cPiL

Architecture
Software -
Toolchain

Eric Silva

. itecture . .
Software Spring 2025 — Micro 371

=PFL - Plan du cours
N° | Prof Type Dates Théme
1 Sl Cours 18/02/2025 | Gestion de projet et Organisation du cours
2 Sl Cours 25/02/2025 | Patrons de conception et styles d'architecture
3 | SF Cours 04/03/2025 | DevOps: Intégration Continue (slides et exercices)
4 SF Cours 11/03/2025 | DevOps: Intégration Continue

B ARCHITECTURE LOGICIELLE/SPECIFICATIONS DU SYSTEME

SF

TP

08/04/2025

TP2 - Mise a jour du gitlab board en fonction des exigences

SF

SF

Cours

TP

15/04/2025

29/04/2025

DevOps: Automatisation des tests

TP3 - Spécifications et Réalisation des tests automatisés

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Plan du cours d’aujourd’hui

La qualification des outils
La chaine de compilation
Les librairies de test

Eric Silva

=PFL Qualification d’outil

Lors de l'utilisation d’un logiciel tiers dans le développement d’un
systeme critique, il faut garantir que ce logiciel ne génére pas d’erreurs
non détectées pouvant compromettre la sécurité du systeme final.

Exemples de logiciels:
= Compilateur

- Gitlab

- Word / Excel

= Visual Studio Code

B ARCHITECTURE LOGICIELLE/TOOLCHAIN
]

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

Eric Silva

1

1
"1

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Qualification d’outil (1)

Lors de l'utilisation d’un logiciel tiers dans le développement d’'un
systeme critique, son risque doit étre estimé et mitige.

Standard?

IEC 61508
N 50128

555555

Safety Standard DO-330(TQL) | T1 I

mm IEI

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

Eric Silva

=PFL Qualification d’outil (2)

Pour évaluer la confiance en un outil donné, le modele suivant peut étre
applique:

= Cas d'utilisation : décrire un scénario d'application de I'outil

= Fonction : une fonction de l'outil utilisée dans les cas d'utilisation

= Erreur potentielle : une erreur potentielle qui pourrait se produire lors de
I'application d'un outil

= Atténuation des erreurs : vérification ou restriction appliquée pendant la
phase d'utilisation de I'outil.

= Qualification : méthode permettant de montrer qu'un outil ou une
fonction satisfont aux exigences specifiees en demontrant I'absence
d'erreurs potentielles.

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

Eric Silva

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Qualification d’outil (3)

Un rapport doit ensuite étre produit.

9 Tool Classification Report)

Potential Tool Errors

errors in
unused
features

detectable,
\ivoidable

2

Tool Safety Manual

&

Error Mitigations

-
\or’

{J?Tool Qualification Report)

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

La chaine de compilation

* Ensemble d’outils permettant de transformer un code source (C/C++) en
programme exécutable.
* Elle comprend plusieurs étapes et utilitaires, adaptés a I'architecture cible.

Exemple : la chaine GNU inclut gcc (compilateur), binutils (assembleur, éditeur de
liens), glibc (bibliothéque C), gdb (débogueur).

Machine Code

Source Code

Source files ﬁ BUiId tOOI ﬁ 010010011

(*.c, *.h)

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

La chaine de compilation (2)

IR Y s o process.

object file
(*.0, *.a)

Executable
Image(*.hex
, *.elf, .*cof)

Link Map
file (*.map)

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

©

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Compilation native ou cross-compilation

On parle de compilation native lorsqu’une machine compile un
programme pour sa propre utilisation ou pour une machine ayant le
méme systeme d’exploitation par exemple.

Lorsque I'on compile pour un systeme différent, on parle de cross-
compilation.

HOST machine TARGET machine

Native compiler

gcc program.c

Generate binary for the
x86 platform

x86 x86

Cross compiler

riscv-gnu-gcc program.c)—> 31"! .__
N - '; l ,
Generate binary for the N o
RISC-V platform —w
x86 RISC-V

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

=
(=

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

1¢re @étape, la programmation

Au moment de programmer du code, le plus souvent on utilise un “IDE”
(integrated development environment) cet outil nous offre plus de
flexibilité, il compléte parfois notre code mais lors du développement d’un
systeme critique il faut s’assurer qu’il n'ajoute pas d’erreurs dans notre
programme.

Source: https://medium.com/@fawwazyusran/create-a-portable-ide-with-visual-studio-code-fbOc6bc198ef

[y
=

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

1¢re @étape, la programmation (2)

Risques liés a l'utilisateur :

Erreurs de logique ou de conception (ex. : mauvaise gestion des erreurs, absence d vérification
des entrées)

Vulnérabilités classiques (injection SQL, XSS, buffer overflow, mots de passe codés en dur)
Mauvaise utilisation de fonctions dangereuses (system(), accées direct mémoire)

Dépendance excessive aux fonctionnalités d’auto-complétion ou de correction automatique de
I'IDE, pouvant masquer des erreurs logiques

Risques liés a I'outil (IDE) :

Auto-complétion générant du code vulnérable ou non adapté au contexte critique
Débogueur masquant des conditions de course ou des erreurs de synchronisation
Plugins ou extensions non vérifiés pouvant introduire des failles de sécurité

Fusion automatique de code (gestion de versions) créant des conflits ou des erreurs
silencieuses

Surcouche graphique (glisser-déposer) cachant la complexité réelle du code généré

=
N

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

2¢me atape, compilation et assemblage

La compilation consiste a transformer un fichier contenant du code. Par
exemple des fichiers “.c” ou “.h” en un fichier de type objet “.0” ce fichier
contient les informations de programmation mais certains des symboles
qu’il contient nécessitent encore d’étre reliés a des librairies par exemple.

—»—»-

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

[y
w

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

2¢me gtape, compilation et assemblage (2)

La compilation est un processus complexe qui peut étre divisé en 3
étapes effectuées consécutivement:

- Front end : Responsable de 'analyse du code source.

- Middle end : Responsable de 'optimisation du code.

- Back end : Responsable de la génération du code du fichier objet.

1 2 3

Front end Middle end

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

2¢me gtape, compilation et assemblage (3)

Risques liés a l'utilisateur :

* Mauvaise configuration des options de compilation (optimisations inadaptées,
flags de sécurité désactivés)

« Utilisation de versions non certifiées du compilateur pour des systemes
critiques

* Non-prise en compte des avertissements ou erreurs du compilateur

Risques liés a I'outil (compilateur) :

* Optimisations agressives supprimant des vérifications de sécurité nécessaires
(ex : suppression de code "mort" critique)

* Bugs de compilation générant un code machine incorrect sans avertissement
* Corruption des fichiers intermédiaires (headers précompilés, objets)

* Incompatibilités entre options de compilation (flags contradictoires)

* Mauvaise gestion des dépendances et des bibliotheques externes

=
(&}

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

2éme étape, compilation et assemblage (4)

Chacune de ces étapes comporte des risques mais permet aussi de
détecter certaines erreurs et de les corriger.

Par exemple:

Détecter certaines boucles sans fin

Détecter des portions de code inutilisées

Avertir au sujet de mauvaise manipulation de variables

-
(4]

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

3éme étape, I'édition des liens (Linker)

Dans cette étape, le “linker” prend les fichiers objets, les bibliotheques et
les autres dépendances générées lors de la compilation et les combine
en un seul programme exécutable. L'édition de liens résout les
références aux fonctions et aux variables, attribue les adresses mémoire
et garantit que le programme ou la bibliotheque est complet et prét a étre

exécuté ou utilisé. |
-j

Executable

Image(*.hex
, *.elf, *cof)

Link Map
file (*.map)

e

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

=
~

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

3eme gtape, I’édition des liens (Linker) (2)

Risques liés a l'utilisateur :

Oubli de linclusion de bibliotheques critiques ou de dépendances
nécessaires

Mauvaise configuration du linker script (adresses mémoire, sections,
alignement)

Non-vérification de la compatibilité des versions de bibliotheques

Risques liés a I’outil (éditeur de liens) :

Gestion incorrecte des adresses mémoire ou des symboles, pouvant
causer des plantages

Mauvaise résolution des symboles externes (symboles non résolus ou mal
associés)

Limitations ou bugs dans I'éditeur de liens pouvant générer des binaires
incorrects

-
()

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Le choix du compilateur

Au vu de I'impact qu’il peut avoir sur I'exécutable qu’il va générer, le
compilateur est un élément critique dans la chaine de développement
de systemes critiques.

C’est pourquoi certaines entreprises ont investi un temps de
developpement conséquent pour proposer des compilateurs certifiés.

Chez ARM, par exemple, le compilateur de sécurité contient:

Une librairie C

Un kit de qualification

Une librairie d’interface certifiee et open-source (CMSIS)
Un systeme d’exploitation temps-réel

Une librairie de test logiciel

Source: https://www.isit.fr/fr/article/iso-26262-repondre-aux-exigences-de-la-norme-de-surete-de-fonctionnement-des-vehicules-automobiles.php

=
©

Eric Silva

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Les librairies de test

Vérification de la fiabilité et de la sécurité

* Vérifier I'intégrité d’exécution du processeur et du systeme logiciel, en détectant la présence de défauts
matériels ou logiciels au démarrage et pendant I’exécution.

* Répondre aux exigences des normes de sécurité fonctionnelle en fournissant des routines de test
efficaces qui valident que le matériel fonctionne correctement avant et pendant I’exécution des
applications critiques.

Automatisation et couverture des tests

* Intégration des tests dans les applications, que ce soit sur un systeme bare-metal ou avec un systeme
d’exploitation.

* Elles permettent d’automatiser les tests, d’obtenir des résultats rapides (pass/fail), et d’assurer une
couverture diagnostique élevée, essentielle pour la certification des systemes critiques.

Support au développement et a la certification

e ARM propose des librairies certifiées (par exemple, bibliothéque C certifiée avec certificat TUV SUD) pour
accélérer la mise sur le marché et simplifier la justification de la chaine d’outils lors de I'audit de sécurité.

* Les rapports de test et de défauts fournis avec ces librairies aident a démontrer la conformité du
compilateur et de la bibliotheque aux standards I1SO, et a documenter les éventuels écarts ou défauts
connus.

Source: https://www.isit.fr/fr/article/iso-26262-repondre-aux-exigences-de-la-norme-de-surete-de-fonctionnement-des-vehicules-automobiles.php

N
o

Eric Silva

=PFL - Exemple -> ARM FuSa RTS

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Arm FuSa RTS: Software components certified for safety-critical applications

Run-time. system for T Covered safety standards:
functional safety PP + Automotive:

ISO 26262, ASILD

FuSa RTX RTOS . Software test - Industrial
Events Mutex Event ';':rfi?;t(fl';) IEC 61508, SIL 3
Thread S Semaphore Recorder for run-time + Medical:
Time gcheduler ~ Memory verification IEC 62304, Class C
+ Railway:
FuSa CMSIS-Core EN50128,SIL 4

(Arm-Core specific) Supported processors:

+ Cortex-M0O/MO+
+ Cortex-M3

FUSG RTS components certiﬁed Arm Cortex—M processor N COI‘teX- M4
with safety Arm C/C++ Compiler + Cortex-M7

Source: https://www.tecnologix.it/ittarm-keil-fusa-rts.html

N
=

Eric Silva

=PrL

B ARCHITECTURE LOGICIELLE/TOOLCHAIN

Continuationdu TP

Rappel de la notation:

Le projet se compose de 4 parties principales avec les objectifs suivants:

TP1 (25% de la note du projet): Evaluation des risques et définition des
exigences de sécurité pour le produit / projet en question.

TP2 (25% de la note du projet): I'adoption de bonnes pratiques d'intégration
continue et d'utilisation de gitlab pour le projet selon les consignes du cours.
TP3 (25% de la note du projet): conception et la réalisation de tests
automatiques pour ce projet.

TP4 (25% de la note du projet): Tests statiques, justification des choix et
finalisation du projet.

N
N

Eric Silva

	Slide 1: Architecture Software - Toolchain
	Slide 2: Plan du cours
	Slide 3: Plan du cours d’aujourd’hui
	Slide 4: Qualification d’outil
	Slide 5: Qualification d’outil (1)
	Slide 6: Qualification d’outil (2)
	Slide 7: Qualification d’outil (3)
	Slide 8: La chaîne de compilation
	Slide 9: La chaîne de compilation (2)
	Slide 10: Compilation native ou cross-compilation
	Slide 11: 1ère étape, la programmation
	Slide 12: 1ère étape, la programmation (2)
	Slide 13: 2ème étape, compilation et assemblage
	Slide 14: 2ème étape, compilation et assemblage (2)
	Slide 15: 2ème étape, compilation et assemblage (3)
	Slide 16: 2ème étape, compilation et assemblage (4)
	Slide 17: 3ème étape, l’édition des liens (Linker)
	Slide 18: 3ème étape, l’édition des liens (Linker) (2)
	Slide 19: Le choix du compilateur
	Slide 20: Les librairies de test
	Slide 21: Exemple -> ARM FuSa RTS
	Slide 22: Continuation du TP

