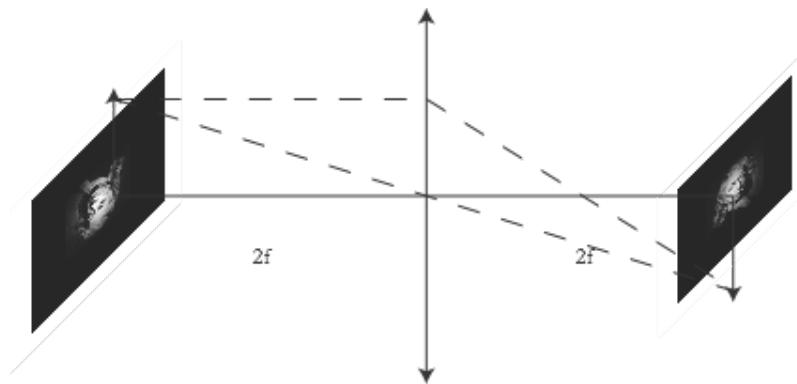
$$\exp \left[jk \frac{x^2 + y^2}{2f} \right]$$



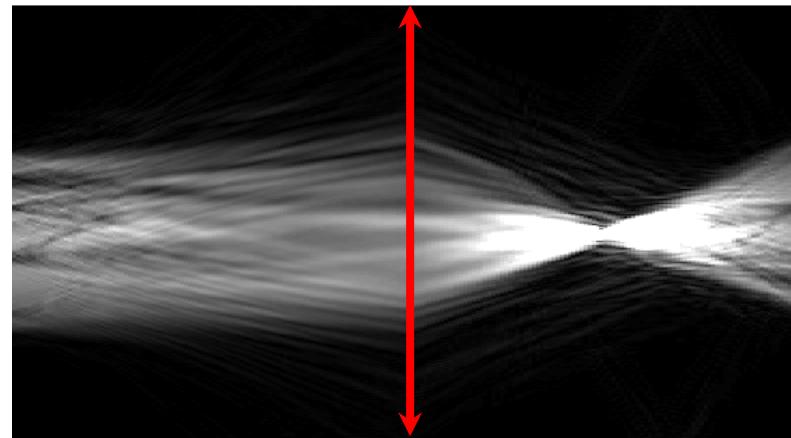
$f = 500\text{mm}$

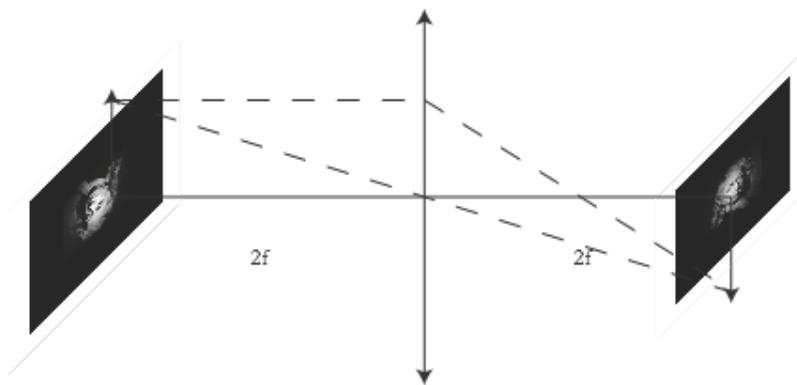


Single lens imaging simulation



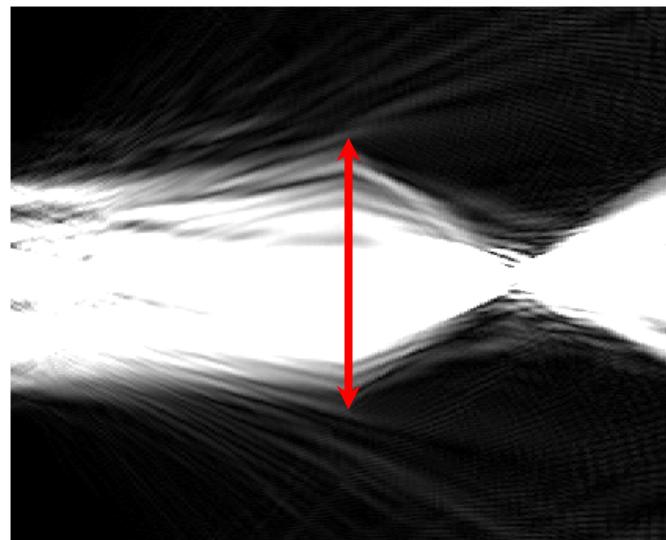
The image is reproduced (inverted) at $2f$ away from the lens

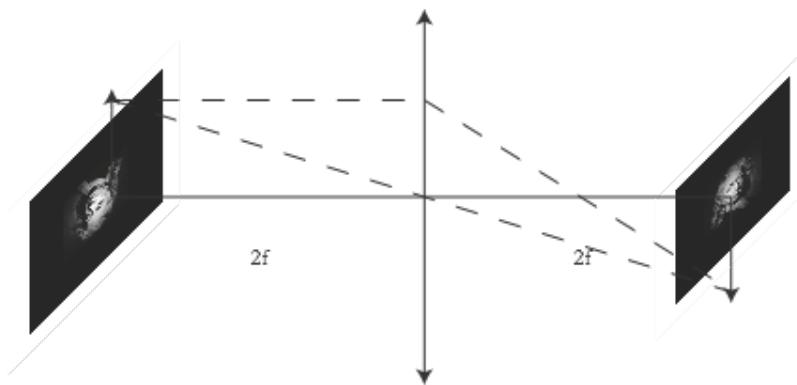




Same scheme as earlier, only the lens is now **finite**

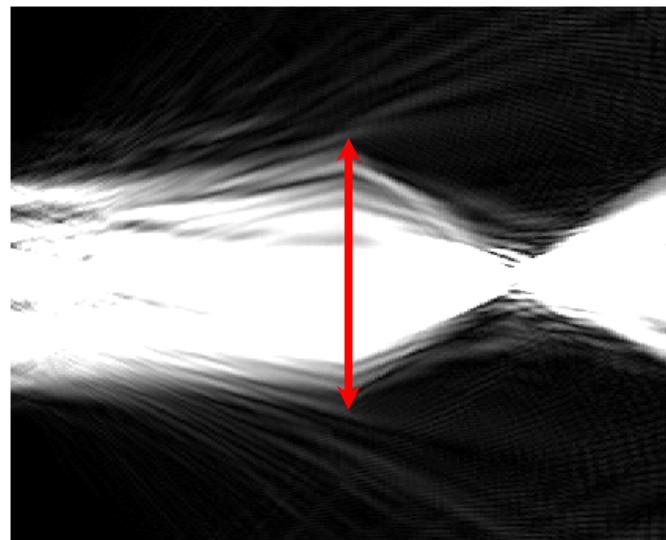
The resolution of the image is worse than before.





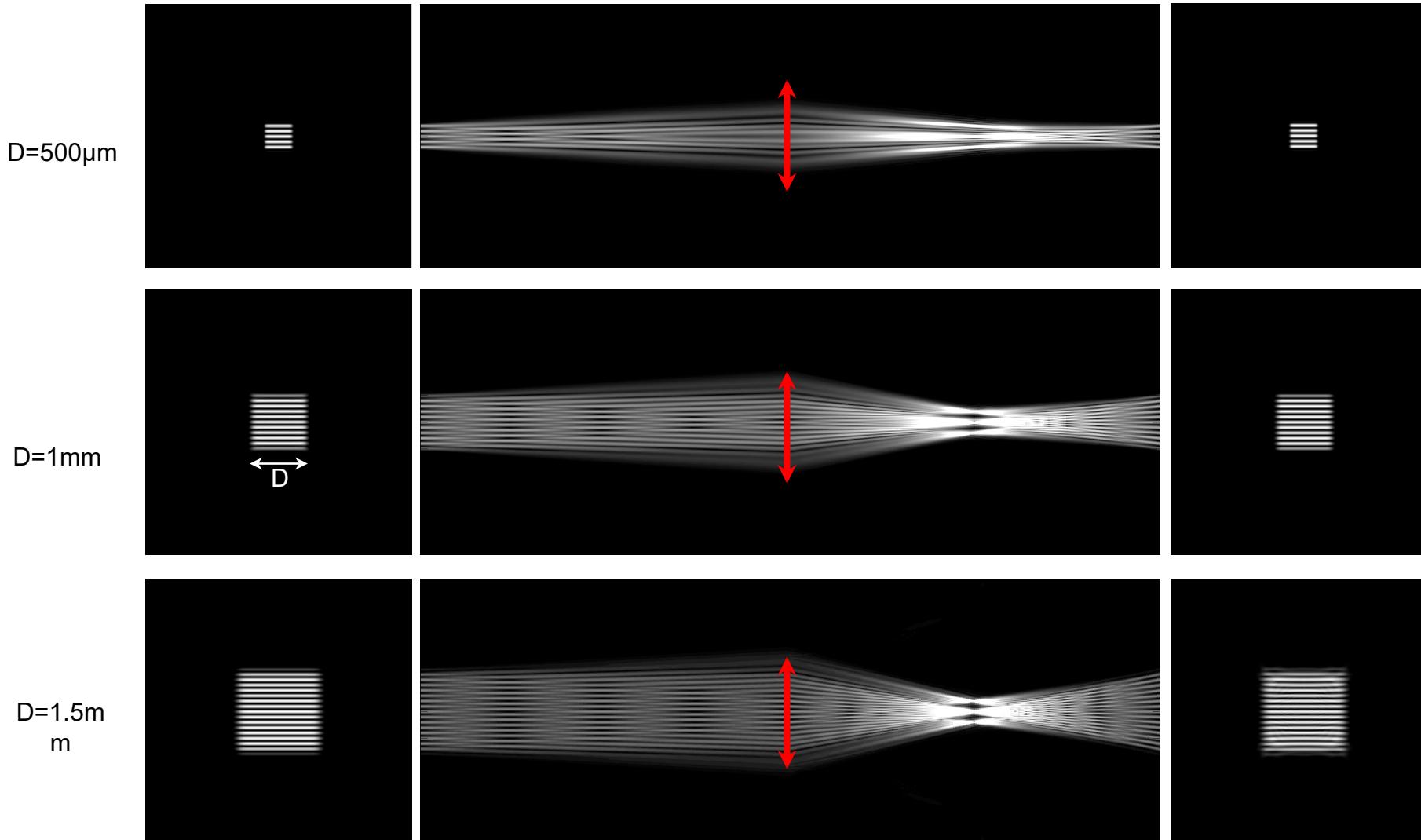
Same scheme as earlier, only the lens is now **finite**

The resolution of the image is worse than before.



Object size vs finite aperture lens (not far field)

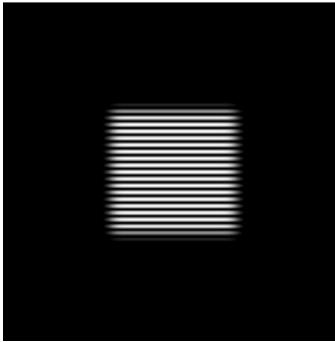
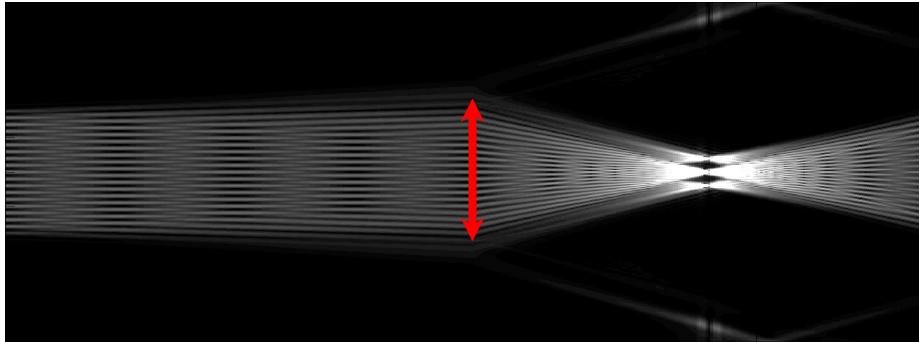
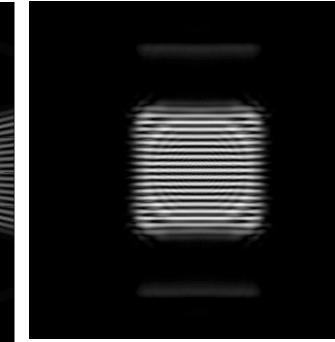
Lens diameter 2mm



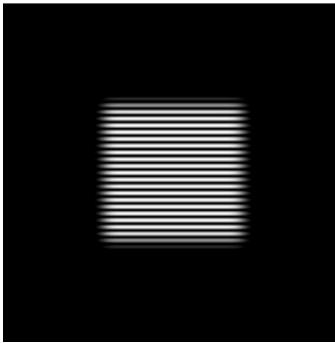
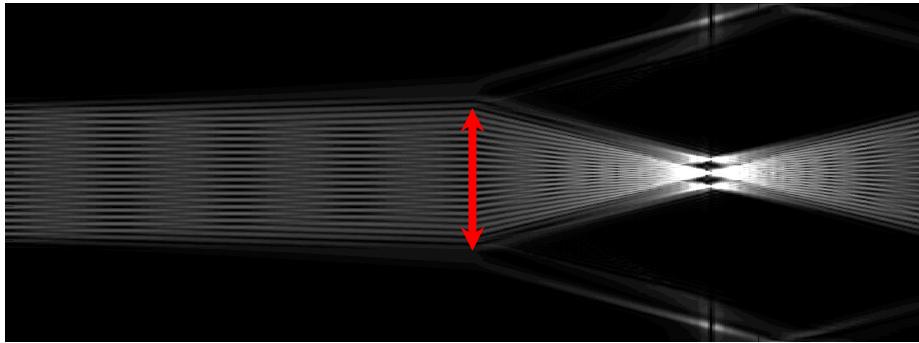
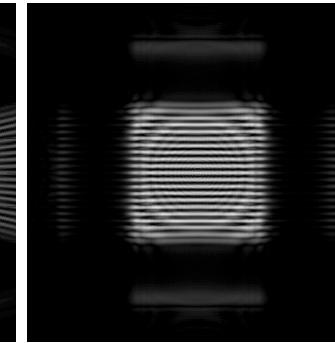
Object size vs finite aperture lens (not far field)

Lens diameter 2mm

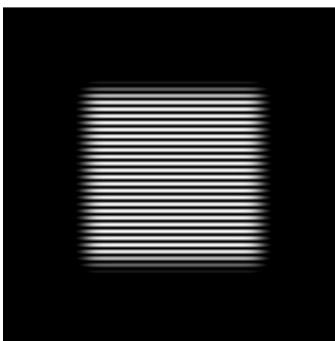
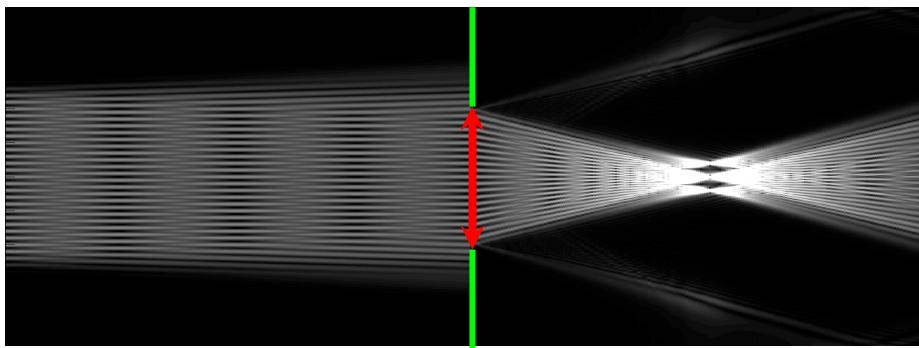
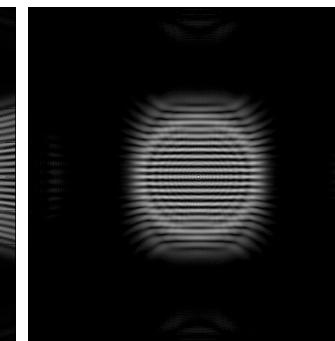
D=1.8mm



D=2mm

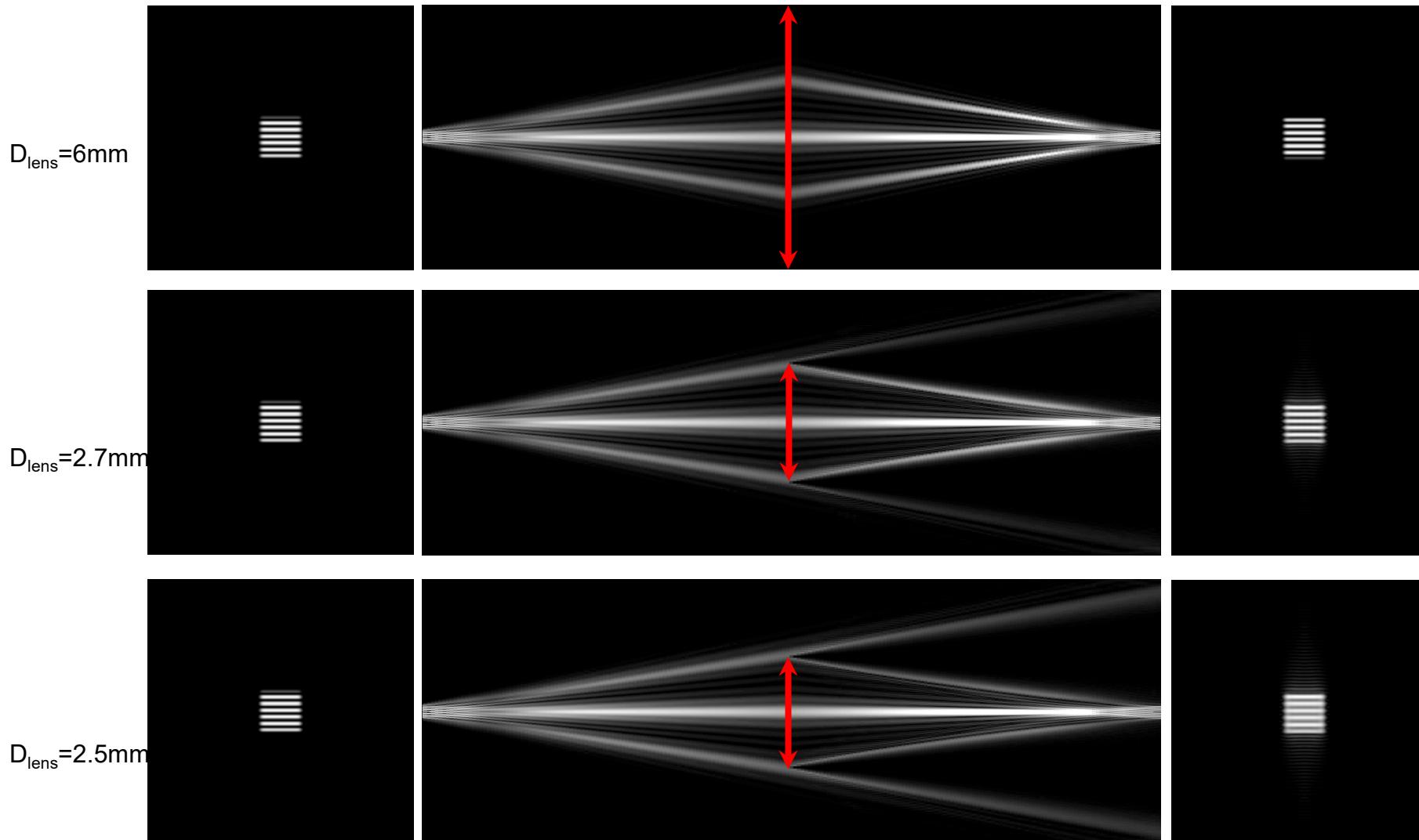


D=2.5m
m



Object resolution vs varying lens aperture

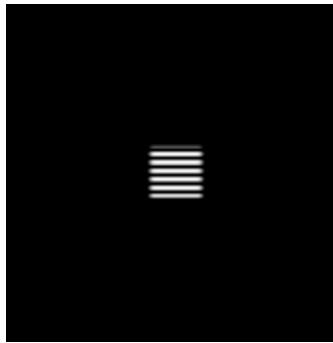
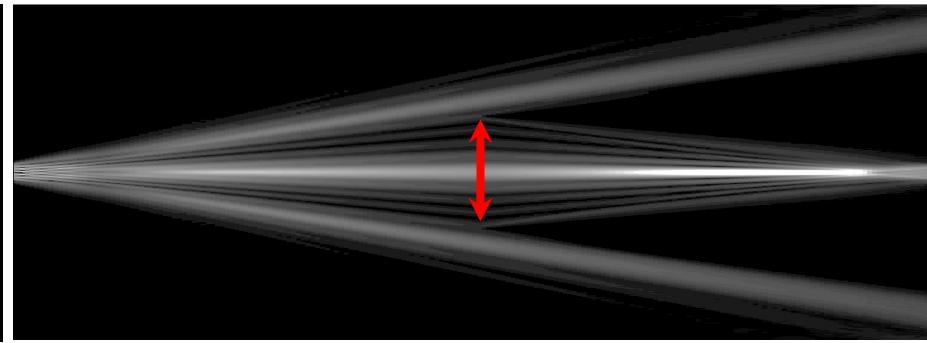
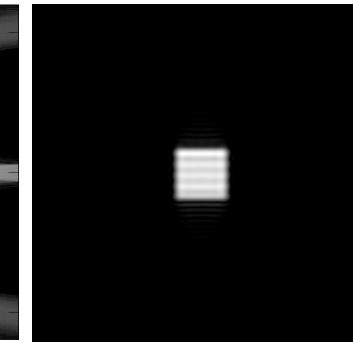
Object side 0.3mm



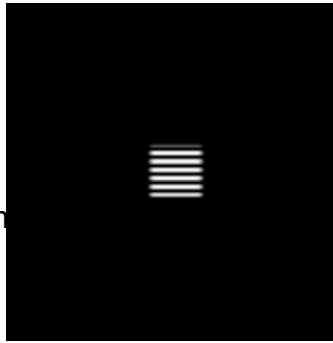
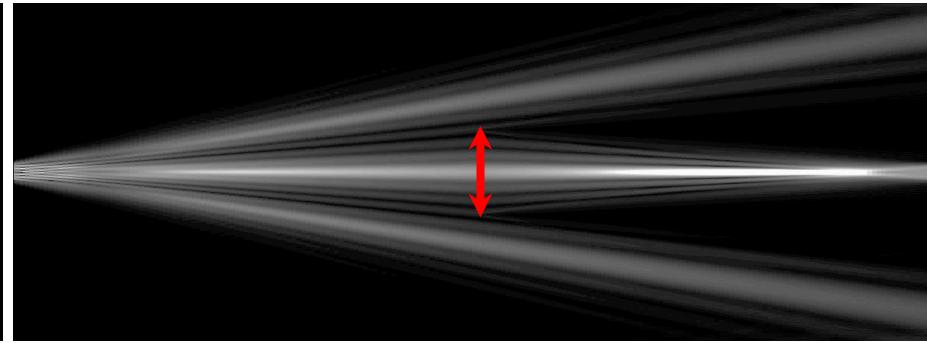
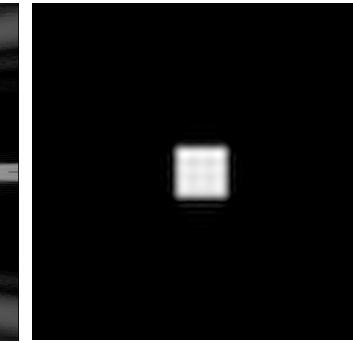
Object resolution vs varying lens aperture

Object side 0.3mm

$D_{\text{lens}} = 2\text{mm}$



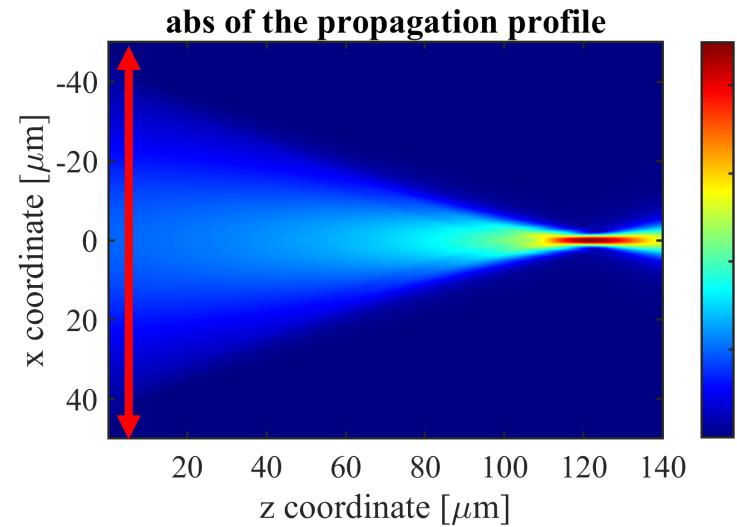
$D_{\text{lens}} = 1.5\text{mm}$



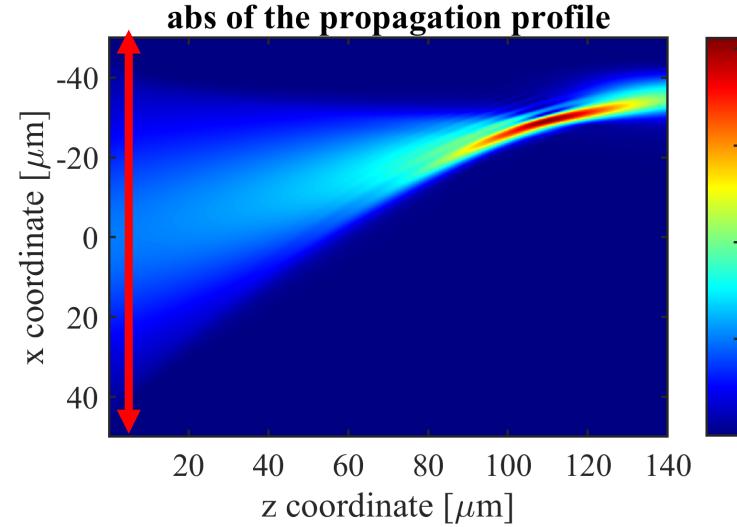
Ideal thin lens – 2D BPM

$F=120\mu\text{m}$

$\Theta=0^\circ$

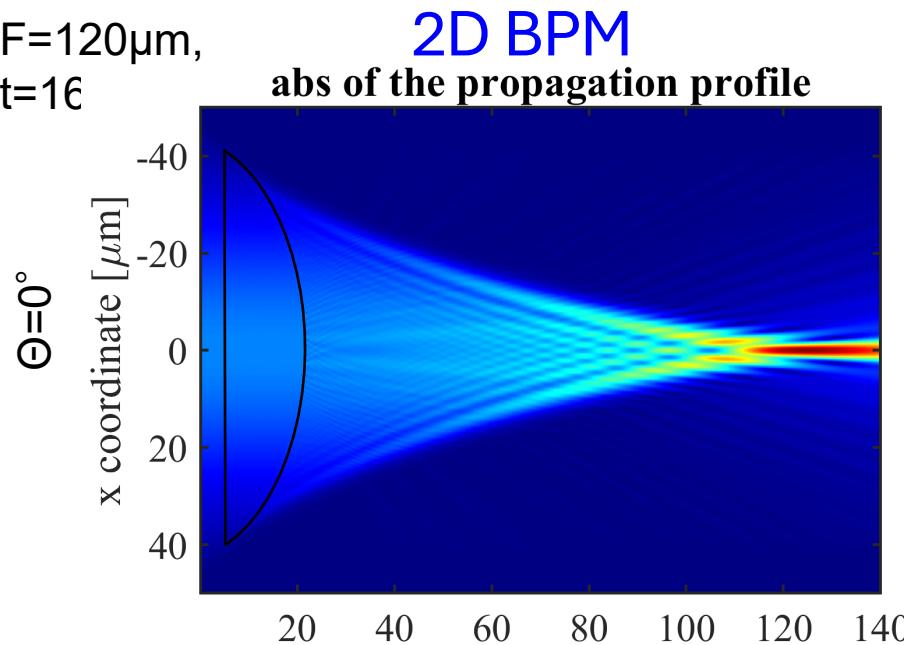


$\Theta=15^\circ$

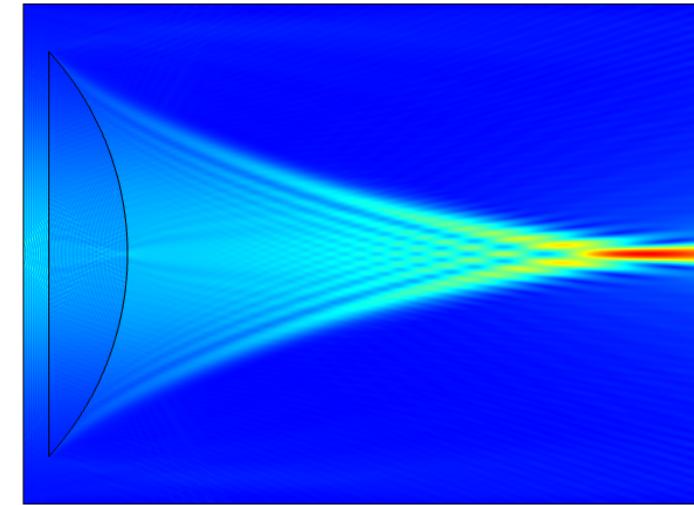
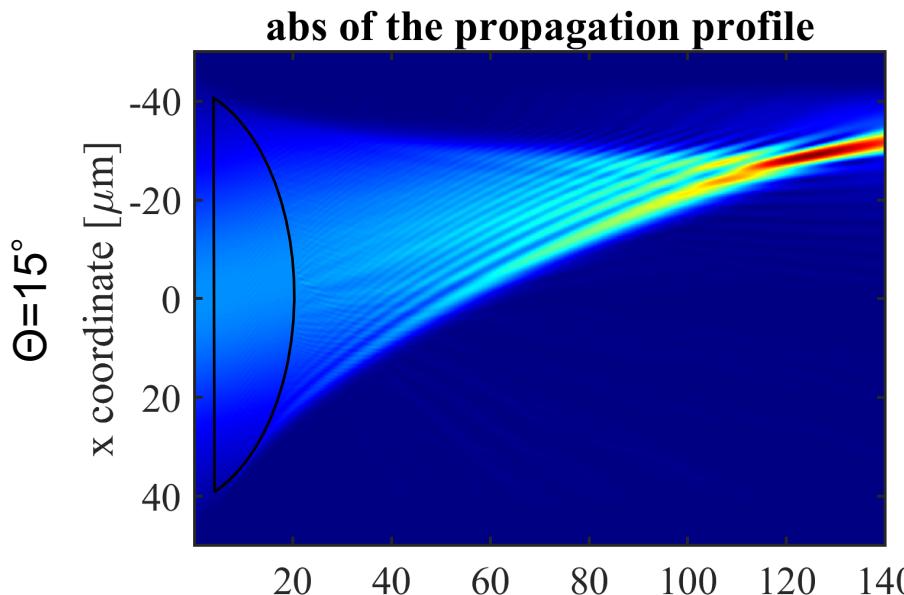
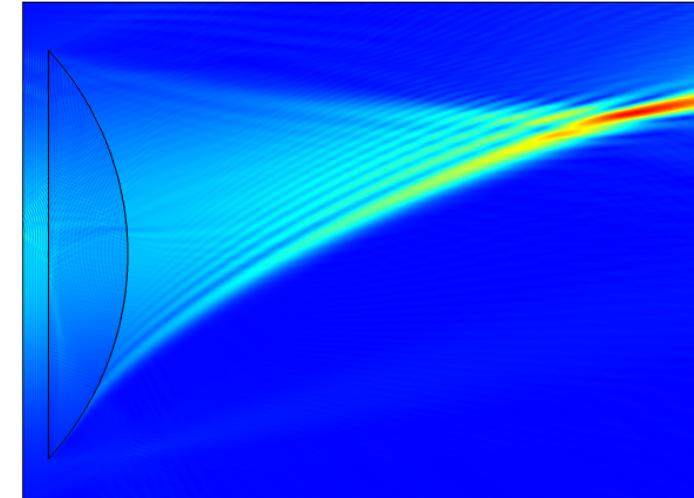


Physical implementation with quadratic surface

$F=120\mu\text{m}$,
 $t=16$



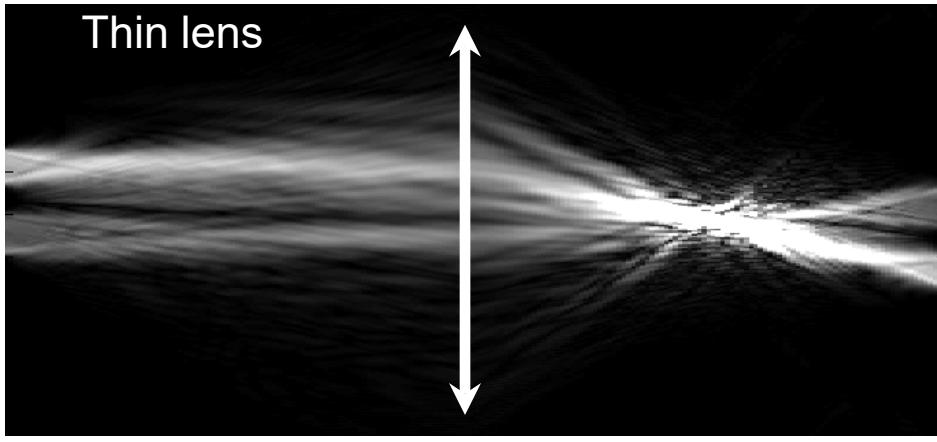
2D COMSOL



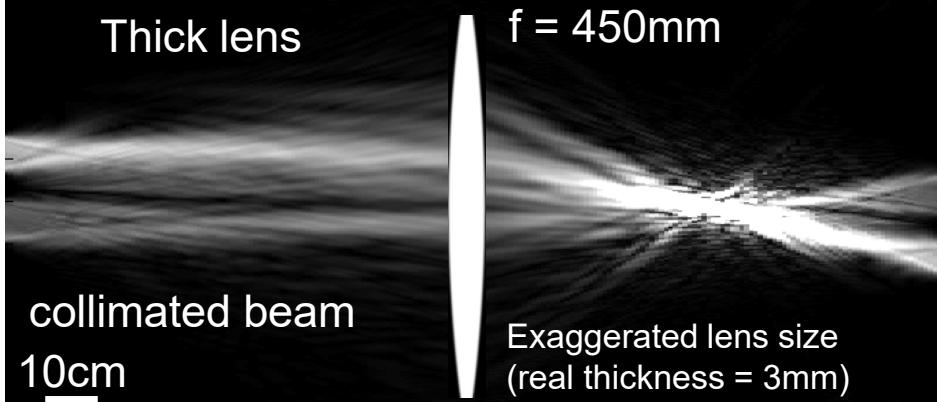
Simulation of a thick lens using BPM

$\lambda = 800\text{nm}$

2mm



Thick lens

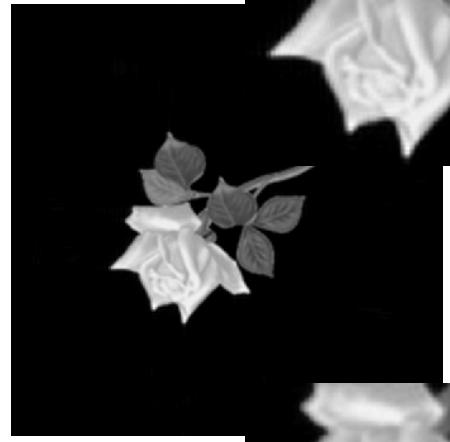


$f = 450\text{mm}$

Exaggerated lens size
(real thickness = 3mm)

Thick lens

diverging beam
(higher angles)



Exercise 2

Shape of ideal, thin lens
versus thick lens