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Materials and Methods

Materials

The ramp test patterns in Fig. 1C were printed with trimethylolpropane triacrylate
(TMPTA) using the photoinitiator, diphenyl(2,4,6-trimethyl-benzoyl)phosphine oxide.
Other objects were printed with a combination of monomers from Sartomer (CN2920 &
CNO981), TMPTA, and reactive diluents such as n-vinylpyrrolidone, isobornyl acrylate,
and cyclohexane dimethanol di-vinyl ether. We also utilized the photoinitiators,
phenylbis(2,4,6-trimethyl-benzoyl)phosphine oxide, 1-hydroxycyclohexyl phenyl ketone,
and 2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone along with an assortment
of dyes from Wikoff and Mayzo.

Methods

The dead zone thickness is measured with a differential thickness technique. As
shown in Fig. S3A, a 200 pum aluminum shim is placed between an impermeable glass
slide and an oxygen permeable Teflon AF 2400 window. Liquid resin is then sandwiched
between these two rigid planes and receives sequences of exposure pulses (1 secon/1
sec off for 20 pulses) from the continuous liquid interface printing (CLIP) imaging unit.
A thickness indicator is then used to measure the cured thickness on the glass slide,
which is subtracted from 200 um to give the equilibrium dead zone thickness. Multiple
dots are cured with the same conditions to increase statistics. The precision of the
thickness indicator is 0.5 pm.

Cured thickness is measured in a similar way as shown in Fig. S3B. Resin is placed
on a glass slide and illuminated from below with varying dosage from the CLIP imaging
unit. Excess resin is then wiped away and the thickness of each dot is measured with a
thickness indicator. Both the resin cure dosage (D,) and absorption coefficient (z) are
independent fit parameters and are determined from this measurement. Translation of this
measurement, which disregards the dead zone, to CLIP is justified because the dead zone
thickness is of order 10X thinner than the cured thickness.

Supplementary Text
Derivation of Eqn. 2

Beginning with the Beer-Lambert absorption law, €, the number of photons per unit
area per unit time at depth, z, above the build window is given by,

® = Ppe™ (S1)

where @ is the resin absorption coefficient and € is the incident photon flux.
Taking the derivative of S1 with respect to depth gives the number of absorbed photons
per unit area per unit time per unit depth (4),

A=ad,e™™ (S2)

Multiplying by exposure time (t), gives the total number of absorbed photons per
unit area per unit depth (2). This is equivalent to the absorbed photon dosage per unit
depth,

D = ad,te” = (S3)

In order for liquid resin to solidify to a particular depth (z..), a critical absorbed
dosage is required for cure. We call this the curing dosage (2.),

D, = adyte” 5 (S4)




Solving for z_, gives the cure thickness as a function of photon dosage (¥,t) and
resin parameters, @ and D_,

Z.. = i In (E*"r} (S5)

g
The total absorption coefficient of the resin is given by the sum of the absorption
coefficients of the photoinitiator (ep;) and passively absorbing dye (ap,,.). Each of these
are products of the constituent concentrations and wavelength-dependent absorptivities,
a = ap + ap,, (S6)
In general, D_ increases with addition of passively absorbing dye and can be written
in terms of the curing dosage without dye (D),

D, = Dep 2 (S7)
apy

This expression can then be substituted into Eqn. S5 to give Eqgn. 2 in the main text,
1 apy¥Fgt

zct = E In (.F.:;T) (88)

Comparison of Egn. 2 to traditional working curve equation used in stereolithography

Traditionally, the working curve is written in the form (16, 19),
E

zZ, = i In (E_c)’ (S9)

where E and E, are the actual and critical exposures, respectively, in units of
mJ/cm?. Exposure is synonymous with dosage and is the product of time and flux. We
parameterize curing in this work in terms of number of absorbed photons (Eqgn. 2 and
Eqgn. S8 above), instead of amount of incident energy (Eqn. S9) needed for cure.
Describing curing in terms of photon light absorption is more akin to practices used in
advanced polymerization modelling (21, 29) and makes switching between different
curing wavelengths (that have different photon energy) more straightforward. By setting
Eqgn. S8 and S9 equal to each other, the more traditional E_ can be written in terms of
D,;g.,

E = 10%

c

heDog

e (S10)

where h is Plank’s constant, ¢ is the speed of light, and 4 is the peak UV curing
wavelength in nm. Finally, making use of Eqn. S7 to rewrite Eqn. S10 in terms of the
resin absorption coefficient, &, and curing dosage, D, yields

E, = 10222 (S11)

We should note that the inhibition from dissolved oxygen in the resin above the dead
zone is subsumed in D .

Derivation of Eqgn. 4
Defining, f = T—ﬂ , from Eqn. S8 gives:

Zee = 5 In(B1) (812)
Taking the derivative of Eqn. S12 with respect to time gives,
2o 519

Using Eqn. S13, the slope of the max speed line that passes through the origin in
Fig. S4 is given by,



2o é!n(,[?t}

(3 (3

Figure S4 shows z_., as a function of t for different a; and constant D_,. The
maximum speed line intersects each curve at a different z.,. Setting Eqn. S13 equal to
Eqgn. S14 and solving for exposure time gives the curing time for maximum print speed
(tmaz),

gy = — (S15)

Substituting Eqn. S15 into Egn. S13 or Eqgn. S14 gives the maximum print speed
(Smax),

S = — (S16)

Rewriting Egn. S16 in terms of the absorption height, h, = i gives Eqgn. 4 in the

main text,

_Bhy _ opr¥phy
Fmax — el | gt Dy (817)

We should note that replenishment of resin in the dead zone by flow upward toward
the solidifying part is rapid enough so that a; does not significantly change during
printing. Photobleaching experiments confirmed that very little photoinitiator reacts
during the CLIP process, which would reduce a; (and thus increase h,) over time.

(S14)

Notes regarding units
In this work, the following are used:

@, is the photon flux in units of —

cm= s
e is the absorption coefficient in units of #im

=

D_ is the resin curing dosage in units of

em® um

Smax 1S the print speed in units of % . Multiply by 3.6 to convert to mm/hr.
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Fig. S1. Free radicals either inhibit oxygen or initiate polymerization.

A photoexcited photoinitiator (PI) can either be quenched with oxygen or cleave to form
a radical (R*). The radical can then either react with oxygen to form peroxide or initiate
and propagate polymerization (i.e., curing).
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Fig. S2. CLIP removes sequential steps from traditional stereolithography (SL).

Traditional stereolithography first exposes resin to UV light, which causes cured
adhesion to a build window such as glass. Next, the part must be mechanically separated,
followed by resin re-coating and part re-positioning, before the next layer can be
exposed. CLIP, with a permanent liquid interface at the window, allows the part to be
continuously exposed while elevating, thereby eliminating three steps in the process.
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Fig. S3. Measuring dot thickness to quantify dead zone and cure thickness.

(A) Schematic of differential dead zone thickness measurement. (B) Photograph of cured
thickness as a function of photon flux and exposure time. Each exposed dot has a

diameter of 3 mm.
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Fig. S4. Maximum print speed is identical for resins with different photoinitiator
concentration.

Cured thickness (Z<¢) as a function of exposure time (*) according to Eqn. S5 for different
absorption heights (hA) (changed by adjusting photoinitiator absorption coefficient (%=r)

which also changes resin absorption coefficient (%). No dye is used.). The maximum
possible speed print speed occurs at the tangent line with steepest slope that passes
through the origin.



Movie S1. Gyroid printed at 500 mm/hr.

The movie play speed is varied from 8X fast-forward to real-time as indicated throughout
the movie. Both a measurement ruler and timer are placed beside the printing part for
reference. The first two mm of the part is printed below 500 mm/hr to reduce the suction
forces when the build support plate is close to the window.



Movie S2. Argyle printed at 500 mm/hr.

The movie play speed is varied from 8X fast-forward to real-time as indicated throughout
the movie. Both a measurement ruler and timer are placed beside the printing part for
reference. The first two mm of the part is printed below 500 mm/hr to reduce the suction

forces when the build support plate is close to the window.
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