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=pr. Nanofluidics
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Nanofluidics

a Confinement b surface effects € Novel phenomena
Surface charge Flow slippage | * . |
N Ultra-fast 6> @ W, o
h] €5 I - flow e t]_,. TE® {@’,
, A I @ @ ® - Order *’J.L Anomalous
a4 ) —— LYW .otcﬂ ion transport
oD D 2D | |
d Applications
Analyte changes the conductance Concentration gradient ’t” "j‘ m ’EH
when passing through the pore is converted into ionic current
® | I 9
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; Membranes for lonic \FH m \-EH M
Analyte sensing Osmotic energy harvesting desalination/filtration/energy computing

Emmerich, T., Ronceray, N., Agrawal, K. V., Garaj, S., Kumar, M., Noy, A., & Radenovic, A. (2024).
= Nanofluidics. Nature Reviews Methods Primers, 4(1), 6



“"Nanofluidics

A., & Radenovic, A. (2024). Nanofluidics. Nature Reviews Methods

» Emmerich, T., Ronceray, N., Agrawal, K. V., Garaj, S., Kumar, M., Noy,
Primers, 4(1), 6.

Removing material

A Electroetching
Material
(SiN, 2D materlal)‘ AV

B Direct etching (FIB/EBIE/track etching)

Material
(SiN, 2D material,
nanotube)

Ca E-beam lithography

Sacrlflmal
Material
(SiN, 2D material,

nanotube)

Cb Reactiveion etching

Reactive
environment

D chemical etching

Fig.2| Fabrlcatlon approaches for nanofluidic devices. A, Insitu electro-

Assembling material Embedding nanostructures
E Wafer bonding H carbon nanotube porin
Wafer B Bonding process inlipid bilayer
(pressure/
Temperature
jvoltage]

Wafer A

F van der Waals assembly

Glass slide ] l
Polymer I carbon nanotube welded
into a nanopore
Substrate 2D material A 2D material B

G 2D material membrane self-assembly

Monolayer
crystal

Vaccum pump

Through transfer with polymeric stamps, 2D materials can be stacked ontop



"L Huge Potential of Nanopore Device

Bio Sensors e lonic Resources

Blue Energy

B LBEN Group Presentation



=pr. Nanofluidics

Nanopores

Solid-state pores

Silicon nitride

2D materials 2nm

molybdenum disulfide (MoS,)

L=0.7 nm

d=tunable
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Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254-256



=PFL Nanopores
a

Time

DNA & o

Time

Wanunu, M. (2012). Nanopores: A journey towards DNA sequencing. Physics of Life

" Reviews, 9(2), 125-158.



cPFL  Solid-State Nanopore Technology

o
P4
Polymer & Silicon Nitride platforms z
>_
(a) (b) electrostatic magnetic aperture
single-track deflector defocusing
~— Sl'lfil-overlapplng =] 1=1 B= ‘ j’_’ﬂ,f{, detector
® & @ - Ooverlapping Ol U0 . -
e, ™ , & p
B L= o e i - LI,
\ri e m—— OEOE By l
.f‘ o - 18 I
Tegg = ‘ _ . sample stack
”’Q'on%% ey L trigger | -
. FKr (40Ar,132Xe) : UV-Clamp c NaOH d
a i Ly alse | b wavelength of 253.7 nm solution
§ . ) pH=1..6 M/I
Nl i * z i ST e - "4
Irradiation UV- sensibilization Etching Track membrane

Commercialized Fabrication Technology
Available to various materials & Accessible for different nano-geometry

M. E. Toimil-Molares, Beilstein J. Nanotechnol. 2012, 3, 860.
Kozlovskiy A. et al. Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221.

B LBEN Group Presentation
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Solid-State Nanopore Technology

Polymer & Silicon Nitride Platform (relatives: Dielectric, 2D Materials, ...)

https://phys.org/news/2013-05-advance-nanotech-gene-sequencing-technique.htmi
Feng, J. et al. Single-layer MoS2 nanopores as nano power generators. Nature 536, 197-200 (2016).



https://phys.org/news/2013-05-advance-nanotech-gene-sequencing-technique.html

=prL Solid-State Nanopores

» Different materials

= Integration with electrical sensing

= Integration with optical sensing

= High-throughput production

-l

CEEEET
Graf, ....Radenovic Nano Letters 2019. =
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From TEM Sample Grid to ’
Universal Research Platform

Cross-Sectional View continuous film

(silicon, silicon nitride or silicon dioxide)

Silicon Nitride freestanding membrane is

designed for TEM window grid. (Silicon Oxide) window size /

[+—

= Simple Substance Composition. ﬁ—ﬁl—f
silicon frame silicon frame rame
= High Surface Flatness. fhickness

= High Chemical Tolerance.

= High Electronic Transparence. C—— =
=
= Cleanness
S
= Controllable Structure o
= Stability .. e | “ ﬂ
= Thickness : . : |

Fo L o

Image from Norcada
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MicroNanoTechnology

Graf, Lihter, Thakur...Radenovic Nature Protocols 2019.
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Mask-Free Procedure
Thin-Film Growth
Silicon Oxide 60nm
Silicon Nitride 20nm
Dry Etching

144\ 3 To Create

Backside Patterning
ACS 200/ VPG 200
Coating / Exposure / Developing

Wet Etching
SiN, Membrane

Silicon Nitride Mask

o

From PMMA to SiN,

4-Inches Wafer-Scale Fabrication

Frontside Patterning
E-beam Exposure & Developing

Clean !!!
Clean !!!
Clean !!!

LANES

Dry Etching
Transfer Pattern

~\ TEM Checking
C‘il\je Characterization
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“"*- " How do we get our SiN, substrate platforms?

(a) SiN,
Si0:

20 nm (b) o a

60 nm

Film deposition .
(i) Dry thermal SiO: Si. sub.
(i) LPCVD LS SiN, S0

SisNa

T m |ERESAARSARANAR:

380 pm

60 nm ° o o a o ° o o o a o ° o o
20 nm

(i) Direct-laser writer patterning

(ii) SiN /SiO: dry etch

4.7 mm
Wet etching olelolo]le]loalolelealale]s
(i) SI/Si0: substrate etching with KOH o P

(c)

120pm o o
Front-side EBL/RIE -1 °
(i) Nanopore EBL patterning 525 pm
(ii) SiN /SiO= dry etch
[s] [=]
4.7 mm

npj 2D Materials and Applications, 2022, under review
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=PFL  Advantage of E-beam Lithography
Direct Writing Technology

electron beam

FSDUEE

1st condense lens -

beam blanker4 L electron beam

2nd condense lens -
magnetic lens

aperture 4— backscattered
electron detector
. I,_, deflector

final condense lens - _
resist specimen

secondary
electron detector

stage

© 2012 Encyclopaadia Britannica, Inc.

= Electron Beam Lithography is similar as Scanning Electronic Microscopy
= Deflector of E-beam Lithography: Direct Writing Realizing Customizing Design

A. Pimpin, et. al. Eng. J., 16, 1, 37-56, 2011.
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=P*L " Reactive lon Etching (RIE) - Fabricate Pores

Viewport

@ Plasma

O Silicon atom
@ Reactive lon

Gas inlet

Dielectric
ICP generator tubs
ICP caoil
wafer-clamp Samples

b @ Plasma
Q Silicon atom
@ Reactive lon

RF electrode J :
N Flt

. / | Capacitively-coupled
High conductance | (RF) generator

pumping port He backing

= Reactive ion etching (Rl E) is a plasma process where radiofrequency (RF) discharge-excited species (radicals, ions) etch
substrate or thin films in a low-pressure chamber.

= High Selectivity & High Anisotropy & High Etching Rate

Verschueren, D. V., Yang, W. & Dekker, C. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes. Nanotechnology 29, 145302 (2018).
= Godin, B. et al. Encyclopedia of Nanotechnology. 587-589 (2012).
Honl, S., Hahn, H., Baumgartner, Y., Czornomaz, L. & Seidler, P. Highly selective dry etching of GaP in the presence of AlxGa1—xP with a SiCl4/SF6 plasma. J Phys D Appl Phys 51, 185203 (2018).



=rrL. Wafer scale transfer

Complete dry-transfer of MoS, on SiNx wafer
(nanopore devices)

~' '
& ' ‘ q”h" n’: *"‘ "
‘ b

;
"»f»,'»’ y i

/’z’/ /

Thakur, Macha....

18

Radenovic Small Methods 2020.
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""" Different Materials & Fabrication Strategy

a Pore formation by focused electron/ion-beam milling b Pore formation by L iel ic

TEM electron beam

Fabrlcatlon Strategy

TEM Drilling
*  Dielectric Breakdown

—
e DryEtching

¢ Membrane thinning by dry etching  d Memt hinning by f Simultaneous membrane thinning ° PhOtOthGI“IﬂI EtChing

electron/ion-beam irradiation and nanopore formation

N :‘.':s:.- TNEE . *  Dnlling on ALD-additional Layer
: Transferred MoS2 Nanopore

H S e—_ *  CVD MoS2 Nanopore

aucrtfichal ayer e Membrane thinning by laser-assisted
Lift-off and photothermal etching
pore fabrication 532 nm laser

ek’

Pore formation in a thin membrane  h Transfer of a 2D membrane iF of a 2D

]
g k b using CVD
fabricated by ALD

HIO, ¢ I
5 . Sacrificial layer - - 9 Carller gas N slllcon Nlmde
PAtttee MoS, growth on PDMS/MoS, on ? 9ot .

Removal of the sacrificial layer, sapphure : ® Hfoz (Dlelwuic materia|S)

followed by pare fabrication \ o5 Oci"‘ Js M}r MoO, .
: * 2D Materials (MoS2 Graphene ...)
S5iN membrane

Xue, L. et al. Solid-state nanopore sensors. Nat Rev Mater 5, 931-951 (2020).



N
-

TEM: COMPARISON OTHER METHODS

M. Thakur

Resxdues

/,\

S Clean: 50%

 PMMAtransferred MoS,

B PHD THESIS DFENSE

Thakur, M., Macha, M. et al. Small Methods, (2020).
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Nanopore devices benchmarking

concentration gradient +  ion selectivity = net current
Potassium selective

— 1 <= 12

140 £ 10
Cis Trans 120 —
o P <
<

i
|
I
I
I
|
|
|
I
! | Osmotic current
I
I

=
f=4
S
=
©
0 P, % 4 S 54
“‘"-’.:S ‘?-' H - 60 g 8 2
of OE=-e — Electrode ; Ot Fommmommeees
v ° 5 2 Osmotic voltage ™
8 e 2
I} -4 !
High o Low ‘?_ -300 -200 -100 0 100 200

Voltage (mV)

‘EW

<
n
S o5ms.

400 mvV

500 mV

Feng ....Radenovic Nature 2016.
Macha, Marion... Radenovic Nature Rev. Materials 2019.
Macha, Marion... Radenovic ACS Nano 2023.

= Thakur, Macha. Radenovic Small Methods 2020.
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Disadvantage of Silicon Nitride
Limited Surface Properties & Relatively Poor Stability

_ g © 30x30 Array
e o Big Openning
Limited Surface Properties 2.
= Limited Surface Charge 2.4
=)
= Limited Output in Osmotic Energy g,
Harvesting e
01-© (sRC
e T
Load Resistance (Q)
Limited Stability Stored in 1M KCI T
= Nanopore Enlargement due to the 70 T ’ .
Dissolving = H
60 i -
- . . c L20.2[N =900
= Lower Stability in electrolyte solution = | ¥ : go,z'm.'?'-‘——.
. ) . ) . =] 0 .2}n =900
= In Industrial Application Scenarios Require © = 22hs %;mﬂﬂ]ﬁ
. 40 102 hrs Q0.2}n =900
Working for Months ! = 267 hrs © W
(]] . 1:)0 ] 2(l)0 ' 3(l)0
Time (hrs)

Chou, Y.-C., Das, P. M., Monos, D. S. & Drdic, M. Acs Nano 14, 6715-6728 (2020).
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Stability

Stored in 1M KCl i
701 T i
Limited Stability Eoor ) D Lzooueomgg
4 %0.2 N =900
» Nanopore Enlargement due to the _o.“i_'so-j - B3 ~=m":"m
Dissolving = 22 h Eozfv=on0  gu
e . a0f | 1o2hrs So2fn=900
= Lower Stability in an electrolyte solution = 287 hrs 0@
1 L 1 1 ™
» |Industrial Applications Require long-term 0 100 200 300
stability Time (hrs)
Chou,., Das,..... & Drndic, M. Acs Nano 2020.
Working for Months! _ Delamination of MoS, membrane

» Reinforcing adherence of 2D material to
the substrate of the silicon nitride platform

Thakur, Cai,... Radenovic npj 2D Mater App! 2023
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Thin-film Technology

How to Improve SiNx Nanopore with Microfabrication Compatible Process.

Thin-filmTechnology

= [Introducing thin layer of specific materials

= Usage
= Changing Surface Property
= Providing / Avoiding Electric
Conducting

= Deposition Method
=  Chemical Deposition
= Physical Deposition

Atomic Layer Deposition

25



=L How ALD Work? "

Atomic Layer Deposition

Precursor Purge Co-reactant Purge
dosing exposure

reaction
praducts

1*t Half-cycle 2" Half-cycle

= Atomic Iayer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-
phase chemical process; it is a subclass of chemical vapor deposition (CVD).

= Uniformity & Self-Limiting

atomiclimits.com
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“"“ " Hafnium(IV) oxide Functionalized Nanopore
High Stability Materials

P ’
30} | - bare SiN, I Dy ®
~8-ALD HfO, = a2

2 4
S Time (days)

= Hafnium(lV) oxide = Nanopore Application [Present Research]

= Introduced by Intel for gate insulator in field- HfO2 functionalized Nanopore (ALD)

effect transistors - Stability in Room Temperature KCI Solution [6 Days]
* The dielectric constant of HfO, is 4-6 times - Stability in 60°C KCI Solution under 532nm Laser
higher than that of SiO, Irradiation  [10 mins]

Chou, Y.-C., et. al. Acs Nano 14, 6715-6728 (2020).
Yamazaki, H.,et. al. Acs Nano 12, 12472—12481 (2018).
en.wikipedia.org/wiki/Hafnium(lVV)_oxide



EPFL HAADF STEM imaging

Insighton the 3D Mo_rpho_logy by Tilting

387 Arm

B | BEN Group Presentation

i

IS0kx |5 | 200KV 1085 pm | 4116nm  -592 nm



=PFL  Thin-film Technology for Silicon Nitride Aperture Functionalization

Atomic Layer Deposition (H,0 + TEMIA-Hf )

= ALD

- * -

W 'x: non-ALD

/ Mio:\&I:a:tor \ d

Precursor

\4

\ 4

. . . . . HfO: Stalactites Structure
Nature-inspired stalactite nanopores for biosensing and energy

harvesting Chernev *, Teng, ....... Radenovic* Advanced Materials 2023
PCT 23170779.5

29



EPFL  HfO, Stalactite-like Nano-Structure
Elemental analysis with STEM

= Cross-section
* Localization Hf and N
* Corresponding to Hf0, and Silicon Nitride

= Composition recognition
- Hf0,
* Sllicon Nitride
* Homogenous distribution inside HfO,

nanostructure.

Nature-inspired stalactite nanopores for biosensing and
energyharvesting Chernev *, Teng*, ....... Radenovic*
Advanced Materials 2023

= PCT 23170779.5




EPFL  Stability of Hf0, Nano-Structure

= Conductance of 1M KCl electrolyte solution in 42 days

= Variationwith in 10%
20 : — 038
1M KCI 5 06
18 - e
w 04 T
—~ 16 - 9 0.2+
wn ©
= & E 0.0 { 0000 o
14 - O .
O o Qﬁtxyoooc@ ooocb o o . c —0.2
') ) o —-0.4 -
12 5
E —0.6 A
10 T T ! T T L _08 T T T T
0 10 20 30 40 0 10 20 30
Time (days) Time (days)

Nature-inspired stalactite nanopores for biosensing and energy
harvesting Chernev *, Teng, ....... Radenovic* Advanced Materials 2023
= PCT 23170779.5



= The number of steps in Hf0, Nanostructure (n) => Steps of the growth process (n+1)
= Critical Parameter in Nanostructure (Diameter)=> Different Starting Diameter of Aperture
= Whether Starting the non-ALD Growth Process=> Different Purging Time

Nature-inspired stalactite nanopores for biosensing and energy
harvesting Chernev *, Teng, ....... Radenovic* Advanced Materials 2023
PCT 23170779.5



=PrL Tuning Growth Behavior with Geometry / Process parameters/

= The number of steps in Hf0, Nanostructure (n) => Steps of the growth process (n+1)
= Critical Parameter in Nanostructure (Diameter)=> Different Starting Diameter of Aperture
= Whether Starting the non-ALD Growth Process=> Different Purging Time

Nature-inspired stalactite nanopores for biosensing and energy
harvesting Chernev *, Teng, ....... Radenovic* Advanced Materials 2023
= PCT 23170779.5

33



=PFL " Biosensing experiment

| " 8.0
|
| [ 700 mv 75
‘EL r : 0.7 |
‘_EISms ” : f‘.‘;" - 1000 mV 70
| > Base-to-tip T 0.6 -
. z |
EI‘ N 6.0
Zé; ] 55
E 7] 5.0
-ﬁ 4.5
M 8 o2
Tip-to-base 3! ul g o1 -
! ,é|_ - y
: - M:T 0.0 == Tip-to-base Base-to-tip | [
| E

Base-to-tip Tip-to-base

= Geometry Defines Two Direction: Tip-to-base / Base-to-tip.

= Translocation events : Tip-to-base is always more than Base-to-tip.

Nature-inspired stalactite nanopores for biosensing and energy
harvesting Chernev *, Teng, ....... Radenovic* Advanced Materials 2023
= PCT 23170779.5

34
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=PFL  Osmotic Energy Conversion - Single Nanopore Devices )

Set up and Basic Characteristics

Electrodes
" T
<
E
I=
e
=
O
¥
HfO: nanopore device Electrolyte . . : ; . ; ;
-500 -400 -300 -200 -100 O 100 200
Voltage (mV)
e = kB_T Sln ‘n
Nature-inspired stalactite nanopores for biosensing and energy osm ze C

harvesting Chernev *, Teng, ....... Radenovic* Advanced Materials 2023 1 S: lonic Selectivity
= PCT 23170779.5 ’



=PFL  Osmotic Energy Conversion - Single Nanopore Devices *

Asymmetric Diffusion from Asymmetric Geometry log(Local distribution bias)

Base-to-tip

#31 Tip-to-base

\
A

Tip-to-base

N\
N

=
n

o
=]

Osmotic current, lg (nA)
=
£

Osmotic potenital, Vo (mV)

2
in
L

ool Base-to-tip Base-to-tip | |
Tip-to-base w100 100 10010° 100 10 100 20
Relative Distribution Local distribution bias = %
= Geometry Defines Two Direction: Tip-to-base / Base-to-tip. Our Result: ~0.35nW / pore
= Osmotic Conversion Efficiency: Tip-to-base is always higher than Base-to-tip. | MoS,: ~1nW / pore
= Finite Element Simulation : Localized Relative lons Distribution Difference | hBN Nanotube: ~0.02 nW / Tube

Electric Double Layer expanded inside the nanochannel provide more selectivity (Left)

Nature-inspired stalactite nanopores for biosensing and energy

harvesting Chernev *, Teng®, ....... Radenovic* Advanced Materials 2023
= PCT 23170779.5
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Ammeter

Working Ipaﬂgi,,,,.-

g
——
—

base

Diffusion direct ioy

Nature-inspired stalactite nanopores for biosensing and energy
harvesting Chernev *, Teng*,
PCT 23170779.5

Osmotic Energy Conversion - Array of Nanopores 900

(d)

37

= = b
[=] 1% L=
L L L

Power Density (W/m?)
L%,

=
1

10° 108

Load Resistance (Q)

10° 10*

600 -

500 1

400 -

300 4

200 1

100 -

Current Density (A/m?)

10° 10°

Load Resistance (Q)

10% 104

Radenovic* Advanced Materials 2023



=PFL " Conclusion

New adaptable platform in terms of geometry and material
composition - with inherent scalability, stability

Applications  basic nanofluidics research
biosensing -multi-omics
ionotronics
energy harvesting
filtration



Learning from the Brain: Bioinspired Nanofluidics

Brain-inspired nanofluidic iontronics Advantages

* Multiple information carrier
* Low energy consumption

* In-memory computing

« Hardware-level plasticity

+ Good biocompatibility

- Potentials

* Brain-like computing
« Brain-computer interface
. Neurologlcal disease treatment

Trends: ion channel-like - synapse-like 2 neural network-like = brain-like

Hou et al . J.Phys. Chem. Lett. 2023, 14, 11,
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=PFL  Jonotronics- towards artificial ionic computing

N. Kasthuri et al. Cell. 2015 Shuang Pi et al. Nature Nanotechnology. 2019

Memiristive cell

| v %
Biological neural network Artificial neural network (ANN)
lons as information carrier electrons as information carrier

Need ionic ANN for accurate biomimicking
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=PFL  Jonotronics- towards artificial ionic computing

N. Kasthuri et al. Cell. 2015 Shuang Pi et al. Nature Nanotechnology. 2019

Memiristive cell

| v %
Biological neural network Artificial neural network (ANN)
lons as information carrier electrons as information carrier

Need ionic ANN for accurate biomimicking
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=PFL  Jonotronics- towards artificial ionic computing

N. Kasthuri et al. Cell. 2015 Shuang Pi et al. Nature Nanotechnology. 2019

Memiristive cell

| v %
Biological neural network Artificial neural network (ANN)
lons as information carrier electrons as information carrier

Need ionic ANN for accurate biomimicking



=PFL  Roadmap: Neuro-inspired computing chips °

NVM HDendrites

synaptic ;
I_ | array
: NVM
neurons
‘ Axons |»
‘Brain’ chip
General-purpose
NVM based chip

Codesign
EDA tool chain

1Mb

TR Fully memristor

system
(16 kb, Analog)

8 x128 Kb

1 (Inc. Test Mode) Fully memristor 09 3D integration techonology
: chip \
- (160 kb, Analog)
Leon O. Chua : ormaer | et
Mehr,.";'sé?ri?;.acm Se-—a PR Neuromorphic devices and
concept of (1Mo, Digha)  J " e j integration techonology
memristor | (12x12 Analog) | - Optimized performance ) Dendritic device
~o meet application I
- requirements
2T2R +3T1C Soma device
The idea of Umt cell
. . Synapstic devices
bra | n'l 1 ke 0008 N Diffusive memristor
computing \ coccce
Analogue memristor LA LAY
veww

\

\

: &
Devicelinkedto | [NNNENNNNNN 9 O
memristor 020932909 0o Removal Diffusion

o oo .

Hebbian 26 £o3 . , . . . .
05 oo Zhang, Wengqiang, et al. "Neuro-inspired computing chips." Nature
Learn Rule

F | s electronics 3.7 (2020): 371-382.



=PFL Metric for memristive material platforms

= lon migration materials
= Phase change materials
= Conductive filament-

based materials
Magnetics
Ferroelectrics
2D materials

Zhang, Wengiang, et al. "Neuro-inspired computing c

]

Conductance

=

Cumulative
probability

Failed H B
devices i}:

. Conductance

Conductance

Overlap

Conductance

Full range

Retention

Endurance

Partial
scope

Numbey,of updaﬁ

Pulses

Analog states

Symmetry
—@— Storage
+ Inference
+ Learning
--. -- Representative NVM

[}

Conductance

On/Off ratio

Linearity

o

Conductance

sips." Nature electronics 3.7 (2020): 371-382.

4

Conductance
ratio

Pulses

Conductance

Pulses
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== Bare Substrate_
== PFM
200 -

Large volume .
Small hystheresis

Slow speed 100 —

-1.0

e

PFM coated micro-pipette

12 mHz

T. Xiong et al. Science. 2023

Limitations of fluidic memristors

Conductance (nS)

limited hystheresis
Slow speed

hard fabrication 250

200

150

Voltage (V)

0

0.5 1

- 200

- 150

100

5

Current (nA)
- 250

Voltage (V)

B0 F

02 04 06

Activated carbon
2D channel
1 mHZ

P. Robin*, T. Emmerich*, A.lsmail* et al. Science. 2023

Need for a compact, performant, reliable, and scalable device to build ionic ANN
and move forward iontronics

45



=PFL  Logic: a new device for network scale |ontron|cs-HAC

Step O: Silicon nitride membrane (Wafer scale) 55

Fast and scalable fab:
Step 1: Palladium depaosition (Wafer scale]
10s of devices per week
e
Most of the steps at ——

Wafer-scale production

Graphite

e, ey el i e

Palladium

SiN,

lonic logic with highly asymmetric nanofluidic memristive switches Emmerich*, Teng®,
Ronceray *, ....... Radenovic* https://arxiv.org/abs/2306.07617



=PFL  Logic: a new device for network scale iontronics-HACs'

whole image

Image processing steps:

c |8 i) Local normalization (10 nm window)
] N . .
= if) Gaussian blur (sigma =0.6 nm)
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Combination of giant aspect ratio

(100s fold) between both entrances
and single-digit confinement in the ;
presence of a charged material |

Small Entrance HAC Nanofluidics

S <paraphite’

Bottom graphite

lonic logic with highly asymmetric nanofluidic memristive switches
Emmerich*, Teng*, ....... Radenovic* https://arxiv.org/abs/2306.07617



=PrL

Performances 2 orders
of magnitude better
than previous report
unique discontinuous
behavior (threshold for
abrupt switching)

1M KCI

50 mHz

120
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. (o))
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ON . q
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Reset
DU, et
0 1'

Voltage (V)

Logic: the memory effect in HACs

o0 |

Current (nA)

Reset

lonic logic with highly asymmetric nanofluidic memristive switches
Emmerich*, Teng*, ....... Radenovic* https://arxiv.org/abs/2306.07617
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=PrL

Performances 2 orders
of magnitude better
than previous report
unique discontinuous
behavior (threshold for
abrupt switching)

1M KCI
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Voltage (V)

Logic: the memory effect in HACs

o0 |

Current (nA)

Reset
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Potential
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=PrL

long term potentiation

= The device is set with a single positive voltage pulse of 1V
= The conductance is measured with voltage pulse train oscillating between plus

| |

and minus 30 mV..

. 140
0.3
0.2 H'dFﬂHﬁFﬂJLJPﬁFﬂHHrro}diHL 20
01y b b E
o AL (AL e
_0‘1i}ll-l||ﬂ S
02 f_rrMJ.MHMHH,JH_HMrrr_go
-0.3

- - .40

0 50 100

time (s)

& @« o -
g 8 8 8

@
8
o
L ]
L)
L]
L]

Conductance (nS)
]
8

g

(=]
=
W |
(=]

40 60 80 100 120

time (s)

—_ —_
w D
o o

—
N
o

—_
N
o

Conductance change (%)
S S

100

51

®
o o
() e
)
Potentiation ® Depression
.~

]

10 20 30 40

Spike number



EPFL f ot i
Threshold origin Not a voltage threshold
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“You can observe a lot
by watching.”

- Yogi Berra




=PFL  In-operando reflectance imaging

Camera
In operando reflectance imaging
- Water dipping objective
100X NA=1.10
635 nm
illumination —_ Ag/AgCI electrodes
SMU
Objective
Pd/SiNx/Si chip
Cell
XYZ stage

lonic logic with highly asymmetric nanofluidic memristive switcheswith Piezo Controller §§

Emmerich*, Teng*, ....... Radenovic* https://arxiv.org/abs/2306.07617
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=PrL Watching devices while measuring lonic transport
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Proposed mechanism ionic transport in HACs "
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=F*L  Proposed mechanism ionic transport in HACs X

Charge focusing induces blister formation
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=PFL  Mica control
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Voltage ramp from 0.2t0 1.2V

£PFL  Endurance measurements

300 mHz - Repeatability over 17 cycles
* blister bridges the pore to somewhere closer to the outer region
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£PFL  Endurance measurements

300 mHz - Repeatability over 17 cycles
* blister bridges the pore to somewhere closer to the outer region
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=PFL  Endurance measurements
300 mHz -Voltage ramp from0.2t0 1.2V

blister bridges the pore to somewhere closer to the outer region
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=PrL - Material implication (IMP) logic

Vol 464|8 Ap

ril 2010/ dois10.1038/nature08940

LETTERS
'"Memristive' switches enable ‘stateful’ logic FirSt iOI'IiC
e e COMpUting
P S experiment with
VerdY Y Veu channels
p Ea EE: Q cc_)mmunicating
with each other
the material

R implication (IMP)
logic gate

lonic logic with highly asymmetric nanofluidic memristive switches
Emmerich*, Teng*, ....... Radenovic* https://arxiv.org/abs/2306.07617
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=PrL

Logic: IMP gate

Set Q only if P is off

Case | P Q | PP Q
al0 0|0 1
Bl11 0|10
vy|O0O 1T 10 1
S| 1 111 1

5 1 VQ°> Vv

64

IMP gate can be implemented with two memristive switches
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\€&—— Threshold
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.\ B :
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Q cannot set

lonic logic with highly asymmetric nanofluidic memristive switches
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Logic: Results
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IMP logic successfully
implemented with two HACs

Vg = R(I3 + 13)
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Logic: Results
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1M KCI

IMP logic successfully
implemented with two HACs

Ve = R(Ip + I3)

Rset < R < Rcond
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=PFL Working conclusions

= HACs exhibit excellent scalability, speed, and conductance ratio

= Direct imaging of the mechano-ionic memory mechanism with in-operando
optical observation -will guide the device optimization

= Logic circuits with two HACs working simultaneously have been successfully
assembled

= Future efforts should focus on connecting HACs with water channels to
create fully liquid circuits.

lonic logic with highly asymmetric nanofluidic memristive switches
Emmerich*, Teng*, ....... Radenovic* https://arxiv.org/abs/2306.07617
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