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Chapter 4b

Advanced mechanisms design 

Florent Cosandier

https://sciences.ncsu.edu/news/james-webb-space-telescope-qa-with-astrophysicist-bordoloi/



Kinematic analysis - definitions
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§ Kinematics: architectural skeleton of a mechanism

§ Internal mobilities: sum of DOF of individual flexure joints of a mechanisms

§ Kinematic chains: paths from output to input of a mechanism

§ Kinematic loops: closed kinematic chains within the mechanism

§ External DOFs: DOF of the output of a mechanism

§ Internal DOFs: DOF of intermediate stages in a mechanism

§ Overconstaints: number of times the output or intermediate stages are 
constrained several times for a given DOF

§ Isostaticity: feature of a kinematic with no overconstraint neither internal DOF



Kinematic analysis – Mobility equation
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§ Grübler formula using segments and joints numbers:

𝐷𝑂𝐹 = 	&𝑀𝑜 − 6(𝑘 − 𝑛 + 1)

External + internal DOF

Internal mobilitie
s of joints

Number of joints

Number of segments

Fixed base

k = 2
n = 3
Mo = 2

= 𝐿

Number of loops



Kinematic analysis – Mobility equation
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§ Grübler formula (with kinematic loops):

§ Modified formulation in 2D (planar anaylsis):

§ Modified formulation in 3D (volumetric analysis):

𝐷𝑂𝐹 = 	&𝑀𝑜 − 6𝐿

𝐷𝑂𝐹! + 𝐷𝑂𝐹" =	&𝑀𝑜 − 6𝐿 + 𝑂𝐶

Internal DOF

External DOF

Internal mobilitie
s of joints

Kinematic loop

Overconstraints

𝐷𝑂𝐹! + 𝐷𝑂𝐹" =	&𝑀𝑜 − 3𝐿 + 𝑂𝐶



Kinematic analysis – Model of a blade
AD

VA
N

C
ED

 M
EC

H
AN

IS
M

S 
FO

R
 E

XT
R

EM
E 

EN
VI

R
O

N
M

EN
TS

Ch
. 4

 -
Ad

va
nc

ed
 m

ec
ha

ni
sm

s 
de

si
gn

 

53

In 2D:
§ the kinematic equivalent of a 

blade is 2 pivots

In 3D:
§ the kinematic equivalent of a 

blade is 3 pivots



Kinematic analysis - Parallelogram stage
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§ DOFe = 1
§ DOFi = 0
§ Mo = 4
§ L = 1
§ OC = 0 or 3? 

𝐷𝑂𝐹! + 𝐷𝑂𝐹" =	'𝑀𝑜 − 3𝐿 + 𝑂𝐶

1 + 0 = 4 − 3 1 1 + 0

𝐷𝑂𝐹! + 𝐷𝑂𝐹" =	'𝑀𝑜 − 6𝐿 + 𝑂𝐶

1 + 0 = 4 − 6 1 1 + 3

de
pe

nd
s o

n t
he

 

an
aly

sis
 ty

pe
 (2

D or
 3D

)

Each time a planar kinematic loop of blades is 
closed, 3 out-of-plane overconstraints appear!

Internal DOF

External DOF

Internal mobilitie
s of joints

Kinematic loop

Overconstraints



Kinematic analysis – Overconstrained linear stage
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Kinematic analysis - Overconstrained linear stage
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§ External Degree of Freedom DOFe: 1
§ Internal Degree of Freedom DOFi: 2
§ Internal motions of joints Mo: 16
§ Kinematic loops L: 5
§ Overconstraints: ? 

𝐷𝑂𝐹! + 𝐷𝑂𝐹" =	'𝑀𝑜 − 6𝐿 + 𝑂𝐶

1 + 2 = 16 − 6 1 5 + 𝑂𝐶

𝑂𝐶 = 17 (12 OC in parallelograms and 5 OC on output)

TO
PO

LO
G

Y 
DI

AG
RA

M



Kinematic analysis – Isostatic PULSAR tripod
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TO
PO

LO
G

Y 
DI

AG
RA

M

§ External Degree of Freedom DOFe: 3
§ Internal Degree of Freedom DOFi: 0
§ Internal motions of joints Mo: 15
§ Kinematic loops L: 2
§ Overconstraints: 0

𝐷𝑂𝐹! + 𝐷𝑂𝐹" =	'𝑀𝑜 − 6𝐿 + 𝑂𝐶

3 + 0 = 15 − 6 1 2 + 0



Kinematic analysis – Comments 
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§ Internal local DOFs with limited motion 
range versus internal DOF with large 
motion range

§ Internal DOFs of the mechanism versus 
eigenfrequencies of the flexures

§ Check of the sub-systems isostaticity

§ Kinematic analysis does not consider the 
geometry of the mechanism, only the 
topology

§ Kinematic analysis does not consider the 
singularities of the mechanism (e.g. 
gimbal lock)

§ Kinematic analysis depends on 
hypothesis: 2D versus 3D, number of DOF 
per flexure, etc..

§ Interpretation matters!

𝑥

𝐾

𝑥

𝐾



Kinematic analysis - Conclusions
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Internal DOFs:
§ Can induce uncontrolled vibrations 
§ Strokes and stress on flexures are not well controlled
§ Parasitic motion on output may be induced by uncontrolled motion of internal 

DOFs
§ A nightmare to increase the dynamics of the mechanism!

Overcontraints:
§ Large variations of stiffness can appear
§ Possibly increases significantly the stress level, even at rest position
§ Makes the mechanism less immune to tolerances variations (manufacturing 

and assembly)
§ Can be beneficial to improve transversal stiffnesses!



Kinematic analysis - Conclusions
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§ It is important to carry out a kinematic analysis when choosing the
architecture of the mechanism, at an early stage of development.

§ It is preferable to avoid overconstraints and internal DOFs.

§ We can accommodate overconstraints, in particular out-of-plane OC
(when a kinematic loop closes). We can also sometimes take
advantage of this, for example to stiffen certain transverse stiffnesses
or increase robustness.

§ Internal DOFs can be tolerated, especially if the masses of the
moving parts are low, the associated natural frequencies are high, and
the system dynamics are low.



Kinematic analysis online tool (demo)
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whatthedof.com



Geometric modeling
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§ Direct Geometric Model and Inverse Geometric Model
§ How to calculate your model?

§ Analytical implementation

§ Validation through CAD sketches

§ Useful to :

§ Calculate the motion ranges on actuators, on joints and on 
output (workspace)

§ Calculate the resolutions on actuator and on output

§ Calculate the parasitic motion

§ Optimize a system

§ Calibrate a system
§ Control a system



Direct Geometric Model and Inverse Geometric Model
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§ The Direct Geometric Model (DGM) is the
mathematical relation that give the output (or tool)
positions as a function of the input (or motor) positions:

§ Inverse Geometric Model (IGM) is the mathematical
relation that give the input (or motor) positions as a
function the output (or tool) positions:

§ 𝑥! are tool coordinates and q" are motor coordinates

𝑥⃗! = DGM 𝑞⃗!

𝑞⃗! = IGM(𝑥⃗!)



Geometric modeling: DGM of the lambda mechanism
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(𝑥, 𝑦)

𝑞# 𝑞$

[𝑥, 𝑦] = 𝐷𝐺𝑀( 𝑞!, 𝑞" )

𝐴: 𝑞!, 0 , 𝐵: ( 2𝐿 + 𝑞", 0)

𝐶: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑐!, 𝑐")

𝑞# 𝑞$

𝐷

𝐶

𝐴 𝐵
𝑂

𝐿

𝐿𝐿

𝑥

𝑦

𝑐$
𝑐#

𝑐!: 𝑐𝑒𝑛𝑡𝑒𝑟	𝐴, 𝑟𝑎𝑑𝑖𝑢𝑠	𝐿
𝑐": 	(𝑐𝑒𝑛𝑡𝑒𝑟	𝐵, 𝑟𝑎𝑑𝑖𝑢𝑠	𝐿)

𝐷: 𝑂𝐷 = 𝑂𝐵 + 𝐵𝐷 = 𝑂𝐵 + 2𝐵𝐶 = 2𝑂𝐶 − 𝑂𝐵

☞ EXERCICE 8



Geometric modeling : IGM of the lambda mechanism 
(principle only)
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§ Trace a circle c1 (center: D, radius: 2L)

§ Intersect with line y = 0 → B

§ Take the middle point of BD → C

§ Trace a circle c2 (center: C, radius: L)

§ Intersect with line y = 0 → A

§ Or.. use the symmetry of A and B regards to C

§ Calculate q1 and q2

(𝑥, 𝑦)
𝑦

𝑞# 𝑞$

𝐷

𝐴 𝐵
𝑂

𝐿

𝐿 𝐿

𝑥

𝑐$ 𝑐#

𝐿
2𝐿

𝐶

(𝑥, 𝑦)

𝑞# 𝑞$



Geometric modeling: DGM and IGM setup
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§ Define carefully and precisely your reference axes and geometric parameters
§ Draw a 2D (or 3D) CAD sketch (it can also be used to animate your CAD model)

§ Some generic models may exist for known kinematics (e.g., hexapods, delta, ..)

§ If it is not the case do the math

§ No need to solve analytically the equations, unless you want for example to

implement a fast model on controller
§ Use a CAD sketch to verify your mathematical model

§ Circle intersections can be calculated in planar models:



Geometric modeling: example of PULSAR IGM
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Axes definition

3D sketch

Kinematic model

Geometric parameters 
definition



Geometric modeling: example of PULSAR IGM
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The initial pivot positions are respectively for each axis:

P%# = (R&, 0,0)' P%$ = (R& cos(
(
)
) , R& sin(

(
)
) , 0)' P%) = (R& cos(

$(
)
) , R& sin(

$(
)
) , 0)'

The initial gimbal center positions are: (with 𝐻* = 𝐻 cos 𝛼)

P# = (R+, 0, H,)' P$ = (R+ cos(
(
)
) , R+ sin(

(
)
) , H,)' P) = (R+ cos(

$(
)
) , R+ sin(

$(
)
) , H,)'

The triangle formed by P#, P$ and P) is equilateral of length L = P$ − P# .

The gimbal points P#,./0, P$,./0 and P),./0 are obtained by applying two rotational matrices R1(θx)

and R2(θy) around the x- and y-axis respectively and a vertical translation of z to P#,P$ and P):

P",./0 = R2 θy R1 θx P" +
0
0
z

Where: R1 θx =
1 0 0
0 cos θx − sin θx
0 sin θx cos θx

	

and  R2 θy =
cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy F.
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Geometric modelling: example of PULSAR IGM
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Then, the new pivot positions are for 𝑖 = 1, 2, 3:

P",345 = λ" M t"
Where 𝜆! is a scalar and 𝑡! the motor axis direction:

t# = (1,0,0) t$ = (cos((
)
) , sin( (

)
) , 0)

t) = (cos $(
)

, sin( $(
)
) , 0)

λ" = t" ⋅ P",./0 + (t" M P",./0)$−( P",./0
$ − H$)

Finally, the motor positions q1, q2 and q3 are obtained:

q" = P%" − P",345 M sgn(λ" − P%" )

N.B.: the model is not exact!
F. Cosandier, J. Rouvinet, A. Ummel, D. Nguyen, V. Schaffter, and B. Nussbaumer, « Development of an am flexure-based 
tripod mechanism for the fine positioning of segmented telescope mirror tiles ». in Proc. ESMATS, Online, Sept. 2021. 



Geometric modelling: example of PULSAR calibration
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§ Position measurement is made over the whole 
workspace

§ Error model is a fit at Xth order on N axis, 

including the cross axes terms 
§ You obtain a model with (many) coefficients 



Geometric modelling: example of PULSAR calibration
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§ Position measurement is performed on the 

whole working volume
§ Error model is fitted at Xth order on N axis, 

including the cross axes terms 
§ Standard fit function is used
§ You get a model with many coefficients 

§ It is also possible to get the full IGM instead 
of just the error model through this method

https://infoscience.epfl.ch/record/166120?ln=fr



Flexure optimization
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§ Flexure model: FEM or analytical

§ FEM model 
§ Faster to set up, longer to solve than analytical
§ Example: COMAM flexure lattices

§ Analytical model 
§ Must be validated on a FEM nominal case (no need for high 

precision)
§ Run on millions of parameter sets
§ Example: Vibration isolation platform gimbal

§ Model inputs 
§ Geometric parameters, material
§ Discrete or continuous values depending on the optimization 

method



Flexure optimization
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§ Optimization methods:

§ Brute force
§ Monte-Carlo

§ Latin square
§ Genetic algorithm
§ Gradient based

§ ...

§ Input filters
§ Based on impossible geometries
§ Based on overhang angle for AM

§ ..

§ Model outputs:
§ Mass

§ Max stress

§ Stiffnesses
§ Eigenmodes
§ Buckling loads
§ ..

§ Output filters
§ Limit stress
§ Required stiffnesses
§ ..



Flexure optimization – Example 1 
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§ Example: lattice flexures
§ Optimized through FEM

§ Monte-Carlo parameters sets generation

§ Unit cell of mesh geometric parameters as 

inputs



Flexure optimization – Example 1 
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§ Outputs: 
§ Rotation and vertical stiffnesses and stress (K_z, Sigma_z, K_rz, Sigma_rz)

§ Surface constancy (CS)

§ Stiffness K_z is transformed into compliance C_z, so to be minimized 



Flexure optimization – Example 1 
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§ Objective function: summation of normalized and weighted contributions

§ Weights are chosen based on the relative importance and criticality of the 
achievement of each objective 



Flexures optimization - Example 2
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§ Vibration isolation and suppression system for precision payloads in space
§ Hexapod including six electromagnetic damping struts

§ Gimbal flexure optimization made analytically



Flexures optimization - Example 2
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§ Baseline and specifications



Flexure optimization – example 2 (optimization procedure)
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§ Parameter definition 

§ Analytical formulation of the stiffnesses 
§ Validation of the stiffnesses formulae 

§ Generation of sets of parameters 

§ Define parameters boundaries 
§ Monte Carlo set up (uniform distribution on each param.)

§ Outputs assessment 
§ Calculate Kxy, Kz, Krxy, Krz for each set of parameters 

§ Calculate the functional von Mises stress for each set of 

parameters 
§ Optimization process

§ Define the weights for each individual objective 
§ Define a global objective function including the weights and 

normalizations 

§ Find the optimum of the global objective function 
§ Verification of the optimal solution (reanalysis)



Flexure optimization – example 2
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Analytical modeling and model validation through FEM:

§ Lateral stiffness

§ Axial stiffness

§ Bending stiffness

§ Torsional stiffness

§ Bending stress

𝐾#$ =
2𝐸𝑏%ℎ%

𝐿%(ℎ" + 𝑏")

𝐾& =
𝐸𝑏ℎ
𝐿

𝐾'#$ =
𝐸𝑏ℎ% 𝐷 − 𝑏 "

𝐿(2ℎ" + 6 𝐷 − 𝑏 ")

𝐾'& =
𝐸𝑏ℎ% 𝐷 − 𝑏 "

4𝐿% +
𝐺𝑏ℎ%

3𝐿

𝜎'#$ =
𝜃#$𝐸ℎ
2𝐿

Axis Stiffness FEM Stiffness analytical Unit Error [%]
x 35782 35854.4 N/m -0.20%
y 35782 35854.4 N/m -0.20%
z 38220000 38220000 N/m 0.0000%
rx 0.43055 0.430531824 Nm/rad 0.0042%
ry 0.43055 0.430531824 Nm/rad 0.0042%
rz 1.15 0.90 Nm/rad 21.86%



Flexure optimization – example 2
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§ What is the value of the bending stiffness

𝐾#$%&

𝐾&'()$ = 𝐾#$%&

𝐾)*

𝐾)*

𝐾+!"

𝐾#$%&
𝐾&'()$

𝐾)*

𝐾)*𝐾+!"

𝑟

𝐾678 =
𝐸𝑏ℎ) 𝐷 − 𝑏 $

𝐿(2ℎ$ + 6 𝐷 − 𝑏 $)

𝐾678 =	?

𝐾9 =
𝐸𝑏ℎ
𝐿

1
𝐾678

=
1

2𝐾:;<=6
+

1
2𝐾>?

𝐾:;<=6 = (
𝐶
𝜃
=
𝐹 M 𝑟
⁄𝑧 𝑟

=)	𝐾:;<= M 𝑟$

𝑟 =
𝐷 − 𝑏
2

𝐾>? =
𝐸𝑏ℎ)

12𝐿



Flexure optimization – example 2
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§ This correspond to a design with: 

§ Very short leaf springs 
§ Thin leaf springs 

§ Large diameter 
§ Medium inner diameter 

§ All stiffness requirements are fulfilled

§ Optimal solution parameters:

MIN

MIN
MAX



Fatigue and material aspects
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Good materials for flexures:
§ Spring steels, carbon steels

§ e.g. X220CrVMo13-4 (K190)
§ X3NiCoMoTi18-9-5 (W720)

§ Spring stainless-steels
§ e.g. X10CrNi18-8
§ N700 ESU (17-4 PH)

§ Titanium alloys
§ e.g. Ti Al6 V4

§ Copper-beryllium alloys
§ e.g. XHMS

§ Bronze allows
§ e.g. Cu Ni 15 Sn 8

§ Aluminum alloys
§ e.g. AlCuSiMn (Avional)
§ AlZnMgCu1.5 (Perunal)

§ The stroke of flexure is proportional to : 
9^_`
:



Fatigue and material aspects – tests
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R = σmin / σmax

J-L. González-Velázquez, Mechanical Behavior and Fracture of Engineering Materials, ISBN 978-3-030-29240-9

S. de Montmollin, Banc d’essai de fatigue en flexion
alternée pour des applications spatiales

(R-1 is most common type for flexures)



Fatigue and material aspects
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§ Examples of Wohler curves (S/N curve)

§ A has infinite lifetime (with fatigue plateau)
§ B has no infinite lifetime (without fatigue plateau)

to
ta
lm
at
er
ia
.c
om

☞ EXERCICE 7



Fatigue and material aspects - standards
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§ Failure probability and lifetime duration

AFNOR – A 03-405
Produits métalliques - Essais de fatigue - 
Traitement statistique des données.

ISO 3800
Threaded fasteners — 
Axial load fatigue testing



§ Exercise

§ on MOODLE : EXO_6_Kinematic_analysis.pdf

Week 6 exercises and homework
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