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Solution for exercise 9 — Part I:

Design and force balancing of a flexure-based parallel stage

Context:
A flexure-base parallel stage is subjected to fluctuating linear accelerations along
the x-axis due to motion of its base. To be insensitive to this specific perturbation,

we wish to force balance the mechanism.

2 1c2 _ X
6 )
p P
3. 2 /1
Y1 “

Z,o————X) 1"?0:
Yo N\ Py
Y Mechanism
frame
%% ___ Inertial frame
Fig. 1: Flexure-based parallel stage Pseudo-Rigid-Body-Model before its force balancing.
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Figure 1 shows the Pseudo-Rigid-Body-Model (PRBM) of the studied flexure-
based parallel stage before its force balancing. The mechanism is shown in its rest
position (black lines) and in its deformed position (transparent black lines). The
mechanism has one degree-of-freedom and is composed of three moving rigid
bodies: solids 1, 2 and 3 articulated in P;, P,, P; and P,.

Each solidi = 1...3, has:

e amass m;,
e a center of mass (COM) c; (represented by the symbol @) located by a
distance [;,

e an inertia tensor J; written at c;.
Each pivot P,_; , has an angular stiffness k; that represents the intrinsic stiffness
of the future flexure-based implementation.
First, the parallel stage mechanism is actuated by a voice coil whose permanent
magnet is fixed to the mechanism’s base and whose coil is fixed to solid 2. The
voice coil applies a force F at ¢, along the x-axis. The parameter x is used to
locate the displacement of solid 2 relative to its base.
Last, the linear displacement that corresponds to the motion of the mechanism’s
base is represented by the parameter y.
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Part I: Force balancing of the flexure-based parallel stage

In order to force balance the mechanism, we propose to redistribute its mass by

lowering the COM of solids 1 and 3 thanks to two identical supplementary masses

my,). These two masses are located by the distance [},.
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Fig. 2: Flexure-based parallel stage Pseudo-Rigid-Body-Model after its force balancing.
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Numerical Values:
e H =20e-3[m]
e m;=1.7138708e-02 [kg]
e m,=6.8122300e-02 [kg]
e my=m,
o my,=3.5565044e-02 [kg]
o 1.,=1.0411598e-2 [m]

e [, :notneeded

o l3=ly

® [y, ¢ tobe found

_ [5.3559891e-6 0 0

o Ji= 0 1.9478338e-6 0 [kg. m?]
0 0 5.3569824e-6

J ]:2 : not needed
° ]=3=]=1

_ 2.0034975e-6 0 0
* Jpa = [ 0 2.5379149¢-6 0 ] [kg. m?]

0 0 1.1271682e-6
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1. Using the Euler-Lagrange formalism, calculate the equation of motion of
the parallel stage as a function of F, x and y, assuming small deformations
around the rest position. The equation of motion is of the form:

F =meqx + keqx + Tcoupling?
Reminder: The Euler-Lagrange equation that needs to be solved is
d 0L\ 0L
F =552
Where L = K — V is the Lagrangian; K and V are the kinetic and potential

energies of the system, respectively.

SOLUTION:
We introduce the parameter 6 to simplify the writing of the equations.
Parameter 6, considered positive anticlockwise, represents the angle of
solid 1 (respectively, solid 3) in its deformed position relative to its vertical
rest position.
Using parameter 6, the kinetic and potential energies of the total

mechanism can be expressed as

1 .2 1 .2 .2 12 12
K = §m1,totc1,tot + Emz c; + §m3,totc3,tot + E]l,tot,zze + E]B,tot,zze

1
sz(k1+k2 +k3+k4)62

Where m o1 and ¢ ¢ are the mass and the COM linear velocity vector of
solid 1 equipped with its balancing mass; ¢, is the COM linear velocity

vector of solid 2; m3 ¢, and €3 o are the mass and the COM linear velocity

vector of solid 3 equipped with its balancing mass;  is the angular velocity
vector of solids 1 and 3; J; tot 2z and /3ot 2z are the moment of inertia at

COM of solids 1 and 3 equipped with their respective balancing mass.

With
My tor = My + Mpy  and Mg or = M3 + My
¢rot = (7 = Lettor €05 8 ) xg — Leq tor SIN O By,
¢, = (¥ —Hcos00)x, — Hsin6 0y,

é3,t0t = (y - lC3,t0t cos @ Q)XO — lC3,t0t sin 6 QyO
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I . Mpailpal — M1lcy d I _ Mpatlpal — Males
cl,tot — an c3,tot —
my tot ms ot

2 2
]1,tot,zz = ]1,zz +]bal,zz + (lcl,tot + lcl) myq + (lbal - lcl,tot) Mpai

2 2
]3,tot,zz = ]3,zz +]ba1,zz + (lc3,tot + lc3) mg + (lbal - lc3,tot) Mpai

The kinetic energy simplifies and can then written as

1 _ . y
K = ETnl,tot(V2 + l(%l,tote2 - 2lcl,totye Ccos 9)

1 . .
+ Emz()'/z + H?6% + 2Hy0 cos 6)

1 _ . . 1 .
+ §m3,tot()/2 + 1&310t0% — 213 40tV0 cOS 9) + E]l,tot,zzez

1 .
+ E]B,tot,zzg

We also have the following simplifications:
my =ms, g =l J122=J32z and kg =k, = k3 = ky.
x =Hsin0 =~ HO and cosf =1

Using these simplifications, we can rewrite K and V so that:

1 . 12]1 totzz + 2my; tl21,t t + mzHZ .
K=~ E(Zml,tot +my)y* + 2 o H(; =2 x?
myH — 2m1,totlc1 ..
H
ky
SO e I

V=2 g X

We then find
F= 2]1totzz F 2My orle tor + MoH? P ﬁ . myH — 2my voclcq ot .,
H? H? H

So that

2 2
. 2]1,t0t,zz + 2Tnl,totlcl,tot + mZH
Meqg = H?2
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_ myH = 2my oeleq tor
Tcoupling - H

2. Identify the dynamic coupling term Tcoypiing that couples the mechanism

motion to its base acceleration .
SOLUTION:

_ MmpH — 2My totlet tot
Tcoupling - H

3. Find the length [y, that cancels T qypling-

SOLUTION:

2mql., + myH
by = ———— 2" = 241716 [mm]
Zmbal

4. Compute the linear equivalent masses Meg inic and Megq ot Of the parallel

stage before and after it is forced balanced.

SOLUTION:
2(J102 + mylE) + myH?
Meq,init = Uaze H;) ~ 104.2 [g]
2 + My o l? + m,H?
meq,tot _ (jl,tot,zz 1,;(1)‘; c1,tot) 2 ~ 213.7 [g]

5. Considering F = 0, write the analytical transfer functions Tj,;;(w) and

T¢ina1 (@) of the parallel stage before and after it is forced balanced:

(@) = X(w)
© 7 (o))
SOLUTION:
_Tcoupling 1
T(w) = k w \?
o (5
0
With
wi = eq
meq
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