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Materials and Methods 

Materials 

The ramp test patterns in Fig. 1C were printed with trimethylolpropane triacrylate 

(TMPTA) using the photoinitiator, diphenyl(2,4,6-trimethyl-benzoyl)phosphine oxide. 

Other objects were printed with a combination of monomers from Sartomer (CN2920 & 

CN981), TMPTA, and reactive diluents such as n-vinylpyrrolidone, isobornyl acrylate, 

and cyclohexane dimethanol di-vinyl ether. We also utilized the photoinitiators, 

phenylbis(2,4,6-trimethyl-benzoyl)phosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 

and 2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone along with an assortment 

of dyes from Wikoff and Mayzo. 

 

Methods 

The dead zone thickness is measured with a differential thickness technique. As 

shown in Fig. S3A, a 200 µm aluminum shim is placed between an impermeable glass 

slide and an oxygen permeable Teflon AF 2400 window. Liquid resin is then sandwiched 

between these two rigid planes and receives sequences of exposure pulses (1 sec on / 1 

sec off for 20 pulses) from the continuous liquid interface printing (CLIP) imaging unit. 

A thickness indicator is then used to measure the cured thickness on the glass slide, 

which is subtracted from 200 µm to give the equilibrium dead zone thickness. Multiple 

dots are cured with the same conditions to increase statistics. The precision of the 

thickness indicator is 0.5 μm. 

Cured thickness is measured in a similar way as shown in Fig. S3B.  Resin is placed 

on a glass slide and illuminated from below with varying dosage from the CLIP imaging 

unit.  Excess resin is then wiped away and the thickness of each dot is measured with a 

thickness indicator. Both the resin cure dosage ( ) and absorption coefficient ( ) are 

independent fit parameters and are determined from this measurement. Translation of this 

measurement, which disregards the dead zone, to CLIP is justified because the dead zone 

thickness is of order 10X thinner than the cured thickness.  

Supplementary Text 

Derivation of Eqn. 2 

Beginning with the Beer-Lambert absorption law, , the number of photons per unit 

area per unit time at depth, , above the build window is given by, 

          (S1) 

where  is the resin absorption coefficient and  is the incident photon flux. 

Taking the derivative of S1 with respect to depth gives the number of absorbed photons 

per unit area per unit time per unit depth ( ), 

         (S2) 

Multiplying by exposure time ( ), gives the total number of absorbed photons per 

unit area per unit depth ( ). This is equivalent to the absorbed photon dosage per unit 

depth, 

         (S3) 

In order for liquid resin to solidify to a particular depth ( ), a critical absorbed 

dosage is required for cure. We call this the curing dosage ( ), 

        (S4) 
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Solving for  gives the cure thickness as a function of photon dosage ( ) and 

resin parameters,  and , 

         (S5) 

The total absorption coefficient of the resin is given by the sum of the absorption 

coefficients of the photoinitiator ( ) and passively absorbing dye ( ). Each of these 

are products of the constituent concentrations and wavelength-dependent absorptivities, 

         (S6) 

In general,  increases with addition of passively absorbing dye and can be written 

in terms of the curing dosage without dye ( ), 

          (S7) 

This expression can then be substituted into Eqn. S5 to give Eqn. 2 in the main text, 

         (S8) 

 

Comparison of Eqn. 2 to traditional working curve equation used in stereolithography 

Traditionally, the working curve is written in the form (16, 19), 

,         (S9) 

where  and  are the actual and critical exposures, respectively, in units of 

mJ/cm2. Exposure is synonymous with dosage and is the product of time and flux. We 

parameterize curing in this work in terms of number of absorbed photons (Eqn. 2 and 

Eqn. S8 above), instead of amount of incident energy (Eqn. S9) needed for cure. 

Describing curing in terms of photon light absorption is more akin to practices used in 

advanced polymerization modelling (21, 29) and makes switching between different 

curing wavelengths (that have different photon energy) more straightforward. By setting 

Eqn. S8 and S9 equal to each other, the more traditional  can be written in terms of 

, 

,        (S10) 

where  is Plank’s constant,  is the speed of light, and  is the peak UV curing 

wavelength in nm. Finally, making use of Eqn. S7 to rewrite Eqn. S10 in terms of the 

resin absorption coefficient, , and curing dosage, , yields 

.         (S11) 

We should note that the inhibition from dissolved oxygen in the resin above the dead 

zone is subsumed in . 

 

Derivation of Eqn. 4 

Defining,   , from Eqn. S8 gives: 

         (S12) 

Taking the derivative of Eqn. S12 with respect to time gives, 

           (S13) 

Using Eqn. S13, the slope of the max speed line that passes through the origin in 

Fig. S4 is given by, 
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          (S14) 

Figure S4 shows  as a function of  for different  and constant . The 

maximum speed line intersects each curve at a different . Setting Eqn. S13 equal to 

Eqn. S14 and solving for exposure time gives the curing time for maximum print speed 

( ), 

         (S15)  

Substituting Eqn. S15 into Eqn. S13 or Eqn. S14 gives the maximum print speed 

( ),   

         (S16) 

Rewriting Eqn. S16 in terms of the absorption height, , gives Eqn. 4 in the 

main text, 

        (S17) 

We should note that replenishment of resin in the dead zone by flow upward toward 

the solidifying part is rapid enough so that  does not significantly change during 

printing. Photobleaching experiments confirmed that very little photoinitiator reacts 

during the CLIP process, which would reduce  (and thus increase ) over time. 

 

Notes regarding units 

In this work, the following are used: 

 is the photon flux in units of  

 is the absorption coefficient in units of  

 is the resin curing dosage in units of  

 is the print speed in units of  . Multiply by 3.6 to convert to mm/hr. 
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Fig. S1. Free radicals either inhibit oxygen or initiate polymerization.  

A photoexcited photoinitiator (PI) can either be quenched with oxygen or cleave to form 

a radical (R*). The radical can then either react with oxygen to form peroxide or initiate 

and propagate polymerization (i.e., curing). 
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Fig. S2. CLIP removes sequential steps from traditional stereolithography (SL).  

Traditional stereolithography first exposes resin to UV light, which causes cured 

adhesion to a build window such as glass. Next, the part must be mechanically separated, 

followed by resin re-coating and part re-positioning, before the next layer can be 

exposed. CLIP, with a permanent liquid interface at the window, allows the part to be 

continuously exposed while elevating, thereby eliminating three steps in the process. 



 

 

7 

 

 

 

 

 

Fig. S3. Measuring dot thickness to quantify dead zone and cure thickness.  

(A) Schematic of differential dead zone thickness measurement. (B) Photograph of cured 

thickness as a function of photon flux and exposure time. Each exposed dot has a 

diameter of 3 mm. 



 

 

8 

 

 

Fig. S4. Maximum print speed is identical for resins with different photoinitiator 

concentration.  

Cured thickness ( ) as a function of exposure time ( ) according to Eqn. S5 for different 

absorption heights ( ) (changed by adjusting photoinitiator absorption coefficient ( ) 

which also changes resin absorption coefficient ( ). No dye is used.). The maximum 

possible speed print speed occurs at the tangent line with steepest slope that passes 

through the origin. 
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Movie S1. Gyroid printed at 500 mm/hr.  

The movie play speed is varied from 8X fast-forward to real-time as indicated throughout 

the movie.  Both a measurement ruler and timer are placed beside the printing part for 

reference. The first two mm of the part is printed below 500 mm/hr to reduce the suction 

forces when the build support plate is close to the window. 
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Movie S2. Argyle printed at 500 mm/hr.  

The movie play speed is varied from 8X fast-forward to real-time as indicated throughout 

the movie.  Both a measurement ruler and timer are placed beside the printing part for 

reference. The first two mm of the part is printed below 500 mm/hr to reduce the suction 

forces when the build support plate is close to the window. 
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