

Exercise 12: RehearsalEXO A: Lagrangian formalism applied to a flexible linear stage

Through **Lagrange methodology**, determine the **motion equation** of the system shown on Figure 1. Then, based on the motion equation, identify the system **eigenfrequency** and determine the **sag due to gravity** (vertical static position) by expressing the dynamic condition corresponding to the static case. The **Young modulus** is **200 GPa**, the **length L** is **50 mm**, the **width b** is **10 mm** and the **thickness h** is **300 um**. The **mass m** of the stage is **1 kg**.

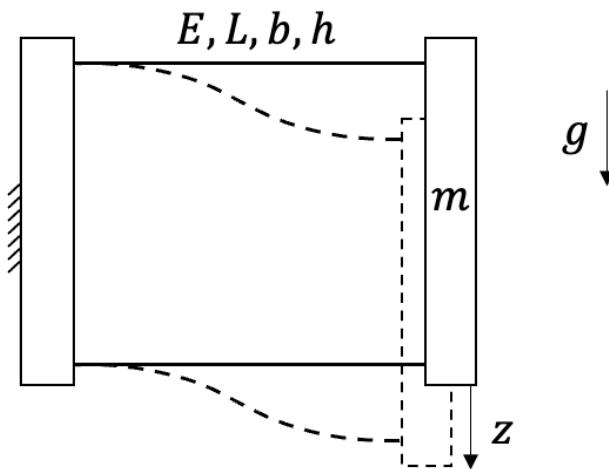


Figure 1 : Linear stage with gravity acting on the mobile shuttle.

Solution A:

First, we describe the lagrangian L of the system. It has two components, the kinematic energy T and the potential energy V :

$$L = T - V$$

The kinetic energy is expressed as follows:

$$T = \frac{1}{2} m \dot{z}^2$$

The potential energy has two contributors, the spring potential energy and the gravitational potential energy:

$$V = \frac{1}{2}Kz^2 - mgz$$

Thus the lagrangian is:

$$L = \frac{1}{2}m\dot{z}^2 - \frac{1}{2}Kz^2 + mgz$$

We now have to calculate the components of the Euler-Lagrange equation:

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{z}} - \frac{\partial L}{\partial z} = 0$$

We calculate the partial derivative of L by z:

$$\frac{\partial L}{\partial z} = mg - Kz$$

We calculate also the time derivative of the partial derivative of L by \dot{z} :

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{z}} = m\ddot{z}$$

We obtain the equation of motion:

$$m\ddot{z} - mg + Kz = 0$$

By dividing by m:

$$\ddot{z} - g + \frac{K}{m}z = 0$$

Where $\frac{K}{m} = \omega_0^2$, thus the eigenfrequency of the system is:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{K}{m}} = 4.68 \text{ Hz}$$

With:

$$K = \frac{2Ebh^3}{L^3} = 864 \frac{N}{m}$$

The sag is calculated by describing the static condition:

$$\dot{z} = 0 \quad \text{and} \quad \ddot{z} = 0$$

We then obtain the sag position:

$$z_{sag} = \frac{mg}{K} = 11.4 \text{ mm}$$

EXO B: Mercurian optomechanical payload rotative stage

In the frame of a solar system exploration mission, a **rotative flexure stage** is designed to be used in an optomechanical system on Mercury to study its atmosphere. The **gravity** of Mercury equals 3.7 m/s^2 . You must size the width **b** and the thickness **h** of the blades of an overconstrained flexure pivot (Figure 2) to respect the following constraints: the **sag** due to Mercurian gravity must be equal to **645 nm** and the **rotative eigenfrequency** must be equal to **10 Hz**. The optical payload has a **mass** of **0.8 kg** and an **inertia** $J = 1.72\text{e-}4 \text{ kg}\cdot\text{m}^2$. The length of the pivot's blades **length** is imposed (**80 mm**) and the material is **Titanium** (Young modulus **E = 116 GPa**). Also, the inner roots of the blades are considered colinear with the pivot rotation axis (**p = 0**) and no radius is considered at the roots of the blades.

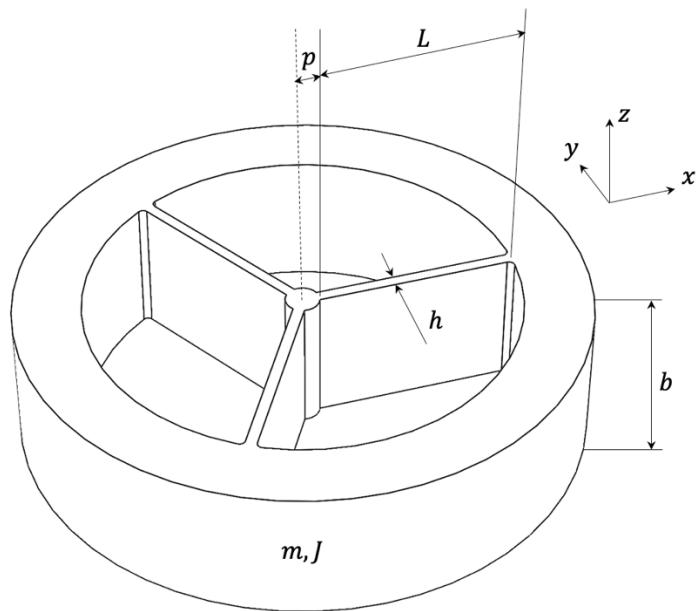


Figure 2 : Flexible rotation stage for orientation of an optical payload aboard a rover on Mercury.

Solution B:

The vertical stiffness of the stage K_z value of the stage is determined through the sag value, the Mercurian gravity, and the mobile mass of the stage:

$$K_z = \frac{m \cdot g_{Mer}}{sag} = 4.59 \frac{N}{\mu m} \quad (1)$$

The rotation stiffness is determined by the rotation frequency and the inertia:

$$K_\theta = 4 \cdot \pi^2 \cdot f_\theta^2 \cdot J = 0.68 \frac{Nm}{rad} \quad (2)$$

Then, we express the vertical stiffness:

$$K_z = \frac{3 \cdot E \cdot b^3 \cdot h}{L^3} \quad (3)$$

It comes:

$$h = \frac{K_z \cdot L^3}{3 \cdot E \cdot b^3} \quad (4)$$

And the rotation stiffness (RCC formula with 3 blades and $p = 0$):

$$K_\theta = \frac{E \cdot b \cdot h^3}{L} \quad (5)$$

By replacing h formula given in (4), we obtain:

$$b = \sqrt[8]{\frac{K_z^3}{27 \cdot K_\theta \cdot E^2} \cdot L} = 30 \text{ mm} \quad (6)$$

Finally, through (4):

$$h = 250 \text{ } \mu\text{m}$$

EXO C: Crank-linear stage linkage geometric model

In a machine, a crank-linear stage is implemented using flexures. The system geometry is modeled as illustrated in Figure 3. The **input** of the mechanism is θ angle. It's motion ranges from -15° to $+15^\circ$. The length L of both connecting rods is 50 mm. Calculate the **maximum deflections** of angles α and β as well as the linear motion range of the linear stage (z translation)

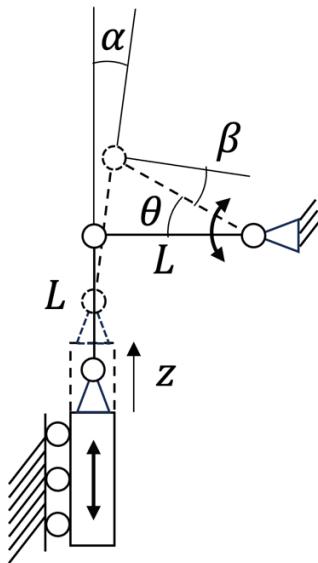


Figure 3: Geometric model of a crank-linear stage linkage.

The joints of the structure are then implemented in flexible elements. The pivots have separated crossed blades, whose **length** is 15 mm. Calculate their thickness ***h_alpha***, ***h_beta*** and ***h_theta*** to reach the fatigue stress $\sigma_D = 100$ MPa with maximal deflection for each pivot. The material is Aluminum Avional. The Young modulus is $E = 73$ GPa.

Solution C:

The analysis of the system geometry leads to the following relations:

$$L \cdot \sin \alpha + L \cdot \cos \theta = L$$

$$\alpha = \arcsin (1 - \cos \theta)$$

And:

$$L \cdot \sin \theta + L = L \cdot \cos \alpha + z$$

So:

$$z = L(\sin \theta - \cos \alpha + 1)$$

Also:

$$\beta = \alpha - \theta$$

For both extreme values of angle θ , the maximal deflections are calculated on each joint:

$$\begin{aligned}\alpha_{\max} &= 1.95^\circ \\ \beta_{\max} &= 16.95^\circ \\ z_{\max} &= 12.97 \text{ mm}\end{aligned}$$

Note that the absolute values are considered. Finally, the thicknesses of the pivot's blades are calculated using:

$$\begin{aligned}h_\alpha &= \frac{2 \cdot \sigma_D \cdot L}{E \cdot \alpha} = 1206 \text{ um} \\ h_\beta &= \frac{2 \cdot \sigma_D \cdot L}{E \cdot \beta} = 139 \text{ um} \\ h_\theta &= \frac{2 \cdot \sigma_D \cdot L}{E \cdot \theta} = 157 \text{ um}\end{aligned}$$