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Key concepts Lecture 1 and 2

Energy and probability (P)

Boltzmann Distribution (BD)

Average Thermal Energy — importance of kT

Transformations and use of BD — predict likelihood of transformations
Thermodynamics reminder

Free energy = energy available to do work with

Material to study, Lecture 1 and 2
D. Ben-Amotz: Understanding Physical Chemistry:
Chapter 1: page 15 (start at section 1.2) — 50 (halfway section 1.5)



Lecture 3

Topic 1: Probability and thermodynamics
Topic 2: Specific Interactions in liquids

Materials to study, Lecture 3:

JN Israelachvilli: Intermolecular and surface forces:
Chapter 1: 1.6

Chapter 2: paragraphs: 2.1, 2.2, 2.3, 2.4, 2.6, 2.7.



Remainder of topic 1:
Probability and thermodynamics

Energy and probability
Boltzmann Distribution (BD)
Average Thermal Energy
Transformations and use of BD
Thermodynamics reminder

Free energy

Interaction energy & pair potential
Long & short-ranged interactions

Materials to study, Lecture 3:

JN Israelachvilli: Intermolecular and surface forces:
Chapter 1: 1.6

Chapter 2: paragraphs: 2.1, 2.2, 2.3, 2.4, 2.6, 2.7.



Chemical Equilibrium

The interaction energy can be coupled to the Boltzmann distribution

In a system that has many regions n with different partial
concentrations X,, and interaction energies u}, under chemical
equilibrium and constant P,T we have:

b +kTIn X,,= u

Constant u in the whole system
(distribution of states / molecules
such that this condition is
achieved)



Chemical Equilibrium

Thermal energy (TS)
S=klIn X,,

|

ub +kThn X,,= u

I

Interaction energy of Chemical potential
species n = total average free energy per
(determined by the molecule

specific interactions we
will treat next & related
to the pair interaction

energy w(r))



Interactions in liquids

In a liquid every molecule interacts with other molecules, changing
partners and having sometimes multiple types of interactions. These
many-body interactions are of different nature — some general
examples:

Approximate mqolecules as spheres
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Movement of a solute s requires the displacement of medium molecule m
to make place for molecule s (making and breaking interactions between s

and m)



Interactions in liquids
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Making place for s:
Form a hole (cavity),
move m out of the way
and displace s




Interactions in liquids

Definitions for the interaction energy of a molecule n in a medium:
= Interaction energy
or Self energy

_ or Cohesive energy

ul = Z all interactions -

The interaction between 2 molecules is given by the pair potential w(r):

‘ ‘ __dw(r)— Pair potential [J]
&8 o

Force of 1 on 2 (& vice versa) [N]




Interactions in liquids

Definitions for the interaction energy of a molecule n in a medium:

i

Un

—

= |Interaction energy
= Z all interactions — or Self energy
or Cohesive energy

—

The interaction between 2 molecules is given by the pair potential w(r):
=The average interaction of one molecule with another.

w(r)

A

epulsion Repulsion between electron clouds (Pauli
dominates repulsion) — for all molecules

I,

» Attractive & more weakly repulsive

—___ interactions vary and depend on structure
3:25:;25 & charge distribution



Interactions in liquids

Definitions for the interaction energy of a molecule n in a medium:

—

= Interaction energy
or Self energy
_ or Cohesive energy

i

Uy = Z all interactions —

The interaction between 2 molecules is given by the pair potential w(r):

A
repulsion Thermal energy = kT
= ~ energy available to do work with.

If lw(ry)| < kT, the thermal energy is strong

| enough to break the pair-wise interaction
ﬂt If l|w(ry)| > kT, the thermal energy cannot

overcome the pair-wise potential barrier




Interactions in liquids

How are the interaction energy (,u,ﬁ) and pair potential (w(r)) in a liquid
related?

S i _
s: solute Un= a Wps — b Wy,

m: medium Pair interactions Pair interactions
that are formed that are broken
between s and m between m and m

Example of breaking and forming bonds:
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Interactions in liquids

How are the interaction energy (/Vt,il) and pair potential (w) in a liquid
related?

S .
J s: solute Un= a Wps — b wpy
m: medium Pair interactions Pair interactions
that are formed that are broken

between s and m between m and m

For a hard sphere (Lennard-Jones) liquid this is: ul,= 12w,,s — 6W,,,
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One more general thing:
What is the length scale of interactions?

This depends on the functional form of
the pair potential



Topic 1: Probability and thermodynamics

Energy and probability
Boltzmann Distribution (BD)
Average Thermal Energy
Transformations and use of BD
Thermodynamics reminder

Free energy

Interaction energy & pair potential
Long & short ranged interactions

Material to study for Topic 1

D. Ben-Amotz: Understanding Physical Chemistry:

Chapter 1: page 15 (start at section 1.2) — 50 (halfway section 1.5); if this is new for you
Chapter 2: paragraphs: 2.1, 2.2, 2.3, 2.4, 2.6, 2.7.



Topic 2: Driving forces and interactions in liquids

Overview

Covalent interactions

Interactions involving charges
Interactions involving polar molecules
Interactions involving non-polar groups

Material to study for Topic 2: Chapters 3-6:
JN Israelachvilli: Intermolecular and surface forces:
Notes & Chapter 3: paragraphs: 3.1 — 3.8

Notes & Chapter 4: paragraphs: 4.1 —4.7; 4.9-4 11
Notes & Chapter 5: paragraphs: 5.1 - 5.4; 5.6;
Notes & Chapter 6: paragraph: 6.1;



Topic 2: Driving forces and interactions in liquids
Lecture 3:

Overview

Covalent interactions

Interactions involving charges:

lon-ion interactions in crystals

lon-ion interactions in liquids — Debye-Huckel theory

Material to study for Lecture 3:

JN Israelachvilli: Intermolecular and surface forces:
Chapter 3.1 — 3.8



Specific interactions in liquids

Binding energies
Charge-dipole

energy (/) 10*interactions 10°*° 10+ lﬂ‘ - '
energy (keT) 1 10 .
Van-der-Waals H-bond 100-300
Interactions
London lonic intefactions e
K.eesom_ (for an ion pair in
Dispersion

vacuum)

These interactions are considered as pair potentials (w(r))
to understand the interplay of many body interactions —
they are all of importance for understanding liquids

Slide: E. Amstad; Soft Matter



Table 2.2 Common Types of Interactions and their Pair-Potentials wi(r) between Two
Atoms, lons, or Small Molecules in a Vacuum (& = 1)®

Type of interaction Interaction energy wir)
Covalent, metallic Complicated, short range
(H H) He H,0
Charge—charge @ ¥ & +Q, @+ dmeyr (Coulomb energy)
—_—
u Y
, by
Charge—dipole 11 - —Qu cos Mamer
e Useful table
u Q
% —Q*uHeldme kT
Freely rotating
#y iy . .
Dipole—dipole E" r ;s* —uquz(2 cos By cos Bz — sin B4 sin 0> cos g)dregr EXp reSSIOnS WI”
always be provided
—u2u2 [3(4mey ) kT (Keasom energy) d u r'| ng the exam
Freely rotating
Charge-non-polar i ¥ il —Q al2(Ameg)’ 1"
—
u i
Dipole-non-polar ’5 L —: —uPal1 + 3 cos’ M2 dmed’ P
Fixed H
= Knowing the
":éj r : —uPaf(dmeg)® (Debye energy) general form (e g
Rotating 6 ) i
Two non-polar molecules - r : %ﬁl:'LDnan dispersion energy) 1/r ’ 1/r ’ T dep'

_o. etc. is useful)
H-.._ ‘,-"E H‘*-O/E
A%, g’ H Complicated, short range, energy roughly

H H
\:‘0” proportional to —1/r
2

“dr) s the interaction free energy or pair-potential (in 1), Q, electric charge {C); u, electric dipole moment (C m); a, electric polanzibility
(C* m? J°"); r, distance between the centers of the interacting atoms or molecules (m); k, Boltzmann constant {1.381 x 1072 JK~");
T, absolute temperature (K); h, Planck’s constart (6.626 = 107 ] s); v, electronic absorption {ionization) frequency (s ): gq, dielectric

Hydrogen bond

permittivity of free space (8.854 = 10 202 17" m ). The farce A is abiined by differentiating the energy wir) with respect to distance
r: F = —dwldr. The stabilizing repulsive “Pauli Exclusion” interactions (not shown) usually follow an exponential function wir) = exp{—rf
ra), but for simplicity they are usually modeled as power laws: wirje —1/" {where n = 9 - 12).



Covalent Interactions

Covalent bonds arise from mixing of quantum mechanical states

determined by symmetry considerations.
« Constructive interference of electronic wave functions: bonding orbitals
« Destructive interference of electronic wave functions: antibonding orbitals

2 & Aligned p,  Resultant _/:\\
orbitals mixing \ % o

: .. toforma o bond interierence

‘m | «) _ ,f"ll___,J

\H" H-:\!HH Destructive

3 I / 25 interferance

- T“‘-xL- J Aligned p, p, | _
orbitals mixing
l.l‘l 2 . . .

- to form a = bond sp? hybridization

N, (e.g. CH,)



Covalent Interactions

Covalent bonds arise from mixing of quantum mechanical states

determined by symmetry considerations.
« Constructive interference of electronic wave functions: bonding orbitals
« Destructive interference of electronic wave functions: antibonding orbitals

| Properties:
« Directional
| - Geometry dependent

=
o « Stoichiometric
. » Short-ranged (steep well)
| « Do not generally participate in phase
| : transitions, rather in chemical
nternuclear _
o f. separation Rt reactions

100 — 300 kT




Topic 2: Driving forces and interactions in liquids

Overview

Covalent interactions

Interactions involving charges

lon-ion interactions in crystals

lon-ion interactions in liquids — Debye-Huckel theory

Material to study, lecture 3:

JN Israelachvilli: Intermolecular and surface forces:
Chapter 3.1 — 3.8



Interactions in liquids

Liquids have statistical positioning of molecules with medium ranged
interactions: interactions are generally not strongly directional, specific

or stoichiometric.

Interactions between charges and dipoles, induced dipoles and non-
polar groups & H-bonds (semi-directional) are all important

Charge-charge interaction: Coulombic force
Q1 Q>

O s
> F —_ >
r 4eger

* Solubility of ions
* |on-ion interactions in crystals or in a liquid

* Born energy




Coulombic interactions

Charge-charge interaction:

Q10>
F — : W(T) — QlQZ
4-7'[8087" ATTEYET
Coulombic force Pair-potential
Properties:
 |sotropic

* Not geometry dependent

« Long ranged, w~ 1/r (but damped by counter ions / high
dielectric constant)

« 200 KT or less; depends on medium



Electrostatics Reminder

"Force [N] F— f Field [N/C]=[V/m]
019 B q Q4
F = E(r) =
() AT ET? o E (r) ATy ET?
= L(q
= ~ < M
2 © Ol S
||| ! q |I| |
I
— o r D— |
2 | &5 ol Nk
= 2 T | 5=
< R —
P = w
ATTEGET 4-7'[8081”
w=1

Pair potential [Nm]=[J]
+ Gauss law:
E-field flux through a closed surface = enclosed charge / ¢,¢

Electrostatic potential [J/C]=[V]



Predicting ion solubility:

Combining the Boltzmann distribution
and Coulombic interactions



Solubility: chemical equilibrium

Thermal energy (TS)
S=klIn X,,

|

ub +kThn X,,= u

I

Interaction energy of Chemical potential

species n = total average free energy per
(determined by the molecule

specific interactions we

will treat next & related Both terms are important for
to the pair interaction how much salt can be

energy w(r)) dissolved in a medium




The Born Energy

The Born energy is the electrostatic energy needed to keep
electrostatic charge localized on an ion. This is the self-energy
of a charged ion.

It can be computed in two ways:

* By charging a neutral sphere the size of an atom and
computing the work done

« By computing the electrostatic field energy of an ion

The Born energy can be used to compare:
(1) how well ions dissolve
(2) How ions distribute across (partition in) different media.



The Born energy can predict ion partitioning



Key concepts Lecture 3

The interaction energy is the average sum of all
interactions for a given molecule; depends on position
The pair potential is interaction energy between a pair
Relationship between interaction energy and pair potential
Importance of kT

Properties of covalent bonds

Force relevant for charge-charge interactions
Properties of Coulombic interactions

The Born energy and its use
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