

Exercise 9 – Part I:
Design and force balancing of a flexure-based parallel stage

Context:

A flexure-based parallel stage is subjected to fluctuating linear accelerations along the x -axis due to motion of its base. To be insensitive to this specific perturbation, we wish to force balance the mechanism.

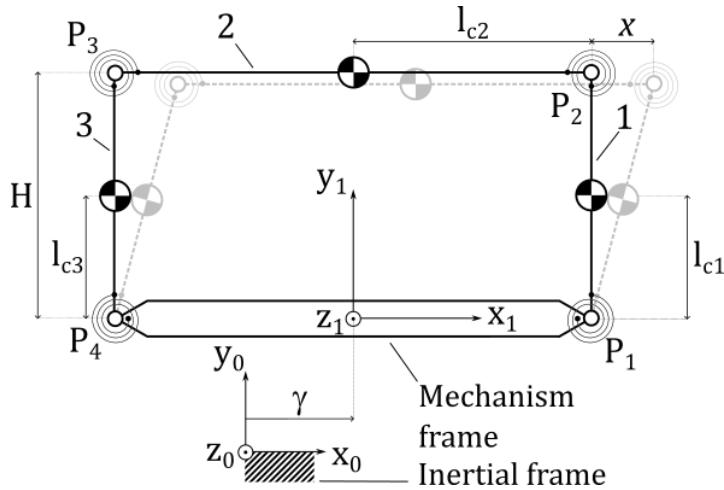


Fig. 1: Flexure-based parallel stage Pseudo-Rigid-Body-Model before its force balancing.

Figure 1 shows the Pseudo-Rigid-Body-Model (PRBM) of the studied flexure-based parallel stage before its force balancing. The mechanism is shown in its rest position (black lines) and in its deformed position (transparent black lines). The mechanism has one degree-of-freedom and is composed of three moving rigid bodies: solids **1**, **2** and **3** articulated in P_1 , P_2 , P_3 and P_4 .

Each solid $i = 1 \dots 3$, has:

- a mass m_i ,
- a center of mass (COM) c_i (represented by the symbol \odot) located by a distance l_{ci} ,
- an inertia tensor \bar{J}_i given at c_i .

Each pivot $P_{i=1 \dots 4}$ has an angular stiffness k_i that represents the intrinsic stiffness of the future flexure-based implementation.

First, the parallel stage mechanism is actuated by a voice coil whose permanent magnet is fixed to the mechanism's base and whose coil is fixed to solid **2**. The voice coil applies a force F at c_2 along the x -axis. The parameter x is used to locate the displacement of solid **2** relative to its base.

Last, the linear displacement that corresponds to the motion of the mechanism's base is represented by the parameter γ .

Part I: Force balancing of the flexure-based parallel stage

In order to force balance the mechanism, we propose to redistribute its mass by lowering the COM of solids 1 and 3 thanks to two identical supplementary masses m_{bal} having an inertia tensor $\bar{\bar{J}}_{\text{bal}}$ at their COM. These two masses are located by the distance l_{bal} .

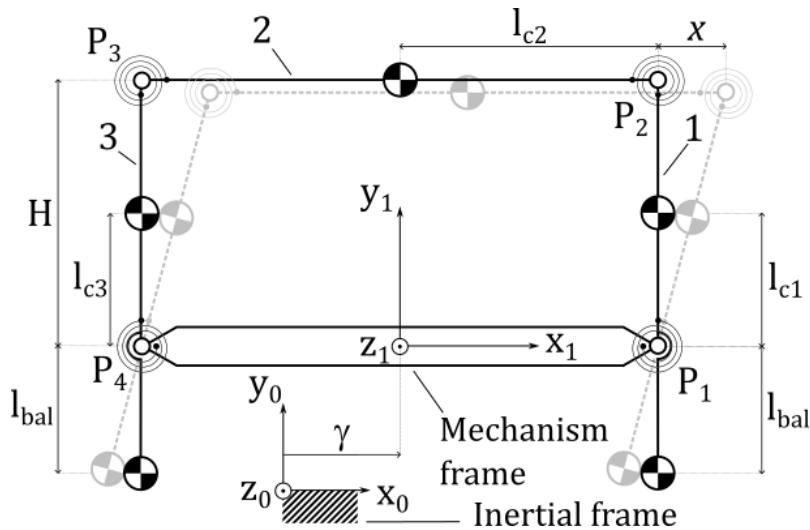


Fig. 2: Flexure-based parallel stage Pseudo-Rigid-Body-Model after its force balancing.

Numerical Values:

- $H = 20\text{e-}3$ [m]
- $m_1 = 1.7138708\text{e-}02$ [kg]
- $m_2 = 6.8122300\text{e-}02$ [kg]
- $m_3 = m_1$
- $m_{\text{bal}} = 3.5565044\text{e-}02$ [kg]
- $l_{c1} = 1.0411598\text{e-}2$ [m]
- l_{c2} : not needed
- $l_{c3} = l_{c1}$
- l_{bal} : to be found
- $\bar{\bar{J}}_1 = \begin{bmatrix} 5.3559891\text{e-}6 & 0 & 0 \\ 0 & 1.9478338\text{e-}6 & 0 \\ 0 & 0 & 5.3569824\text{e-}6 \end{bmatrix}$ [kg. m²]
- $\bar{\bar{J}}_2$: not needed
- $\bar{\bar{J}}_3 = \bar{\bar{J}}_1$
- $\bar{\bar{J}}_{\text{bal}} = \begin{bmatrix} 2.0034975\text{e-}6 & 0 & 0 \\ 0 & 2.5379149\text{e-}6 & 0 \\ 0 & 0 & 1.1271682\text{e-}6 \end{bmatrix}$ [kg. m²]

1. Using the Euler-Lagrange formalism, calculate the equation of motion of the parallel stage as a function of F , x and γ , assuming small deformations around the rest position. The equation of motion is of the form:

$$F = m_{\text{eq}}\ddot{x} + k_{\text{eq}}x + \tau_{\text{coupling}}\ddot{\gamma}.$$

Reminder: The Euler-Lagrange equation that needs to be solved is

$$F = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x},$$

where $L = K - V$ is the Lagrangian; K and V are the kinetic and potential energies of the system, respectively.

2. Identify the dynamic coupling term τ_{coupling} that couples the mechanism motion to its base acceleration $\ddot{\gamma}$.
3. Find the length l_{bal} that cancels τ_{coupling} .
4. Compute the linear equivalent masses $m_{\text{eq,init}}$ and $m_{\text{eq,final}}$ of the parallel stage before and after its force balancing.
5. Considering $F = 0$, write the analytical transfer functions $T_{\text{init}}(\omega)$ and $T_{\text{final}}(\omega)$ of the parallel stage before and after it is force balanced:

$$T(\omega) = \frac{X(\omega)}{(j\omega)^2 \Gamma(\omega)}.$$