Single Responsibility Principle

1. Meaning

Class should have only one responsibility which means class should be highly cohesive and

implement strongly related logic. Class implementing feature 1 AND feature 2 AND feature 3 (and

so on) violates SRP.

2. Example

BAD

class PlaceOrder
def initialize(product)
@product = product
end

def run
1. Logic related to verification of
stock availability
2. Logic related to payment process
3. Logic related to shipment process
end
end

GOOD

class PlaceOrder
def initialize(product)
@product = product
end

def run
StockAvailability.new(@product).run
ProductPayment.new(@product).run
ProductShipment.new(@product).run
end
end

3.

How to recognize
code smell?

more than one contextually
separated piece of code
within single class

large setup in tests (TDD is
very useful when it comes
to detecting SRP violation)

Benefits

separated classes respon-
sible for given use case
can be now reused in other
parts of an application
separated classes respon-
sible for given use case can
be now tested separately

LHHHSIVAHOAITOS

'19JUO % Aq noA o1 1y8noag

Open/closed Principle

1. Meaning

Class should be open for extension and closed for modification. You should be able to extend

class’ behavior without the need to modify its implementation (how? Don't modify existing code

of class X but write a new piece of code that will be used by class X).

2. Example

BAD

class Logger
def initialize(logging_form)
@logging_form = logging_form
end

def log(message)

puts message if @logging_form == “console”
File.write(“logs.txt”, message) if @logging_form == “file”
end
end
GOOD

class EventTracker
def initialize(logger: ConsolelLogger.new)
@logger = logger
end

def log(message)
@logger. log(message)
end
end

class ConsoleLogger
def log(message)
puts message
end
end

class FilelLogger
def log(message)
File.write(“logs.txt”, message)
end
end

3.

How to recognize
code smell?

if you notice class X di-
rectly references other
classY from within its
code base, it's a sign that
class Y should be passed
to class X (either through
constructor/single method)
e.g. through dependency
injection

complex if-else or switch
statements

Benefits

class' X functionality can
be easily extended with
new functionality encap-
sulated in a separate class
without the need to change
class’ X implementation
(it's not aware of introduced
changes)

code is loosely coupled
injected class Y can be
easily mocked in tests

LHHHSIVAHOAITOS

'19JUO % Aq noA o1 1y8noag

Liskov Substitution Principle

1. Meaning

Extension of open/closed principle stating that new derived classes extending the base class
should not change the behavior of the base class (behavior of inherited methods). Provided that
if aclass Yis asubclass of class X any instance referencing class X should be able to reference
class Y as well (derived types must be completely substitutable for their base types.).

2. Example 3. How to recognize
code smell?

BAD - ifitlooks like a duck,

class Rectangle quacks like a duck but

def initialize(width, height) needs batteries for that
@width, @height = width, height purpose - it's probably a
end violation of LSP

* modification of inherited
def set_width(width)

@width = width
end

behaviorin subclass
* exceptions raised in over-
ridden inherited methods

def set_height(height)
@height = height
end

4. Benefits

end

+ avoiding unexpected and
class Square < Rectangle 9 P

LSP violation: inherited class incorrect results

overrides behavior of parent’s methods * cleardistinction between

def set_width(width) shared inherited interface
super(width) and extended functionality
@height = height

end

def set_height(height)

super(height)
@width = width
end

end

LHHHSIVAHOAITOS

'19JUO % Aq noA o1 1y8noag

Interface Segregation Principle

Meaning

Client should not depend on interface/methods which it is not using.

Example

BAD

class Car
def open
end

def start_engine
end

def change_engine
end
end

ISP violation: Driver instance does not make use
of #change_engine
class Drive
def take_a_ride(car)
car.open
car.start_engine
end
end

ISP violation: Mechanic instance does not make use
of #start_engine
class Mechanic
def repair(car)
car.open
car.change_engine
end
end

3.

How to recognize
code smell?

one fat interface imple-
mented by many class-

es where none of these
classes implement 100% of
interface’s methods. Such
fat interface should be split
into smaller interfaces suit-
able for client needs.

Benefits

highly cohesive code
avoiding coupling between
all classes using a single
fat interface (once a meth-
od in the single fat interface
gets updated, all classes

- no matter they use this
method or not - are forced
to update accordingly)
clear separation of busi-
ness logic by grouping re-
sponsibilities into separate
interfaces

LHHHSIVAHOAITOS

'19JUO % Aq noA o1 1y8noag

Dependency [nversion Principle

1. Meaning

High-level modules (e.g. business logic) should not depend on low-level modules (e.g. database
operations or 1/0). Both should depend on abstractions. Abstractions should not depend on de-

tails. Details should depend on abstractions.

2. Example

class EventTracker

def initialize
An instance of low-level class ConsolelLogger
is directly created inside high-level
EventTracker class which increases class’
coupling
@logger = ConsoleLogger.new

end

def log(message)
@logger.log(message)
end
end

GOOD

class EventTracker
def initialize(logger: Consolelogger.new)
Use dependency injection as in closed/open
principle.
@logger = logger
end

def log(message)
@logger.log(message)
end
end

. How to recognize

code smell?

instantiation of low-level
modules in high-level ones
calls to class methods of
low-level modules/classes

Benefits

increase reusability of
higher-level modules by
making them independent
of lower-level modules
injected class can be easily
mocked in tests

LHHHSILVAHOAITOS

'19JUO % Aq noA o1 1y8noag

