

Solution for exercise 9 – Part II:
Design and force balancing of a flexure-based parallel stage

Context:

A flexure-base parallel stage is subjected to fluctuating linear accelerations along the x -axis due to motion of its base. To be insensitive to this specific perturbation, we wish to force balance the mechanism.

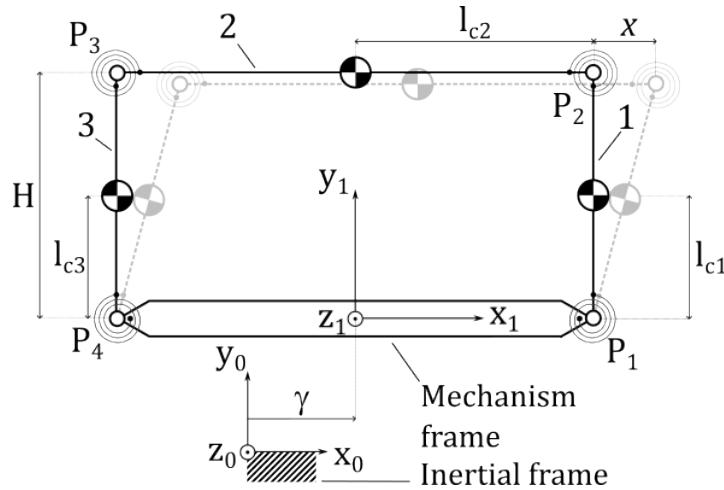


Fig. 1: Flexure-based parallel stage Pseudo-Rigid-Body-Model before its force balancing.

Figure 1 shows the Pseudo-Rigid-Body-Model (PRBM) of the studied flexure-based parallel stage before its force balancing. The mechanism has one degree-of-freedom and is composed of three moving rigid bodies: solids **1**, **2** and **3** articulated in P_1 , P_2 , P_3 and P_4 .

Each solid $i = 1 \dots 3$, has:

- a mass m_i ,
- a center of mass (COM) c_i (represented by the symbol \odot) located by a distance l_{ci} ,
- an inertia tensor \bar{J}_i written at c_i .

Each pivot $P_{i=1 \dots 4}$ has an angular stiffness k_i that represents the intrinsic stiffness of the future flexure-based implementation.

First, the parallel stage mechanism is actuated by a voice coil whose permanent magnet is fixed to the mechanism's base and whose coil is fixed to solid **2**. The voice coil applies a force \mathbf{F} at c_2 along the x -axis. The parameter x is used to locate the displacement of solid **2** relative to its base.

Last, the linear displacement that corresponds to the motion of the mechanism's base is represented by the parameter γ .

Part II: Design of the flexure-based pivots

The flexure implementation of the PRBM shown in Figure 2 is illustrated in Figure 3. Pivot joints P_1 to P_4 along with their torsion springs of stiffness k_1 to k_4 are replaced by *remote center of compliance* (RCC) flexure pivots (red lines on Figure 3).

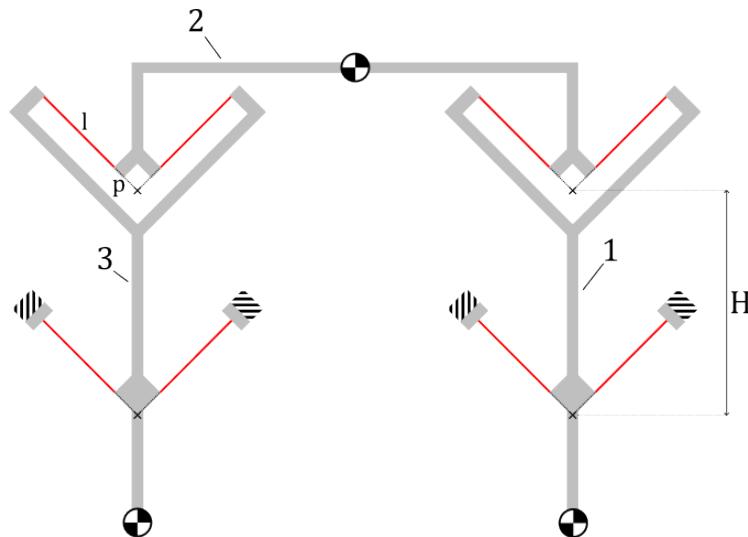


Fig. 2: Flexure-base implementation of the force balanced parallel stage.

The flexure-based parallel stage will be carried on board a rocket. During take-off, the mechanism will be subjected to vibrations along the x -axis. To protect it, solid 2 is rigidly locked (no translations and no rotations) relative to the base of the mechanism so that solids 1 and 3 are kinematically immobilized. Thus, during take-off, the acceleration forces that apply on solids 1 and 3 go through pivots P_1 and P_2 , and P_3 and P_4 , respectively.

Technical specifications:

Solid 2 of the flexure-based parallel stage has an admissible stroke of $\pm 410 \mu\text{m}$. RCC flexure-based pivot should withstand the take-off vibrations specified from the ASD given by Figure 4.

The flexures are made out of Ti-6Al-4V.

Alliage	E [GPa]	R_m [MPa]	$R_{0.2}$ [MPa]	$\sigma_D(10^7)$ [MPa]
Titane 6Al-4V	114	900	830	500

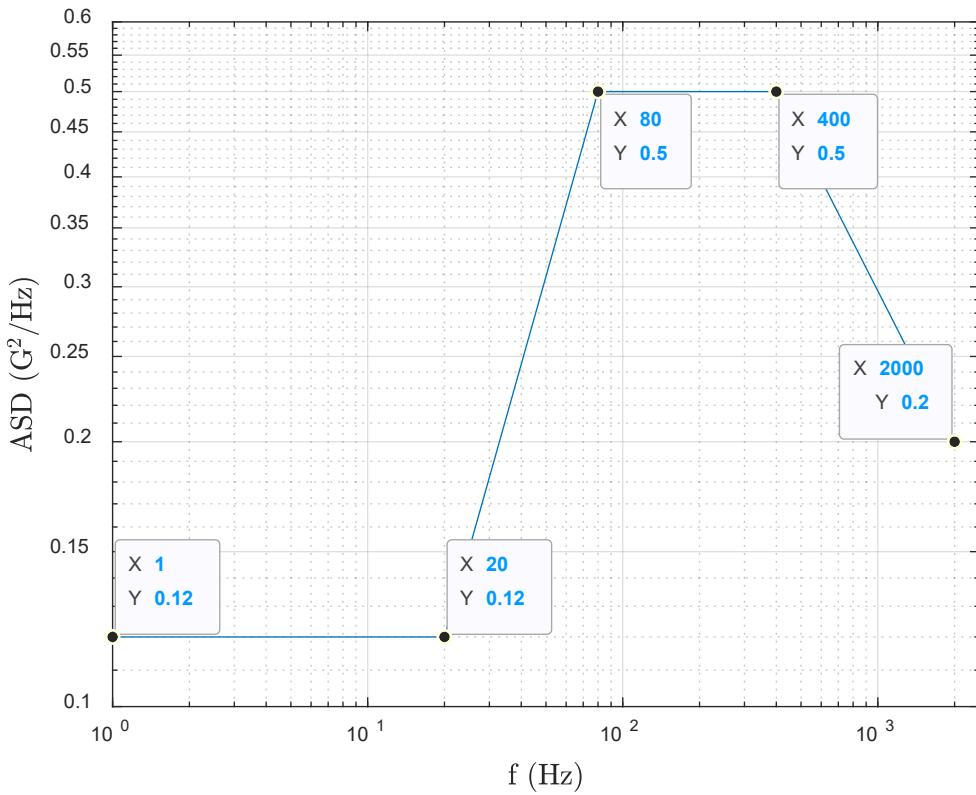


Fig. 3: ASD that the flexure-based parallel stage must withstand.

1. Considering $p = 2$ mm, find the parameters:

- l : length of the blade
- h : thickness of the blade
- b : depth of the blade

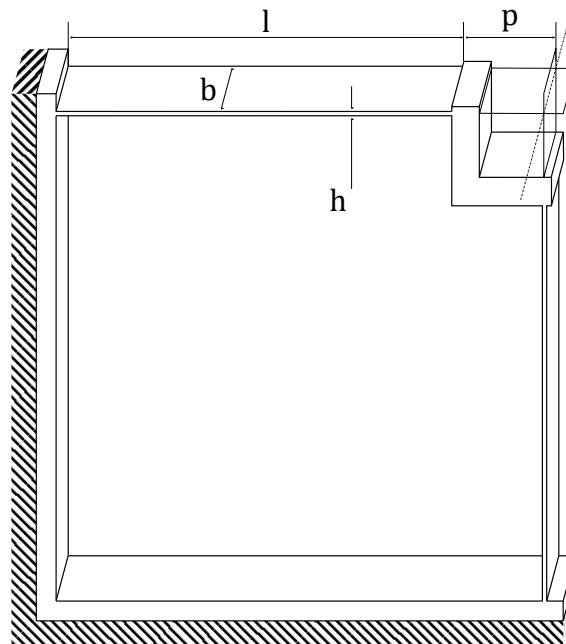


Fig. 4: Illustration of an RCC flexure pivot with its main parameters.

So that the flexures:

- withstand the stroke of solid 2 for a number of cycles $n > 10^7$ with a safety factor $S \geq 2.5$.
- do not buckle for the worst-case scenario specified by the ASD with a safety factor $S \geq 2.5$.
- do not plastify for the worst-case scenario specified by the ASD with a safety factor $S \geq 2.5$.

Reminder: to identify the worst-case scenario specified by the ASD, use the Mile's equation for all frequencies using a quality factor of $Q = 100$.

SOLUTION:

To withstand the $\pm 410 \mu\text{m}$ stroke, we can use:

$$\theta_{stroke} = \frac{x_{stroke}}{H} \approx 1.17^\circ$$

We know from Simon's thesis that

$$\theta_{stroke} = \frac{1}{S} \frac{\sigma_D l^2}{Eh(2l + 3p)} \quad (1)$$

The formula that gives the buckling load of the RCC flexure-based pivot is

$$F_c = \frac{\sqrt{2}}{S} \frac{\pi^2 E b h^3}{12 (0.5l)^2} \quad (2)$$

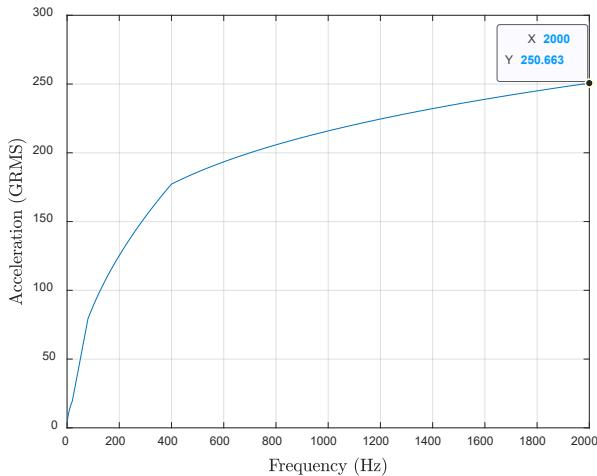
The formula that gives the plastification load of the RCC flexure-based pivot is

$$F_p = \frac{\sqrt{2}}{S} \sigma_D b h \quad (3)$$

To evaluate the worst-case scenario, we use the Mile's formula:

$$G_{rms} = \sqrt{\frac{\pi}{2} f Q ASD}$$

Applying the Mile's Formula on the ASD graph gives the following graph:



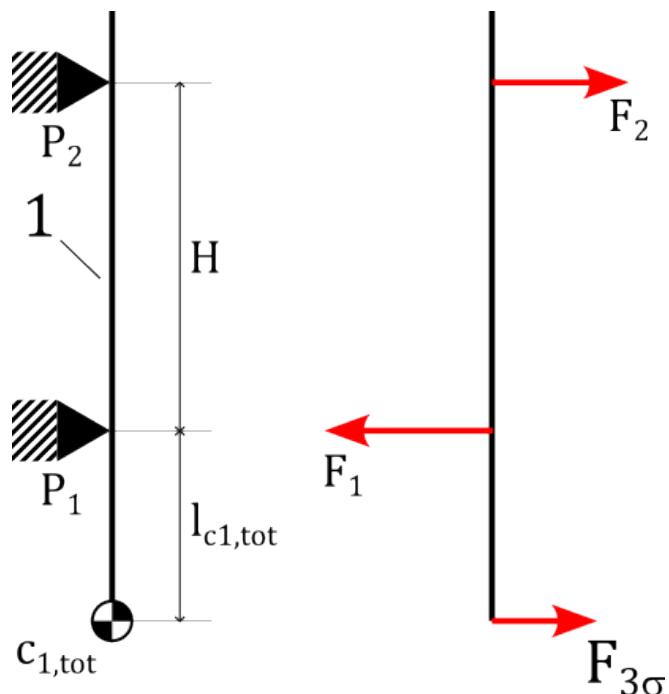
The worst-case scenario is to have a quasi-static acceleration

$$G_{rms} \approx 251 \text{ g} [\text{m/s}^2]$$

The 3σ force that apply at COM of Solid 1 (or Solid 2) is

$$F_{3\sigma} = 3G_{rms} * g * m_{1,tot} \approx 389 \text{ [N]}$$

Finally, due to the mass distribution of Solid 1, the force that goes through P1 is higher than the one that goes through P2:



We find

$$F_1 = F_{3\sigma} \left(1 + \frac{l_{c1,tot}}{H} \right) > F_2 = F_{3\sigma} \frac{l_{c1,tot}}{H}$$

Which gives us

$$F_1 \approx 641 \text{ [N]}$$

Using Eqs. (1), (2) and (3), we find

$$h = \frac{9Sp\theta_{stroke}}{\pi^2 - 6S\pi\sqrt{\frac{E}{3\sigma_D}}\theta_{stroke}} \approx 637 \text{ [\mu m]}$$

$$l = \pi \sqrt{\frac{E}{3\sigma_D}} h \approx 17.5 \text{ [mm]}$$

$$b \geq \frac{F_1 S}{h\sigma_D\sqrt{2}} \approx 3.6 \text{ [mm]}$$

Development:

Using Eqs. (2) and (3), we have:

$$F_c = F_p$$

$$\rightarrow \frac{\sqrt{2}}{S} \frac{\pi^2 E b h^3}{12 (0.5l)^2} = \frac{\sqrt{2}}{S} \sigma_D h b$$

$$\rightarrow \frac{\pi^2 E h^2}{12 (0.5l)^2} = \sigma_D$$

$$\rightarrow l = \pi \sqrt{\frac{E}{3\sigma_D}} h$$

Injecting our last result into Eq. (1), we have:

$$\theta_{stroke} = \frac{1}{S} \frac{\sigma_D \pi^2 h^2 \frac{E}{3\sigma_D}}{E h \left(2\pi h \sqrt{\frac{E}{3\sigma_D}} + 3p \right)}$$

$$= \frac{1}{S} \frac{\pi^2 h}{3 \left(2\pi \sqrt{\frac{E}{3\sigma_D}} h + 3p \right)}$$

$$\rightarrow h = \frac{9Sp\theta_{stroke}}{\pi^2 - 6S\pi\sqrt{\frac{E}{3\sigma_D}}\theta_{stroke}}$$

Returning Eq. (3), we have:

$$b \geq \frac{F_1 S}{h\sigma_D\sqrt{2}}$$

From the manufacturing constraints, we consider $b = 10 \text{ [mm]}$. With these new values, we recompute the safety factors for:

- the stroke: ~ 2.5
- plastification load: ~ 7
- buckling load: ~ 7

2. Compute the linear equivalent stiffness k_{eq} of the parallel stage.

SOLUTION:

The stiffness k_1 of one RCC flexure pivot is given by

$$k_1 = \frac{8E \frac{bh^3}{12} (l^2 + 3pl + 3p^2)}{l^3} \approx 15.51 \text{ [Nm. rad}^{-1}\text{]}$$

We know that

$$k_{\text{eq}} = \frac{4k_1}{H^2} \approx 1.55 \text{e}5 \text{ [N. m}^{-1}\text{]}$$

3. Compute the frequency f_{init} and f_{final} of the parallel stage before and after its force balancing.

SOLUTION:

$$f_{\text{init}} = \frac{1}{2\pi} \sqrt{\frac{k_{\text{eq}}}{m_{\text{eq,init}}}} \approx 194.2 \text{ [Hz]}$$

$$f_{\text{final}} = \frac{1}{2\pi} \sqrt{\frac{k_{\text{eq}}}{m_{\text{eq,final}}}} \approx 135.6 \text{ [Hz]}$$