
Architecture
Software -
Toolchain

Eric Silva

Spring 2025 – Micro 371
• Architecture

Software

Plan du cours

E
ri
c
 S

ilv
a

2

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/S
P

É
C

IF
IC

A
T

IO
N

S
 D

U
 S

Y
S

T
È

M
E

N° Prof Type Dates Thème

1 SI Cours 18/02/2025 Gestion de projet et Organisation du cours

2 SI Cours 25/02/2025 Patrons de conception et styles d'architecture

3 SF Cours 04/03/2025 DevOps: Intégration Continue (slides et exercices)

4 SF Cours 11/03/2025 DevOps: Intégration Continue

5 ES Cours 18/03/2025 Evaluation des risques et définitions des fonctions de sécurité

6 ES Cours 25/03/2025 Ecriture d'exigences, du système au logiciel, spécification des tests

7 ES TP 01/04/2025 TP1 - Spécification des exigences du projet

8 SF TP 08/04/2025 TP2 - Mise à jour du gitlab board en fonction des exigences

9 SF Cours 15/04/2025 DevOps: Automatisation des tests

22/04/2025 Vacances

10 SF TP 29/04/2025 TP3 - Spécifications et Réalisation des tests automatisés

11 ES Cours 06/05/2025 Processus de développement et toolchain

12 ES Cours 13/05/2025 Cybersécurité et Communication

13 ES Cours 20/05/2025 Tests statiques de code

14 ES TP 27/05/2025 TP4 - Tests statiques et finalisation du projet

▪ La qualification des outils

▪ La chaîne de compilation

▪ Les librairies de test

Plan du cours d’aujourd’hui

E
ri
c
 S

ilv
a

3

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Lors de l’utilisation d’un logiciel tiers dans le développement d’un

système critique, il faut garantir que ce logiciel ne génère pas d’erreurs

non détectées pouvant compromettre la sécurité du système final.

Exemples de logiciels:

▪ Compilateur

▪ Gitlab

▪ Word / Excel

▪ Visual Studio Code

▪ …

Qualification d’outil

E
ri
c
 S

ilv
a

4

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Lors de l’utilisation d’un logiciel tiers dans le développement d’un

système critique, son risque doit être estimé et mitigé.

Qualification d’outil (1)

E
ri
c
 S

ilv
a

5

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Pour évaluer la confiance en un outil donné, le modèle suivant peut être

appliqué:

▪ Cas d'utilisation : décrire un scénario d'application de l'outil

▪ Fonction : une fonction de l'outil utilisée dans les cas d'utilisation

▪ Erreur potentielle : une erreur potentielle qui pourrait se produire lors de

l'application d'un outil

▪ Atténuation des erreurs : vérification ou restriction appliquée pendant la

phase d'utilisation de l'outil.

▪ Qualification : méthode permettant de montrer qu'un outil ou une

fonction satisfont aux exigences spécifiées en démontrant l'absence

d'erreurs potentielles.

Qualification d’outil (2)

E
ri
c
 S

ilv
a

6

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Un rapport doit ensuite être produit.

Qualification d’outil (3)

E
ri
c
 S

ilv
a

7

Source: https://www.verifysoft.com/Tool_Qualification_Plan_for_Testwell_CTC.pdf

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

8La chaîne de compilation

E
ri
c
 S

ilv
a

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

• Ensemble d’outils permettant de transformer un code source (C/C++) en

programme exécutable.

• Elle comprend plusieurs étapes et utilitaires, adaptés à l’architecture cible.

Exemple : la chaîne GNU inclut gcc (compilateur), binutils (assembleur, éditeur de

liens), glibc (bibliothèque C), gdb (débogueur).

9La chaîne de compilation (2)

E
ri
c
 S

ilv
a

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

10Compilation native ou cross-compilation

E
ri
c
 S

ilv
a

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

On parle de compilation native lorsqu’une machine compile un

programme pour sa propre utilisation ou pour une machine ayant le

même système d’exploitation par exemple.

Lorsque l’on compile pour un système différent, on parle de cross-

compilation.

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

111ère étape, la programmation

E
ri
c
 S

ilv
a

Source: https://medium.com/@fawwazyusran/create-a-portable-ide-with-visual-studio-code-fb0c6bc198ef

Au moment de programmer du code, le plus souvent on utilise un “IDE”

(integrated development environment) cet outil nous offre plus de

flexibilité, il complète parfois notre code mais lors du développement d’un

système critique il faut s’assurer qu’il n’ajoute pas d’erreurs dans notre

programme.

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

121ère étape, la programmation (2)

E
ri
c
 S

ilv
a

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Risques liés à l'utilisateur :

▪ Erreurs de logique ou de conception (ex. : mauvaise gestion des erreurs, absence d vérification

des entrées)

▪ Vulnérabilités classiques (injection SQL, XSS, buffer overflow, mots de passe codés en dur)

▪ Mauvaise utilisation de fonctions dangereuses (system(), accès direct mémoire)

▪ Dépendance excessive aux fonctionnalités d’auto-complétion ou de correction automatique de

l’IDE, pouvant masquer des erreurs logiques

Risques liés à l’outil (IDE) :

▪ Auto-complétion générant du code vulnérable ou non adapté au contexte critique

▪ Débogueur masquant des conditions de course ou des erreurs de synchronisation

▪ Plugins ou extensions non vérifiés pouvant introduire des failles de sécurité

▪ Fusion automatique de code (gestion de versions) créant des conflits ou des erreurs

silencieuses

▪ Surcouche graphique (glisser-déposer) cachant la complexité réelle du code généré

La compilation consiste à transformer un fichier contenant du code. Par

exemple des fichiers “.c” ou “.h” en un fichier de type objet “.o” ce fichier

contient les informations de programmation mais certains des symboles

qu’il contient nécessitent encore d’être reliés à des librairies par exemple.

2ème étape, compilation et assemblage

E
ri
c
 S

ilv
a

13

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

La compilation est un processus complexe qui peut être divisé en 3

étapes effectuées consécutivement:

- Front end : Responsable de l'analyse du code source.

- Middle end : Responsable de l'optimisation du code.

- Back end : Responsable de la génération du code du fichier objet.

2ème étape, compilation et assemblage (2)

E
ri
c
 S

ilv
a

14

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

152ème étape, compilation et assemblage (3)

E
ri
c
 S

ilv
a

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Risques liés à l’utilisateur :

• Mauvaise configuration des options de compilation (optimisations inadaptées,
flags de sécurité désactivés)

• Utilisation de versions non certifiées du compilateur pour des systèmes
critiques

• Non-prise en compte des avertissements ou erreurs du compilateur

Risques liés à l’outil (compilateur) :

• Optimisations agressives supprimant des vérifications de sécurité nécessaires
(ex : suppression de code "mort" critique)

• Bugs de compilation générant un code machine incorrect sans avertissement

• Corruption des fichiers intermédiaires (headers précompilés, objets)

• Incompatibilités entre options de compilation (flags contradictoires)

• Mauvaise gestion des dépendances et des bibliothèques externes

162ème étape, compilation et assemblage (4)

E
ri
c
 S

ilv
a

Chacune de ces étapes comporte des risques mais permet aussi de

détecter certaines erreurs et de les corriger.

Par exemple:

- Détecter certaines boucles sans fin

- Détecter des portions de code inutilisées

- Avertir au sujet de mauvaise manipulation de variables

- …

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

173ème étape, l’édition des liens (Linker)

E
ri
c
 S

ilv
a

Dans cette étape, le “linker” prend les fichiers objets, les bibliothèques et

les autres dépendances générées lors de la compilation et les combine

en un seul programme exécutable. L'édition de liens résout les

références aux fonctions et aux variables, attribue les adresses mémoire

et garantit que le programme ou la bibliothèque est complet et prêt à être

exécuté ou utilisé.

Source: https://www.linkedin.com/pulse/buildingcompilation-process-using-gnu-arm-toolchain-mohamed-ali/

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

183ème étape, l’édition des liens (Linker) (2)

E
ri
c
 S

ilv
a

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Risques liés à l’utilisateur :

• Oubli de l’inclusion de bibliothèques critiques ou de dépendances
nécessaires

• Mauvaise configuration du linker script (adresses mémoire, sections,
alignement)

• Non-vérification de la compatibilité des versions de bibliothèques

Risques liés à l’outil (éditeur de liens) :

• Gestion incorrecte des adresses mémoire ou des symboles, pouvant
causer des plantages

• Mauvaise résolution des symboles externes (symboles non résolus ou mal
associés)

• Limitations ou bugs dans l’éditeur de liens pouvant générer des binaires
incorrects

19Le choix du compilateur

Au vu de l’impact qu’il peut avoir sur l'exécutable qu’il va générer, le

compilateur est un élément critique dans la chaîne de développement

de systèmes critiques.

C’est pourquoi certaines entreprises ont investi un temps de

développement conséquent pour proposer des compilateurs certifiés.

Chez ARM, par exemple, le compilateur de sécurité contient:

● Une librairie C

● Un kit de qualification

● Une librairie d’interface certifiée et open-source (CMSIS)

● Un système d’exploitation temps-réel

● Une librairie de test logiciel

Source: https://www.isit.fr/fr/article/iso-26262-repondre-aux-exigences-de-la-norme-de-surete-de-fonctionnement-des-vehicules-automobiles.php

E
ri
c
 S

ilv
a

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

20Les librairies de test

Source: https://www.isit.fr/fr/article/iso-26262-repondre-aux-exigences-de-la-norme-de-surete-de-fonctionnement-des-vehicules-automobiles.php

E
ri
c
 S

ilv
a

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

Vérification de la fiabilité et de la sécurité
• Vérifier l’intégrité d’exécution du processeur et du système logiciel, en détectant la présence de défauts

matériels ou logiciels au démarrage et pendant l’exécution.
• Répondre aux exigences des normes de sécurité fonctionnelle en fournissant des routines de test

efficaces qui valident que le matériel fonctionne correctement avant et pendant l’exécution des
applications critiques.

Automatisation et couverture des tests
• Intégration des tests dans les applications, que ce soit sur un système bare-metal ou avec un système

d’exploitation.
• Elles permettent d’automatiser les tests, d’obtenir des résultats rapides (pass/fail), et d’assurer une

couverture diagnostique élevée, essentielle pour la certification des systèmes critiques.

Support au développement et à la certification
• ARM propose des librairies certifiées (par exemple, bibliothèque C certifiée avec certificat TÜV SÜD) pour

accélérer la mise sur le marché et simplifier la justification de la chaîne d’outils lors de l’audit de sécurité.
• Les rapports de test et de défauts fournis avec ces librairies aident à démontrer la conformité du

compilateur et de la bibliothèque aux standards ISO, et à documenter les éventuels écarts ou défauts
connus.

21Exemple -> ARM FuSa RTS

Source: https://www.tecnologix.it/it/arm-keil-fusa-rts.html

E
ri
c
 S

ilv
a

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

22Continuation du TP

E
ri
c
 S

ilv
a

Rappel de la notation:

Le projet se compose de 4 parties principales avec les objectifs suivants:

• TP1 (25% de la note du projet): Evaluation des risques et définition des

exigences de sécurité pour le produit / projet en question.

• TP2 (25% de la note du projet): l'adoption de bonnes pratiques d'intégration

continue et d'utilisation de gitlab pour le projet selon les consignes du cours.

• TP3 (25% de la note du projet): conception et la réalisation de tests

automatiques pour ce projet.

• TP4 (25% de la note du projet): Tests statiques, justification des choix et

finalisation du projet.

A
R

C
H

IT
E

C
T

U
R

E
 L

O
G

IC
IE

L
L
E

/T
O

O
L
C

H
A

IN

	Slide 1: Architecture Software - Toolchain
	Slide 2: Plan du cours
	Slide 3: Plan du cours d’aujourd’hui
	Slide 4: Qualification d’outil
	Slide 5: Qualification d’outil (1)
	Slide 6: Qualification d’outil (2)
	Slide 7: Qualification d’outil (3)
	Slide 8: La chaîne de compilation
	Slide 9: La chaîne de compilation (2)
	Slide 10: Compilation native ou cross-compilation
	Slide 11: 1ère étape, la programmation
	Slide 12: 1ère étape, la programmation (2)
	Slide 13: 2ème étape, compilation et assemblage
	Slide 14: 2ème étape, compilation et assemblage (2)
	Slide 15: 2ème étape, compilation et assemblage (3)
	Slide 16: 2ème étape, compilation et assemblage (4)
	Slide 17: 3ème étape, l’édition des liens (Linker)
	Slide 18: 3ème étape, l’édition des liens (Linker) (2)
	Slide 19: Le choix du compilateur
	Slide 20: Les librairies de test
	Slide 21: Exemple -> ARM FuSa RTS
	Slide 22: Continuation du TP

