

Exercise 9 – Part II:
Design and force balancing of a flexure-based parallel stage

Context:

A flexure-based parallel stage is subjected to fluctuating linear accelerations along the x -axis due to motion of its base. To be insensitive to this specific perturbation, we wish to force balance the mechanism.

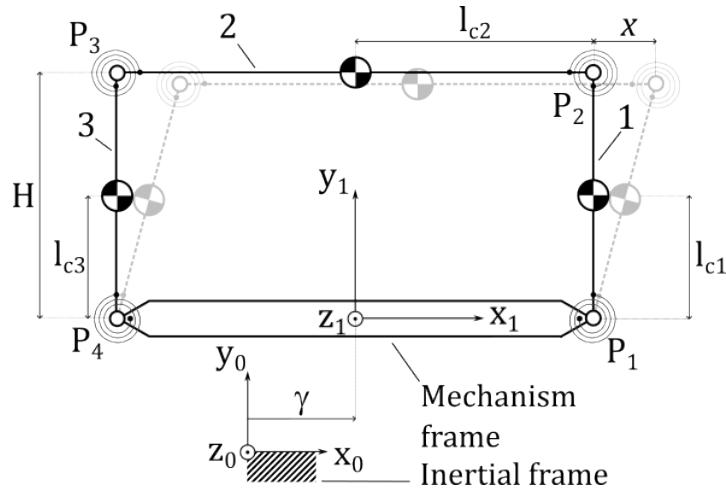


Fig. 1: Flexure-based parallel stage Pseudo-Rigid-Body-Model before its force balancing.

Figure 1 shows the Pseudo-Rigid-Body-Model (PRBM) of the studied flexure-based parallel stage before its force balancing. The mechanism has one degree-of-freedom and is composed of three moving rigid bodies: solids **1**, **2** and **3** articulated in P_1 , P_2 , P_3 and P_4 .

Each solid $i = 1 \dots 3$, has:

- a mass m_i ,
- a center of mass (COM) c_i (represented by the symbol \odot) located by a distance l_{ci} ,
- an inertia tensor \bar{J}_i given at c_i .

Each pivot $P_{i=1 \dots 4}$ has an angular stiffness k_i that represents the intrinsic stiffness of the future flexure-based implementation.

First, the parallel stage mechanism is actuated by a voice coil whose permanent magnet is fixed to the mechanism's base and whose coil is fixed to solid **2**. The voice coil applies a force \mathbf{F} at c_2 along the x -axis. The parameter x is used to locate the displacement of solid **2** relative to its base.

Last, the linear displacement that corresponds to the motion of the mechanism's base is represented by the parameter γ .

Part II: Design of the flexure-based pivots

The flexure implementation of the PRBM shown in Figure 2 is illustrated in Figure 3. Pivot joints P_1 to P_4 along with their torsion springs of stiffness k_1 to k_4 are replaced by *remote center of compliance* (RCC) flexure pivots (red lines on Figure 3).

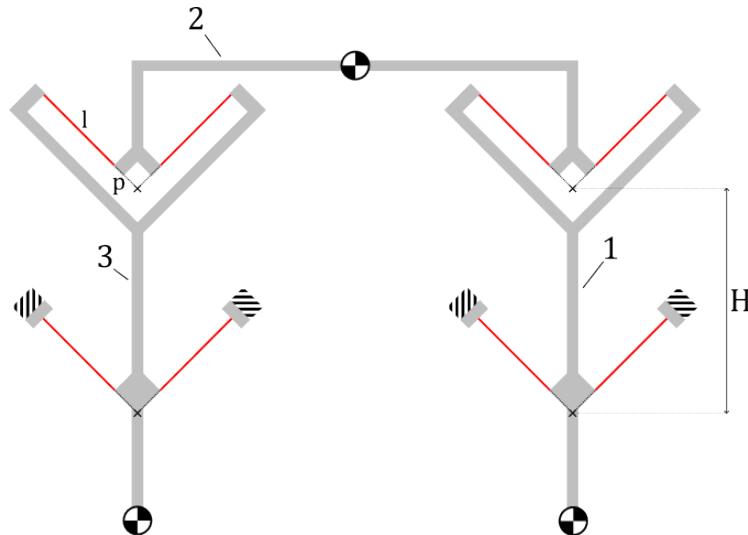


Fig. 2: Flexure-base implementation of the force balanced parallel stage.

The flexure-based parallel stage will be carried on board a rocket. During take-off, the mechanism will be subjected to vibrations along the x -axis. To protect it, solid 2 is rigidly locked (no translations and no rotations) relative to the base of the mechanism so that solids 1 and 3 are kinematically immobilized. Thus, during take-off, the acceleration forces that apply on solids 1 and 3 go through pivots P_1 and P_2 , and P_3 and P_4 , respectively.

Technical specifications:

Solid 2 of the flexure-based parallel stage has an admissible stroke of $\pm 410 \mu\text{m}$. RCC flexure-based pivot should withstand the take-off vibrations specified from the ASD given by Figure 4.

The flexures are made out of Ti-6Al-4V.

Alliage	E [GPa]	R_m [MPa]	$R_{0.2}$ [MPa]	$\sigma_D(10^7)$ [MPa]
Titane 6Al-4V	114	900	830	500

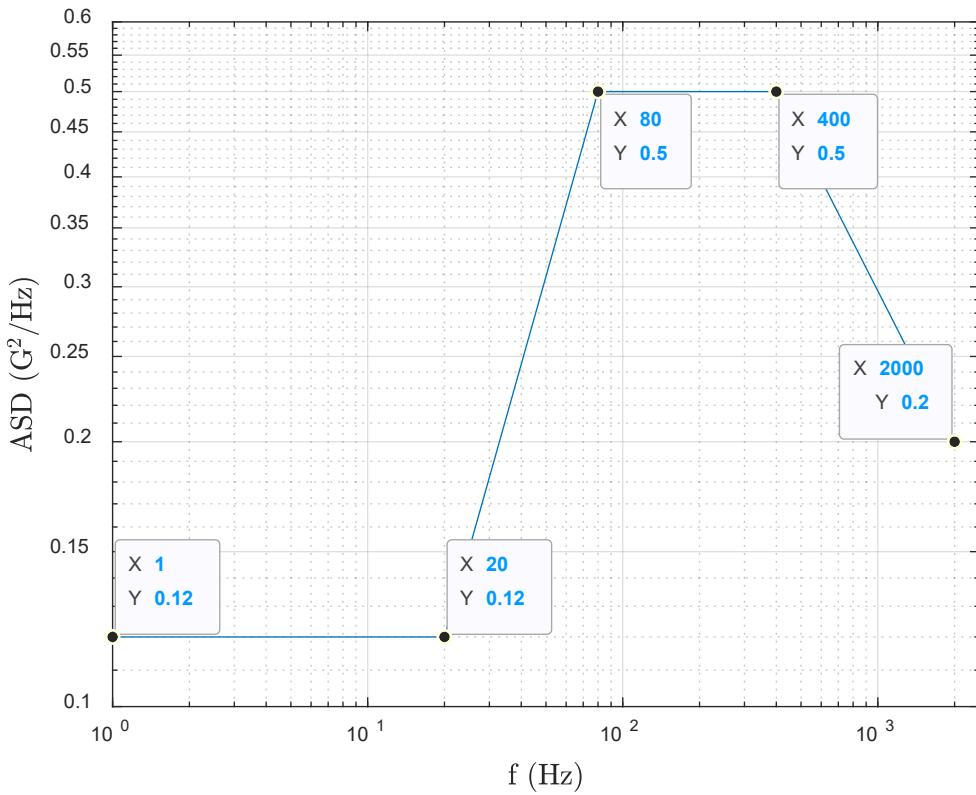


Fig. 3: ASD that the flexure-based parallel stage must withstand.

1. Considering $p = 2$ mm, find the parameters:

- l : length of the blade
- h : thickness of the blade
- b : depth of the blade

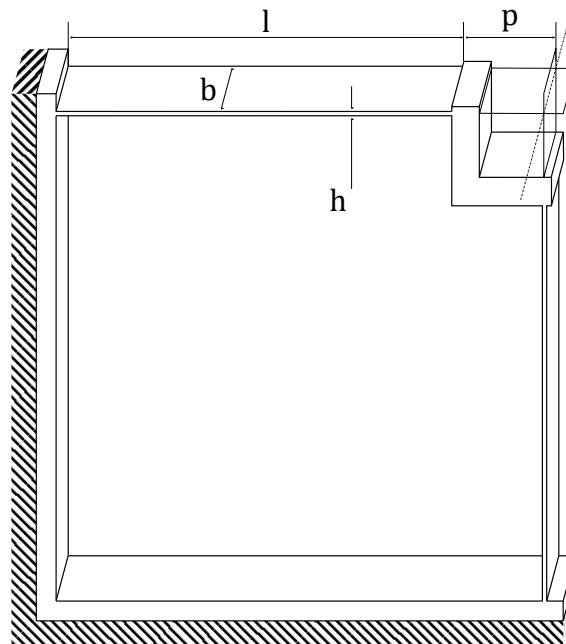


Fig. 4: Illustration of an RCC flexure pivot with its main parameters.

So that the flexures:

- withstand the stroke of solid 2 for a number of cycles $n > 10^7$ with a safety factor $S=2.5$.
- do not buckle for the worst-case scenario specified by the ASD with a safety factor $S=2.5$.
- do not plastify for the worst-case scenario specified by the ASD with a safety factor $S=2.5$.

Reminder: to identify the worst-case scenario specified by the ASD, use the Mile's equation for all frequencies using a quality factor of $Q = 100$.

2. The flexures from the linear stage will be manufactured from a 10 mm thick titanium plate. We therefore consider $b = 10$ [mm], which should be higher than the minimal theoretical value computed from the previous question. Compute the linear equivalent stiffness k_{eq} of the parallel stage.
3. Compute the frequency f_{init} and f_{final} of the parallel stage before and after it is force balanced.