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Solution for exercise 9 – Part II:  

Design and force balancing of a flexure-based parallel stage 

Context: 

A flexure-base parallel stage is subjected to fluctuating linear accelerations along 

the 𝑥𝑥-axis due to motion of its base. To be insensitive to this specific perturbation, 

we wish to force balance the mechanism. 

 
Fig. 1: Flexure-based parallel stage Pseudo-Rigid-Body-Model before its force balancing. 

Figure 1 shows the Pseudo-Rigid-Body-Model (PRBM) of the studied flexure-

based parallel stage before its force balancing. The mechanism has one degree-

of-freedom and is composed of three moving rigid bodies: solids 𝟏𝟏, 𝟐𝟐 and 𝟑𝟑 

articulated in P1, P2, P3 and P4. 

Each solid 𝑖𝑖 = 1 … 3, has: 

• a mass 𝑚𝑚𝑖𝑖, 
• a center of mass (COM) 𝑐𝑐𝑖𝑖 (represented by the symbol ) located by a 

distance 𝑙𝑙𝑐𝑐𝑐𝑐, 
• an inertia tensor 𝑱̅̅𝑱𝑖𝑖 written at 𝑐𝑐𝑖𝑖. 

Each pivot P𝑖𝑖=1…4 has an angular stiffness 𝑘𝑘𝑖𝑖 that represents the intrinsic stiffness 
of the future flexure-based implementation. 
First, the parallel stage mechanism is actuated by a voice coil whose permanent 
magnet is fixed to the mechanism’s base and whose coil is fixed to solid 2. The 
voice coil applies a force 𝐅𝐅 at 𝑐𝑐2 along the 𝑥𝑥-axis. The parameter 𝑥𝑥 is used to 
locate the displacement of solid 2 relative to its base.  
Last, the linear displacement that corresponds to the motion of the mechanism’s 
base is represented by the parameter 𝛾𝛾.  
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Part II: Design of the flexure-based pivots 

The flexure implementation of the PRBM shown in Figure 2 is illustrated in 

Figure 3. Pivot joints 𝑃𝑃1 to 𝑃𝑃4 along with their torsion springs of stiffness 𝑘𝑘1 to 𝑘𝑘4 

are replaced by remote center of compliance (RCC) flexure pivots (red lines on 

Figure 3).  

 
Fig. 2: Flexure-base implementa�on of the force balanced parallel stage. 

The flexure-based parallel stage will be carried on board a rocket. During take-

off, the mechanism will be subjected to vibrations along the 𝑥𝑥-axis. To protect it, 

solid 2 is rigidly locked (no translations and no rotations) relative to the base of 

the mechanism so that solids 1 and 3 are kinematically immobilized. Thus, during 

take-off, the acceleration forces that apply on solids 1 and 3 go through pivots 𝑃𝑃1 

and 𝑃𝑃2, and 𝑃𝑃3 and 𝑃𝑃4, respectively. 

 

Technical specifications: 

Solid 2 of the flexure-based parallel stage has an admissible stroke of ±410 µm. 

RCC flexure-based pivot should withstand the take-off vibrations specified from 

the ASD given by Figure 4.  

The flexures are made out of Ti-6Al-4V. 

Alliage 
𝐸𝐸 

[GPa] 
𝑅𝑅𝑚𝑚 

[MPa] 
𝑅𝑅0.2 

[MPa] 
𝜎𝜎𝐷𝐷(107) 
[MPa] 

Titane 6Al-4V 114 900 830 500 
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Fig. 3: ASD that the flexure-based parallel stage must withstand. 

1. Considering 𝑝𝑝 = 2 mm, find the parameters:  

• 𝑙𝑙: length of the blade 

• ℎ: thickness of the blade 

• 𝑏𝑏: depth of the blade  

 
Fig. 4: Illustra�on of an RCC flexure pivot with its main parameters. 
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So that the flexures: 

• withstand the stroke of solid 2 for a number of cycles 𝑛𝑛 > 107 with 

a safety factor 𝑆𝑆≥2.5. 

• do not buckle for the worst-case scenario specified by the ASD with 

a safety factor 𝑆𝑆≥2.5. 
• do not plastify for the worst-case scenario specified by the ASD with 

a safety factor 𝑆𝑆≥2.5. 
Reminder: to identify the worst-case scenario specified by the ASD, use the 

Mile’s equation for all frequencies using a quality factor of 𝑄𝑄 = 100. 

SOLUTION: 
To withstand the ±410 µm stroke, we can use: 

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐻𝐻 ≈ 1.17° 

We know from Simon’s thesis that 

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
𝑆𝑆

𝜎𝜎𝐷𝐷𝑙𝑙2

𝐸𝐸ℎ(2𝑙𝑙 + 3𝑝𝑝) (1) 

The formula that gives the buckling load of the RCC flexure-based pivot 
is 

𝐹𝐹𝑐𝑐 =
√2
𝑆𝑆

𝜋𝜋2𝐸𝐸𝐸𝐸ℎ3

12 (0.5𝑙𝑙)2  (2) 

The formula that gives the plastification load of the RCC flexure-based 
pivot is 

𝐹𝐹𝑝𝑝 =
√2
𝑆𝑆 𝜎𝜎𝐷𝐷ℎ𝑏𝑏 (3) 

To evaluate the worst-case scenario, we use the Mile’s formula: 

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝜋𝜋
2 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Applying the Mile’s Formula on the ASD graph gives the following 
graph: 
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The worst-case scenario is to have a quasi-static acceleration 

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 ≈ 251 g [m/s2] 
The 3𝜎𝜎 force that apply at COM of Solid 1 (or Solid 2) is 

𝐹𝐹3𝜎𝜎 = 3𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑔𝑔 ∗ 𝑚𝑚1,tot ≈ 389 [N] 
Finally, due to the mass distribution of Solid 1, the force that goes through 
P1 is higher than the one that goes through P2: 

 

 
We find 

𝐹𝐹1 = 𝐹𝐹3𝜎𝜎 �1 +
𝑙𝑙c1,tot

𝐻𝐻 � > 𝐹𝐹2 = 𝐹𝐹3𝜎𝜎
𝑙𝑙c1,tot

𝐻𝐻  

Which gives us 
𝐹𝐹1 ≈ 641[N] 

Using Eqs. (1), (2) and (3), we find 
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ℎ =
9𝑆𝑆𝑆𝑆𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜋𝜋2 − 6𝑆𝑆𝑆𝑆� 𝐸𝐸
3𝜎𝜎𝐷𝐷

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
≈ 637 [µm] 

𝑙𝑙 = 𝜋𝜋�
𝐸𝐸

3𝜎𝜎𝐷𝐷
ℎ ≈ 17.5 [mm] 

𝑏𝑏 ≥
𝐹𝐹1𝑆𝑆

ℎ𝜎𝜎𝐷𝐷√2
≈ 3.6 [mm] 

Development: 
Using Eqs. (2) and (3), we have: 

𝐹𝐹𝑐𝑐 = 𝐹𝐹𝑝𝑝 

→
√2
𝑆𝑆

𝜋𝜋2𝐸𝐸𝐸𝐸ℎ3

12 (0.5𝑙𝑙)2 =
√2
𝑆𝑆 𝜎𝜎𝐷𝐷ℎ𝑏𝑏 

→
𝜋𝜋2𝐸𝐸ℎ2

12 (0.5𝑙𝑙)2 = 𝜎𝜎𝐷𝐷 

→ 𝑙𝑙 = 𝜋𝜋�
𝐸𝐸

3𝜎𝜎𝐷𝐷
ℎ 

Injecting our last result into Eq. (1), we have: 

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
𝑆𝑆

𝜎𝜎𝐷𝐷𝜋𝜋2ℎ2
𝐸𝐸

3𝜎𝜎𝐷𝐷

𝐸𝐸ℎ �2𝜋𝜋ℎ� 𝐸𝐸
3𝜎𝜎𝐷𝐷

+ 3𝑝𝑝�
 

=
1
𝑆𝑆

𝜋𝜋2ℎ

3�2𝜋𝜋� 𝐸𝐸
3𝜎𝜎𝐷𝐷

ℎ + 3𝑝𝑝�
 

→ ℎ =
9𝑆𝑆𝑆𝑆𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜋𝜋2 − 6𝑆𝑆𝑆𝑆� 𝐸𝐸
3𝜎𝜎𝐷𝐷

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

Returning Eq. (3), we have: 

𝑏𝑏 ≥
𝐹𝐹1𝑆𝑆

ℎ𝜎𝜎𝐷𝐷√2
 

 
 
From the manufacturing constraints, we consider b = 10 [mm]. 
With these new values, we recompute the safety factors for: 

• the stroke: ~2.5 
• plastification load: ~7 
• buckling load: ~7 

 



   

 Advanced mechanisms for extreme environmnents 

7 

2. Compute the linear equivalent stiffness 𝑘𝑘eq of the parallel stage. 

SOLUTION: 

The stiffness 𝑘𝑘1 of one RCC flexure pivot is given by 

𝑘𝑘1 =
8𝐸𝐸 𝑏𝑏ℎ

3

12 (𝑙𝑙2 + 3𝑝𝑝𝑝𝑝 + 3𝑝𝑝2)
𝑙𝑙3

≈ 15.51 [Nm. rad−1] 

We know that  

𝑘𝑘eq =
4𝑘𝑘1
𝐻𝐻2 ≈ 1.55e5 [N. m−1] 

3. Compute the frequency 𝑓𝑓init and 𝑓𝑓�inal of the parallel stage before and after 

its force balancing. 

SOLUTION: 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

2𝜋𝜋�
𝑘𝑘eq

𝑚𝑚eq,init
≈ 194.2 [Hz] 

𝑓𝑓final =
1

2𝜋𝜋�
𝑘𝑘eq

𝑚𝑚eq,final
≈ 135.6 [Hz] 


