

Light, Liquids & Interfaces

Micro-390

Lecture 3

Sylvie Roke

EPFL

Key concepts Lecture 1 and 2

Energy and probability (P)

Boltzmann Distribution (BD)

Average Thermal Energy – importance of kT

Transformations and use of BD – predict likelihood of transformations

Thermodynamics reminder

Free energy = energy available to do work with

Material to study, Lecture 1 and 2

D. Ben-Amotz: Understanding Physical Chemistry:

Chapter 1: page 15 (start at section 1.2) – 50 (halfway section 1.5)

Lecture 3

Topic 1: Probability and thermodynamics
Topic 2: Specific Interactions in liquids

Materials to study, Lecture 3:

JN Israelachvilli: Intermolecular and surface forces:

Chapter 1: 1.6

Chapter 2: paragraphs: 2.1, 2.2, 2.3, 2.4, 2.6, 2.7.

Remainder of topic 1: Probability and thermodynamics

Energy and probability

Boltzmann Distribution (BD)

Average Thermal Energy

Transformations and use of BD

Thermodynamics reminder

Free energy

Interaction energy & pair potential

Long & short-ranged interactions

Materials to study, Lecture 3:

JN Israelachvilli: Intermolecular and surface forces:

Chapter 1: 1.6

Chapter 2: paragraphs: 2.1, 2.2, 2.3, 2.4, 2.6, 2.7.

Chemical Equilibrium

The interaction energy can be coupled to the Boltzmann distribution

In a system that has many regions n with different partial concentrations X_n and interaction energies μ_n^i under chemical equilibrium and constant P, T we have:

$$\mu_n^i + kT \ln X_n = \mu$$

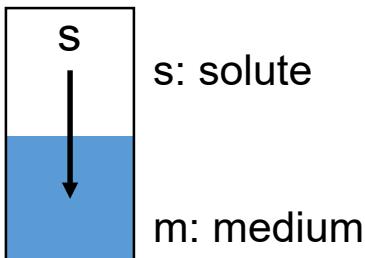
Constant μ in the whole system
(distribution of states / molecules
such that this condition is
achieved)

μ_1^i	μ_2^i	μ_3^i	\dots	
X_1	X_2	X_3	\dots	

Chemical Equilibrium

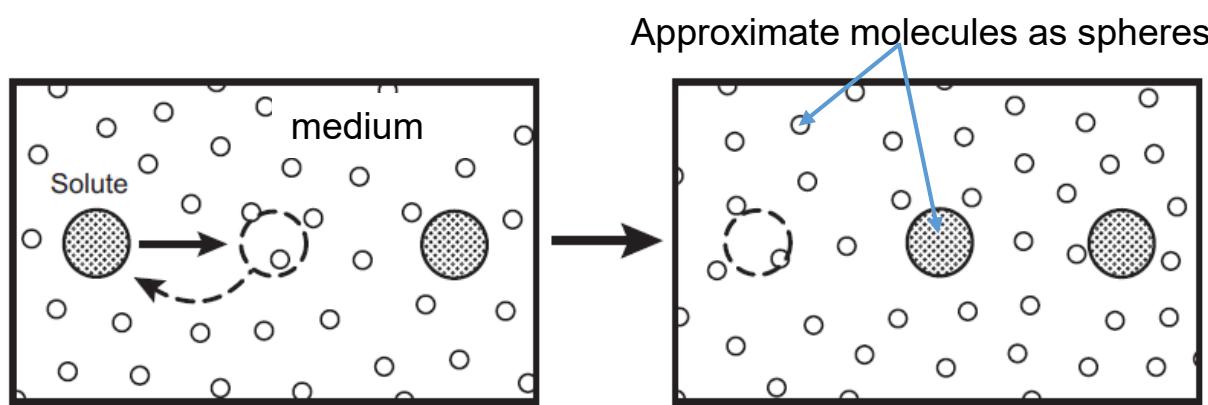
Thermal energy (TS)

$$S = k \ln X_n$$

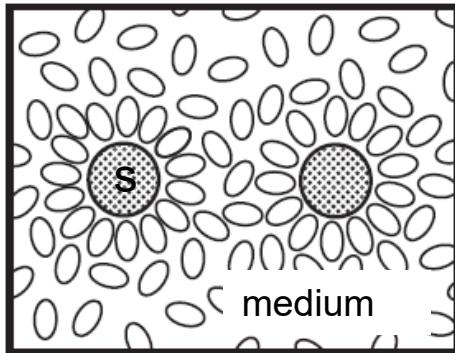

$$\mu_n^i + kT \ln X_n = \mu$$

Interaction energy of species n
(determined by the specific interactions we will treat next & related to the pair interaction energy $w(r)$)

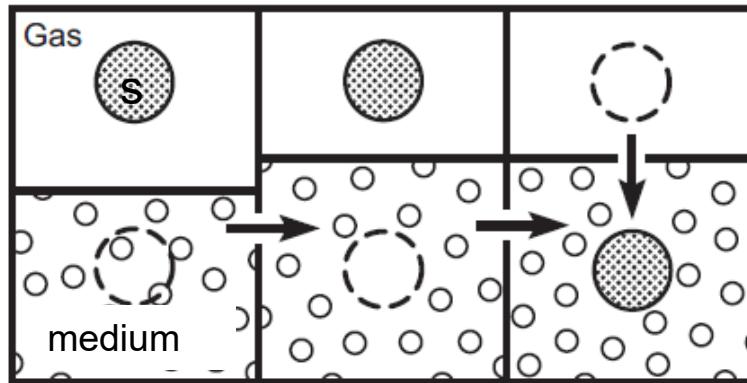
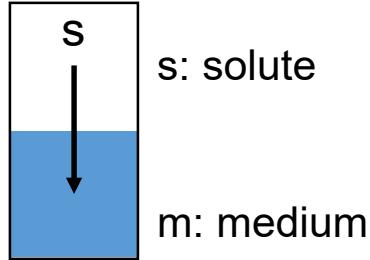
Chemical potential
= total average free energy per molecule


Interactions in liquids

In a liquid every molecule interacts with other molecules, changing partners and having sometimes multiple types of interactions. These many-body interactions are of different nature – some general examples:


s: solute

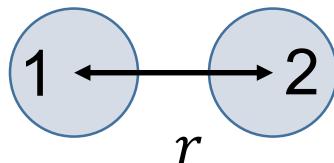
m: medium

Movement of a solute s requires the displacement of medium molecule m to make place for molecule s (making and breaking interactions between s and m)

Interactions in liquids

Rearrangement of m by s
But also: m changes properties of s


*Making place for s:
Form a hole (cavity);
move m out of the way
and displace s*

Interactions in liquids

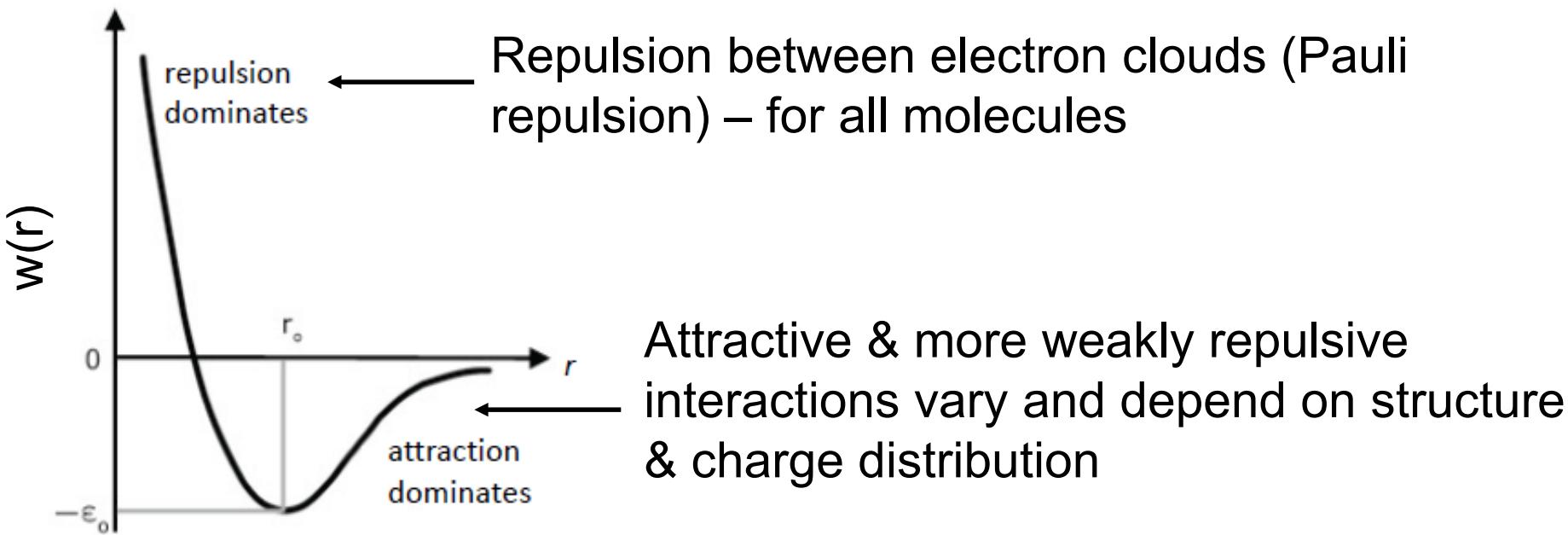
Definitions for the interaction energy of a molecule n in a medium:

$$\mu_n^i = \sum \text{all interactions} \quad \left. \right\} \quad \begin{aligned} &= \text{Interaction energy} \\ &\text{or Self energy} \\ &\text{or Cohesive energy} \end{aligned}$$

The interaction between 2 molecules is given by the pair potential $w(r)$:

$$F(r) = -\frac{dw(r)}{dr} \quad \begin{aligned} &\rightarrow \text{Pair potential [J]} \\ &\downarrow \\ &\text{Force of 1 on 2 (\& vice versa) [N]} \end{aligned}$$

Interactions in liquids

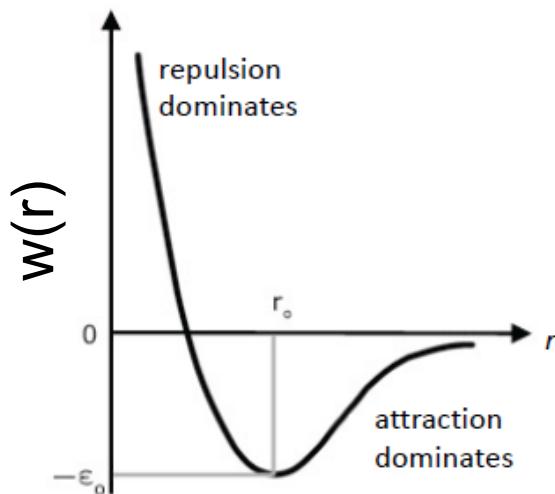

Definitions for the interaction energy of a molecule n in a medium:

$$\mu_n^i = \sum \text{all interactions}$$

} = Interaction energy
or Self energy
or Cohesive energy

The interaction between 2 molecules is given by the pair potential $w(r)$:

= The average interaction of one molecule with another.

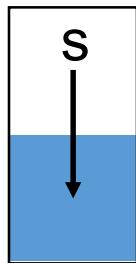

Interactions in liquids

Definitions for the interaction energy of a molecule n in a medium:

$$\mu_n^i = \sum \text{all interactions}$$

= Interaction energy
or Self energy
or Cohesive energy

The interaction between 2 molecules is given by the pair potential $w(r)$:



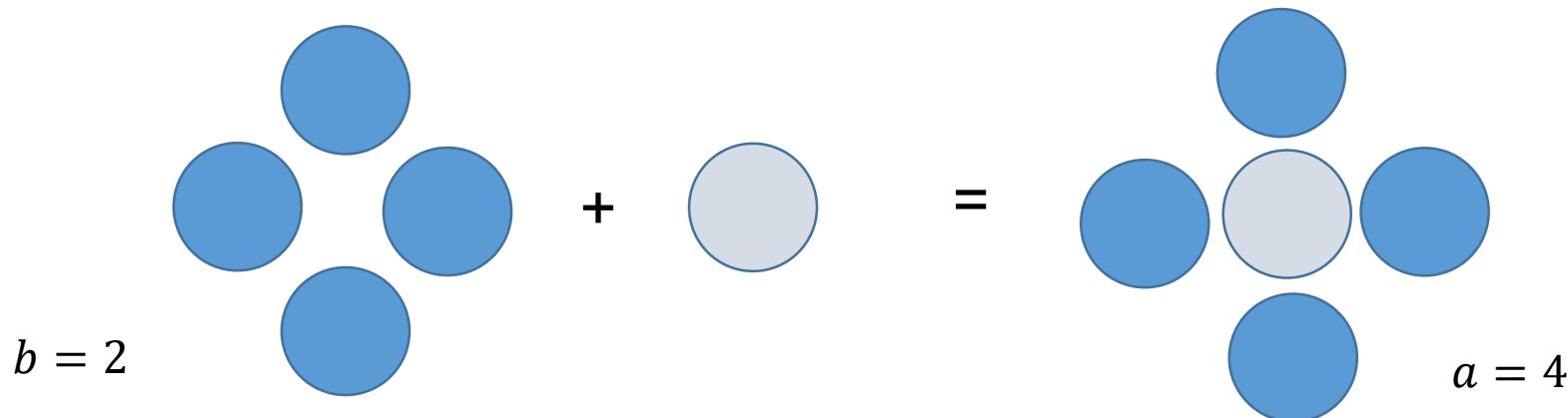
Thermal energy = kT
= \sim energy available to do work with.

If $|w(r_0)| < kT$, the thermal energy is strong enough to break the pair-wise interaction
If $|w(r_0)| > kT$, the thermal energy cannot overcome the pair-wise potential barrier

Interactions in liquids

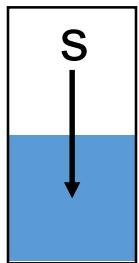
How are the interaction energy (μ_n^i) and pair potential ($w(r)$) in a liquid related?

s: solute


m: medium

$$\mu_n^i = a w_{ms} - b w_{mm}$$

Pair interactions
that are formed
between s and m


Pair interactions
that are broken
between m and m

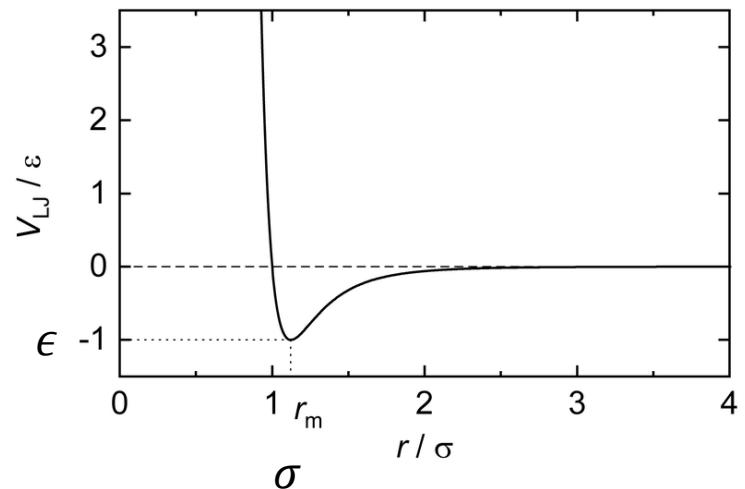
Example of breaking and forming bonds:

Interactions in liquids

How are the interaction energy (μ_n^i) and pair potential (w) in a liquid related?

s: solute

m: medium


$$\mu_n^i = a w_{ms} - b w_{mm}$$

Pair interactions
that are formed
between s and m

Pair interactions
that are broken
between m and m

For a hard sphere (Lennard-Jones) liquid this is: $\mu_n^i = 12w_{ms} - 6w_{mm}$

$$w(r) = 4\epsilon \left\{ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right\}$$

One more general thing:
What is the length scale of interactions?

This depends on the functional form of
the pair potential

Topic 1: Probability and thermodynamics

Energy and probability
Boltzmann Distribution (BD)
Average Thermal Energy
Transformations and use of BD
Thermodynamics reminder
Free energy
Interaction energy & pair potential
Long & short ranged interactions

Material to study for Topic 1

D. Ben-Amotz: Understanding Physical Chemistry:

Chapter 1: page 15 (start at section 1.2) – 50 (halfway section 1.5); if this is new for you

Chapter 2: paragraphs: 2.1, 2.2, 2.3, 2.4, 2.6, 2.7.

Topic 2: Driving forces and interactions in liquids

Overview

Covalent interactions

Interactions involving charges

Interactions involving polar molecules

Interactions involving non-polar groups

Material to study for Topic 2: Chapters 3-6:

JN Israelachvilli: Intermolecular and surface forces:

Notes & Chapter 3: paragraphs: 3.1 – 3.8

Notes & Chapter 4: paragraphs: 4.1 – 4.7; 4.9-4.11

Notes & Chapter 5: paragraphs: 5.1 - 5.4; 5.6;

Notes & Chapter 6: paragraph: 6.1;

Topic 2: Driving forces and interactions in liquids

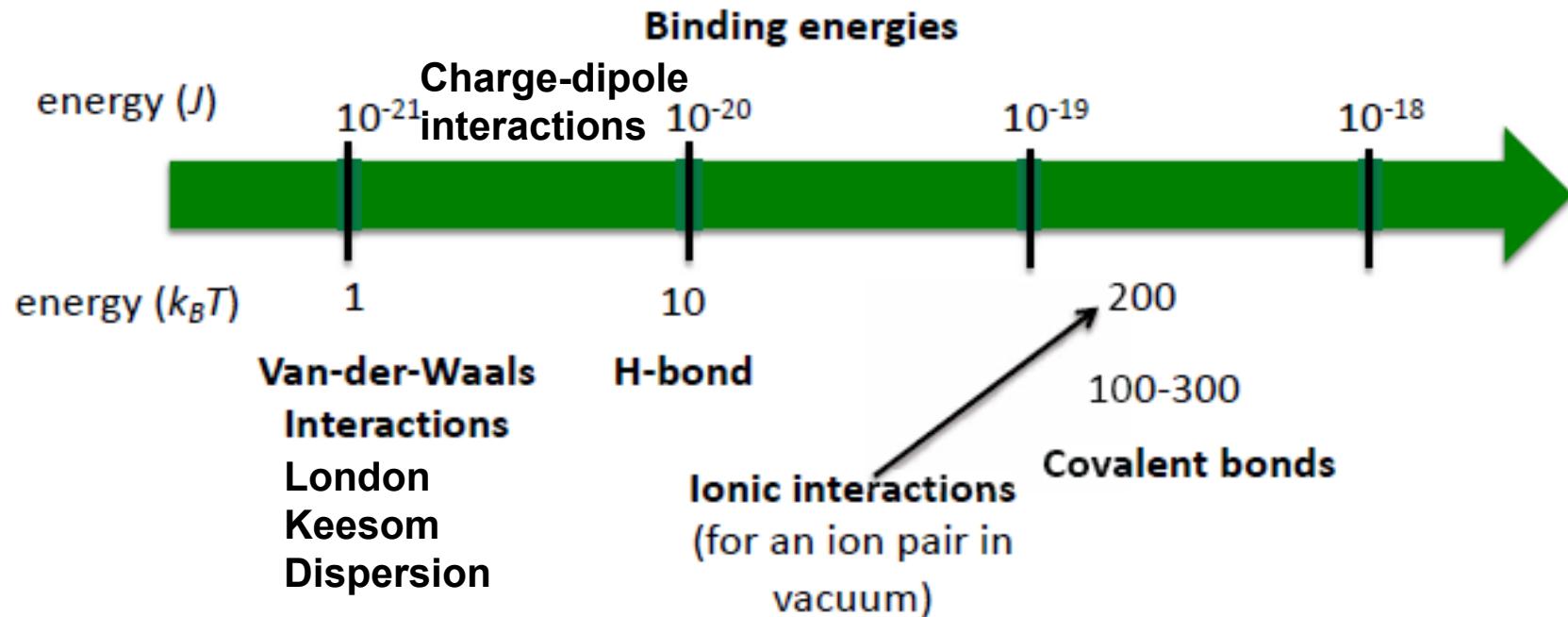
Lecture 3:

Overview

Covalent interactions

Interactions involving charges:

Ion-ion interactions in crystals


Ion-ion interactions in liquids – Debye-Hückel theory

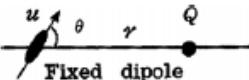
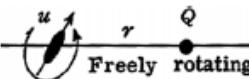
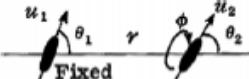
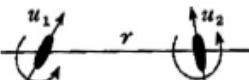
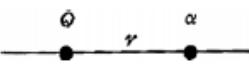
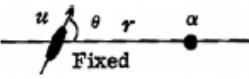
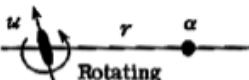
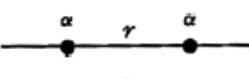
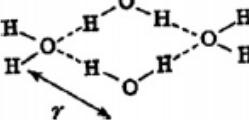
Material to study for Lecture 3:

JN Israelachvilli: Intermolecular and surface forces:

Chapter 3.1 – 3.8

Specific interactions in liquids

These interactions are considered as pair potentials ($w(r)$) to understand the interplay of many body interactions – they are all of importance for understanding liquids










L 3

L 4

L 5

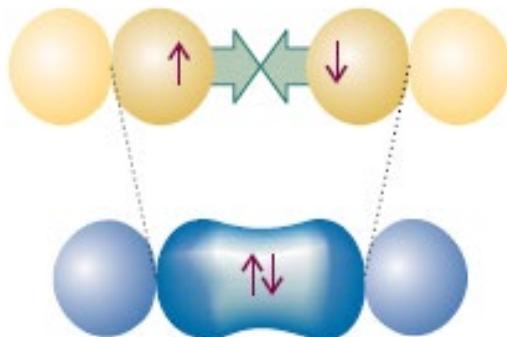
L 6

Table 2.2 Common Types of Interactions and their Pair-Potentials $w(r)$ between Two Atoms, Ions, or Small Molecules in a Vacuum ($\epsilon = 1$)^a

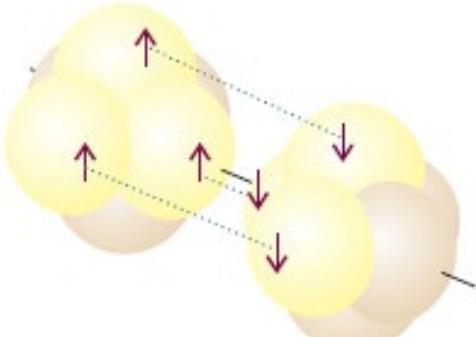
Type of interaction	Interaction energy $w(r)$
Covalent, metallic	Complicated, short range
Charge-charge	$+Q_1 Q_2 / 4\pi\epsilon_0 r$ (Coulomb energy)
Charge-dipole	$-Qu \cos \theta / 4\pi\epsilon_0 r^2$ $-Q^2 u^2 / 6(4\pi\epsilon_0)^2 k T r^4$
Dipole-dipole	$-u_1 u_2 [2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \phi] / 4\pi\epsilon_0 r^3$ $-u_1^2 u_2^2 / 3(4\pi\epsilon_0)^2 k T r^6$ (Keasom energy)
Charge-non-polar	$-Q^2 \alpha / 2(4\pi\epsilon_0)^2 r^4$
Dipole-non-polar	$-u^2 \alpha (1 + 3 \cos^2 \theta) / 2(4\pi\epsilon_0)^2 r^6$ $-u^2 \alpha / (4\pi\epsilon_0)^2 r^6$ (Debye energy)
Two non-polar molecules	$\frac{3}{4} \frac{h \nu \alpha^2}{(4\pi\epsilon_0)^2 r^6}$ (London dispersion energy)
Hydrogen bond	Complicated, short range, energy roughly proportional to $-1/r^2$

^a $w(r)$ is the interaction free energy or pair-potential (in J); Q , electric charge (C); u , electric dipole moment (C m); α , electric polarizability ($C^2 m^2 J^{-1}$); r , distance between the centers of the interacting atoms or molecules (m); k , Boltzmann constant ($1.381 \times 10^{-23} J K^{-1}$); T , absolute temperature (K); h , Planck's constant ($6.626 \times 10^{-34} J s$); ν , electronic absorption (ionization) frequency (s^{-1}); ϵ_0 , dielectric permittivity of free space ($8.854 \times 10^{-12} C^2 J^{-1} m^{-1}$). The force $F(r)$ is obtained by differentiating the energy $w(r)$ with respect to distance r : $F = -dw/dr$. The stabilizing repulsive "Pauli Exclusion" interactions (not shown) usually follow an exponential function $w(r) \propto \exp(-r/r_0)$, but for simplicity they are usually modeled as power laws: $w(r) \propto -1/r^n$ (where $n = 9 - 12$).

Useful table

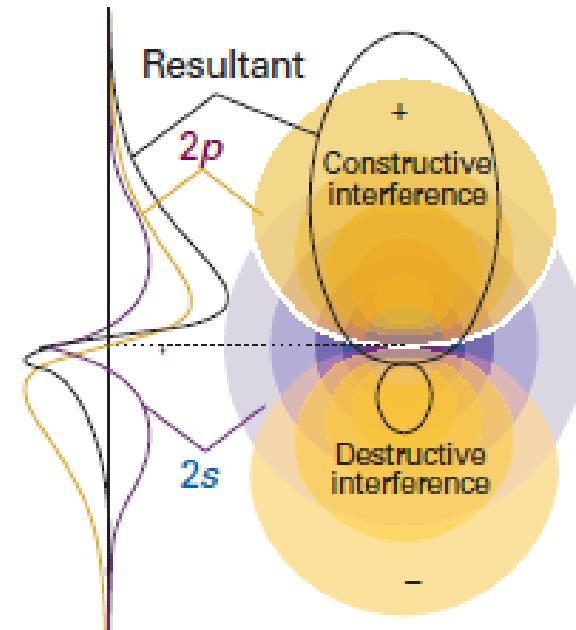

Expressions will always be provided during the exam

Knowing the general form (e.g. $1/r^6$, $1/r^2$, T dep. etc. is useful)


Covalent Interactions

Covalent bonds arise from mixing of quantum mechanical states determined by symmetry considerations.

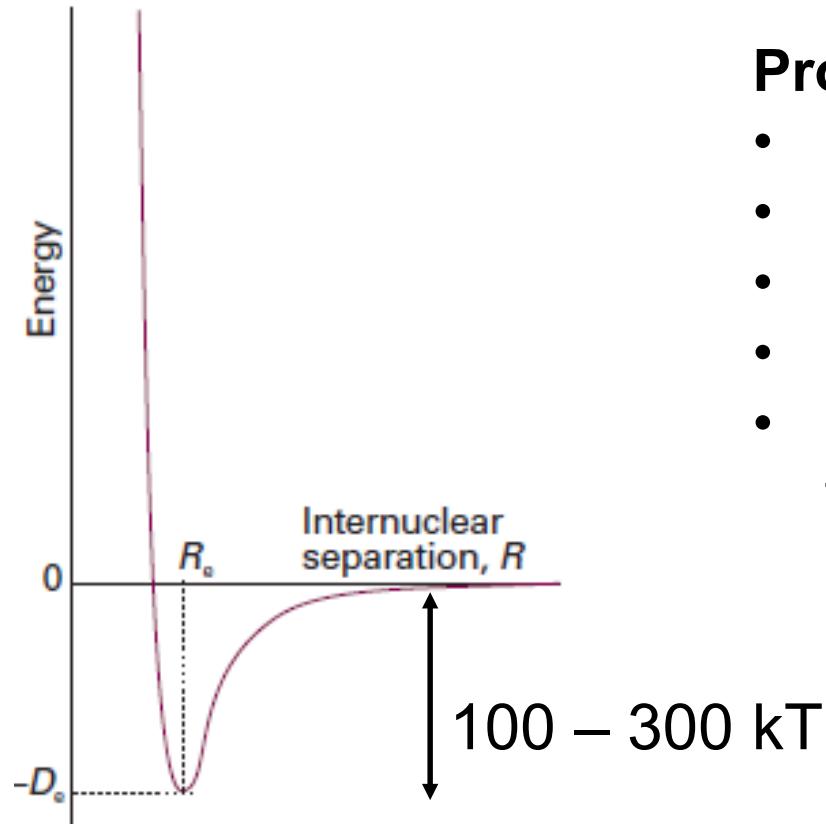
- Constructive interference of electronic wave functions: bonding orbitals
- Destructive interference of electronic wave functions: antibonding orbitals



Aligned p_z orbitals mixing to form a σ bond

Aligned p_x, p_y orbitals mixing to form a π bond

N_2



sp^3 hybridization
(e.g. CH_4)

Covalent Interactions

Covalent bonds arise from mixing of quantum mechanical states determined by symmetry considerations.

- Constructive interference of electronic wave functions: bonding orbitals
- Destructive interference of electronic wave functions: antibonding orbitals

Properties:

- Directional
- Geometry dependent
- Stoichiometric
- Short-ranged (steep well)
- Do not generally participate in phase transitions, rather in chemical reactions

Topic 2: Driving forces and interactions in liquids

Overview

Covalent interactions

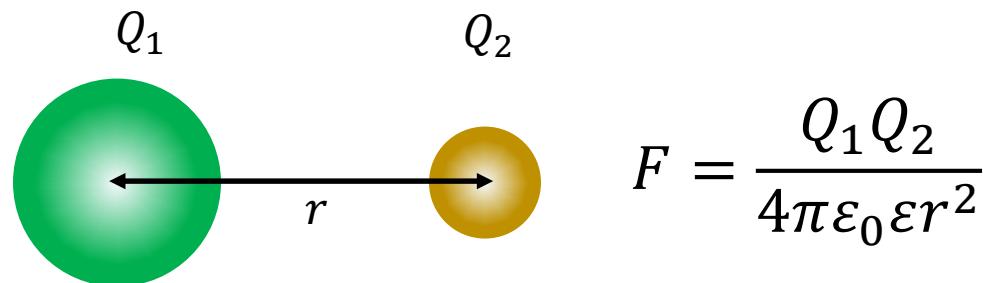
Interactions involving charges

Ion-ion interactions in crystals

Ion-ion interactions in liquids – Debye-Hückel theory

Material to study, lecture 3:

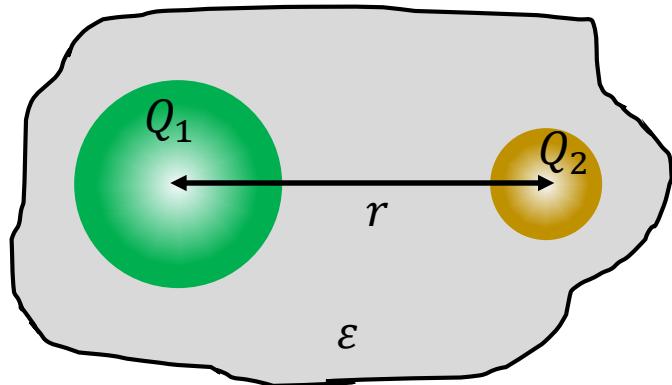
JN Israelachvilli: Intermolecular and surface forces:


Chapter 3.1 – 3.8

Interactions in liquids

Liquids have statistical positioning of molecules with medium ranged interactions: interactions are generally not strongly directional, specific or stoichiometric.

Interactions between charges and dipoles, induced dipoles and non-polar groups & H-bonds (semi-directional) are all important


Charge-charge interaction: Coulombic force

- Solubility of ions
- Ion-ion interactions in crystals or in a liquid
- Born energy

Coulombic interactions

Charge-charge interaction:

$$F = \frac{Q_1 Q_2}{4\pi\epsilon_0\epsilon r^2}$$

Coulombic force

$$w(r) = -\frac{Q_1 Q_2}{4\pi\epsilon_0\epsilon r}$$

Pair-potential

Properties:

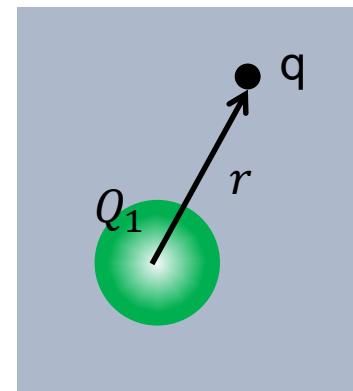
- Isotropic
- Not geometry dependent
- Long ranged, $w \sim 1/r$ (but damped by counter ions / high dielectric constant)
- $200 kT$ or less; depends on medium

Electrostatics Reminder

Force [N]

$$F(r) = \frac{Q_1 q}{4\pi\epsilon_0\epsilon r^2}$$

$$E = \frac{F}{q}$$


Field [N/C]=[V/m]

$$E(r) = \frac{Q_1}{4\pi\epsilon_0\epsilon r^2}$$

$$F = Eq$$

$$w(r) = - \int F(r) dr$$

$$F(r) = - \frac{dw(r)}{dr}$$

$$\psi(r) = - \int E(r) dr$$

$$E(r) = - \frac{d\psi(r)}{dr}$$

$$w(r) = - \frac{Q_1 q}{4\pi\epsilon_0\epsilon r}$$

$$\psi = \frac{w}{q}$$

$$\psi(r) = - \frac{Q_1}{4\pi\epsilon_0\epsilon r}$$

Pair potential [Nm]=[J]

+ **Gauss law:**

E-field flux through a closed surface = enclosed charge / $\epsilon_0\epsilon$

Electrostatic potential [J/C]=[V]

Predicting ion solubility:

Combining the Boltzmann distribution
and Coulombic interactions

Solubility: chemical equilibrium

Thermal energy (TS)
 $S = k \ln X_n$

$$\mu_n^i + kT \ln X_n = \mu$$

Interaction energy of species n
(determined by the specific interactions we will treat next & related to the pair interaction energy $w(r)$)

Chemical potential
= total average free energy per molecule

Both terms are important for how much salt can be dissolved in a medium

The Born Energy

The Born energy is the electrostatic energy needed to keep electrostatic charge localized on an ion. This is the self-energy of a charged ion.

It can be computed in two ways:

- By charging a neutral sphere the size of an atom and computing the work done
- By computing the electrostatic field energy of an ion

The Born energy can be used to compare:

- (1) how well ions dissolve
- (2) How ions distribute across (partition in) different media.

The Born energy can predict ion partitioning

Key concepts Lecture 3

- The interaction energy is the average sum of all interactions for a given molecule; depends on position
- The pair potential is interaction energy between a pair
- Relationship between interaction energy and pair potential
- Importance of kT

- Properties of covalent bonds
- Force relevant for charge-charge interactions
- Properties of Coulombic interactions
- The Born energy and its use