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Photons

• Optique quantique: nouvelle  perspective sur des phénomènes optiques déjà 
connus

• Théorie sous-jacente: électrodynamique quantique qui inclut la quantification des 
champs électromagnétiques

• Dans ce cours on se limite à une approche phénoménologique et on décrit un 
certain nombre de phénomènes
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Rayon – onde – particule 
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Le photon

• Energie:
• Constante de Planck réduite,
• L'énergie du photon dépend de la fréquence correspondante:

– photon infrarouge (                      ,                            ):  

– énergie acquise par un électron dans une différence de potentiel de 
– relation très utile:

– par exemple: , GaAs bandgap 

0E(eV) ( m) 1.24  
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Le photon

• Différentes échelles d’énergie:
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Le photon

• L'énergie du photon dépend de la fréquence:
– photon micro-onde (                      ):

• Unités d'énergie spectroscopiques:

• Même si on l’utilise comme unité, la 
longueur d’onde dépend du milieu
(on fait donc référence à la longueur 
d’onde dans le vide); l’énergie (ou la 
fréquence) par contre ne dépendent
pas du milieu
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Le photon

• Pas de masse…
• … mais une quantité de mouvent!

• En utilisant ,                           et 

• Cette quantité de mouvement peut être transférée à un objet de masse finie
 pression de radiation
 pincettes optiques (optical tweezer) 
 piégage optique (optical trapping)
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Pression de radiation – Breakthrough starshot sail program

• Une série de petits “vaisseaux” à voile que l’on lance depuis la stratosphère et 
auxquels on donne une vitesse initiale à l’aide d’une série de lasers terrestres

• Une fois mis en mouvement, chaque vaisseau doit pouvoir poursuivre sa route 
pendant des années, en évitant les collisions avec d’autres objets célestes

• Objectif: atteindre Alpha Centauri après 4.37 années de vol à 0.2 c0
• Challenges: matériau, illumination, etc..
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Piégeage optique

• La pression de radiation d’une onde plane permet de pousser des objets
• Un faisceau focalisé permet de piéger des objets
• Cette force optique peut se comprendre en considérant la réfraction et en utilisant le 

principe action ↔ réaction: la particule est attirée vers le centre du faisceau et la force 
de gravité peut être compensée

• La particule peut aussi être manipulée latéralement 
en déviant le faisceau

• Il y a donc deux types de forces optiques:
– La pression de radiation (transfert "direct" de la quantité

de mouvement du photon): champ homogène
– La force liée au gradient du champ électrique, 

qui nécessite un champ inhomogène
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Piégeage optique

• Pour pouvoir piéger une particule latéralement, il faut une variation spatiale du 
champ optique (champ inhomogène, focalisé):

Champ homogène
Champ focalisé



1 0/m n n

Sphère de rayon a
Indice de réfraction n1, 
dans un milieu d’indice n0



Olivier J.F. Martin

Piégeage optique

• Manipulation non-invasive à l'échelle du nanomètre avec des forces de l'ordre du 
pN (10-9 N)
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Piégeage optique

• Mesure de l'élasticité d'un brin d'ADN reliant deux sphères (une des sphères est 
attachée à une pipette, l'autre est piégée par la lumière)

Northwestern University
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Piégeage optique – Débobinage de l’ADN
Nature Structural Biology 8, 606 - 610 (2001) doi:10.1038/89646 
Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers



Olivier J.F. Martin

Nanomoteur optique

• Nanostructure en or (100 nm) intégrée dans un bloc de verre (1 m)

1.5 m
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Nanomoteur optique

• Nanostructure en or (100 nm) intégrée dans un bloc de verre (1 m)
• Lorsqu'on illumine le nanomoteur avec de la lumière il commence à tourner
• Plus l'intensité lumineuse augmente, plus il tourne vite

1.5 m
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Nanomoteur optique

• Les effets liés à la polarisation peuvent être très complexes
• Par exemple, une illumination avec une polarisation linéaire crée ici le mouvement 

de rotation!
• Et le torque induit ne dépend pas de l'orientation de la polarisation incidente
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Dualité onde – particule

• La lumière est une onde électromagnétique qui satisfait les équations de Maxwell…
• La lumière est composée de photons…
• … donc le photon est une onde !

• Le photon a une certaine quantité de mouvement (puisqu’il produit des forces)…
• … donc le photon est une particule !
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Interférence par une double fente – 3 perspectives

• Géométrique • Quantique• Ondulatoire
In
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Dualité onde – particule

• Interférence par une double fente avec des photons uniques et en faisant la 
moyenne dans le temps:

• Le photon est à la fois une onde et une particule, parfois c’est son caractère 
ondulatoire qui est mis en évidence par une expérience (interférence), parfois c’est 
son caractère corpusculaire (force optique) !
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Flux de photons
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Communication quantique

• Optique non-linéaire

• Paire de photons intriqués : l’état quantique d’un photon ne peut pas être décrit 
indépendamment de l’état de l’autre photon

• Etat classique (bit classique): état 0 ou 1
• qubit: état 0, 1, ou n’importe quelle superposition des deux
• Pour les photons, c’est la polarisation qui joue le rôle d’états de base      et 

Second harmonic generation: Parametric down-conversion:

Les deux photons
produits sont
intriqués (corrélés)

0 10 1a a  

0 1
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Communication quantique
• Si on a deux photons (2 qubits), on peut décrire l’état du système sur une base

,       ,       et 
• Si les photons sont intriqués, ils restent corrélés même s’ils se propagent à grande 

distance l’un de l’autre
• La statistique de la mesure doit suivre une distribution spécifiques; si on a interféré 

avec les photons, cette statistique n’est pas satisfaire et on peut donc le découvrir

00 0110 11
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Communication quantique

• Réalisation de sources de photons uniques et démonstration d’un lien optique 
quantique

• Alice souhaite transmettre une information à Bob
• Si Eve espionne la ligne, dès qu’elle obtient de l’information, elle perturbe la mesure 

(les inégalités de Bell sont violées)

GAP Université de Genève

Alice Bob
Eve

perturbation information
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Diffusion de la lumière

• Diffusion Rayleigh:
(pour de très petites particules, R <<  )

• Particulièrement efficace pour les petites longueurs d’onde

248 2 ( ) 1( )
3 ( ) 2scat

RQ   
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Emission thermique

• Corps noir:
– objet idéal isolé de l'extérieur où toute radiation est absorbée
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Emission thermique

• Selon la théorie de Rayleigh, le 
spectre d’émission d’un corps noir 
devrait diverger pour les longueurs 
d’onde courtes (catastrophe 
ultraviolette):

• Planck a développé la théorie 
quantique du rayonnement, qui ne 
diverge pas:

• Même s'ils ne sont pas des corps noirs 
idéaux la plupart des objets suivent 
cette loi au moins sur une partie du 
spectre

4

2
T

cKTB 
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Emission thermique

• Intensité intégrée sur le spectre:                  (loi de Boltzmann)

• Maximum d'émission:

• Approximations:
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Thermographie (infrarouge)

• Permet de mesurer à distance les températures
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Thermographie (infrarouge)

• Très large spectre d'applications:
– sauvetage, localisation de victimes
– recherche de foyer incendie ou de feu couvant
– law enforcement
– énergétique des bâtiments
– localisation de court-circuit
– mise en quarantaine
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Niveaux d’énergie – Emission et absorption des photons

• Lorsqu’un électron est excité il peut se désexcité en émettant soit de la fluorescence 
(désexcitation rapide) soit de la phosphorescence (désexcitation lente)

• L'énergie du photon émis correspond à la différence d'énergie entre les niveaux 
correspondants

• Si un photon est absorbé, un électron passe vers un niveau d’énergie plus élevé
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Spectre d'émission Spectre d'absorption
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Modèle de Bohr

• Atome d'hydrogène formé d'un proton avec un électron gravitant autour

• Orbite circulaire avec la force de Coulomb:

• Energie totale de l'électron:

• Quantification du moment cinétique (                    ): 

• Quantification de la vitesse:

• Et des niveaux d'énergie:

• Orbites possibles:                               Rayon de Bohr:
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Modèle de Bohr – Energie du photon émis

• Energie du photon émis:

• Série de Balmer:

• Correspond parfaitement au cas              et              :
Johann Jakob Balmer

(1825 – 1898)
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Modèle de Bohr – Constante de structure fine

• Rapport de la vitesse de l'électron à la vitesse de la lumière:

• En calculant pour             :

• Décrit le couplage entre électrons et photons
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Au-delà du modèle de Bohr

• Dans le modèle de Bohr, l'énergie ne dépend que du nombre quantique principal
• Pour chaque nombre quantique principal il existe des nombres quantiques 

azimutaux                                      (orbites s, p, d, f, g, …)
• pour chaque nombre quantique azimutal, il existe               nombres quantiques 

magnétiques 
• Finalement, il existe deux valeurs pour le moment angulaire intrinsèque de l'électron 

(spin)
• Pour une valeur du nombre quantique principal,

il y a donc        niveaux possibles
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Niveaux d'énergie: de l'atome au solide

• Le principe d'exclusion de Pauli interdit que deux électrons se trouvent dans le 
même état (avec exactement les mêmes nombres quantiques)

• En augmentant le nombre d'atomes, on augmente le nombre d'états électroniques, 
jusqu'à l'apparition de bandes d'énergie pour les solides (au lieu de niveaux 
discrets)

• Bande de valence, de conduction, bandgap, dopants
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Etat triplet et singulet

• Le principe d’exclusion de Pauli interdit à deux électrons d’être dans le même état 
quantique (i.e. d’avoir la même énergie et le même spin)

• Ainsi, si l’électron excité a le même spin que l’électron se trouvant au niveau 
fondamental, il est très peu probable qu’il se désexcite (car alors les deux électrons 
se retrouveraient dans le même état quantique)

• La désexcitation est tout de même possible mais prendra beaucoup de temps

Etat singulet Etat triplet
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Fluorescence et phosphorescence

• Lorsqu’un électron est excité, il se retrouve généralement dans un état d’énergie 
élevé et passe par plusieurs niveaux d’énergie successifs avant de retomber au 
niveau fondamental en émettant de la lumière

• Chaque niveau électronique peut se décomposer en plusieurs niveaux 
vibrationnels; il existe donc plusieurs chemins de désexcitation possibles 
(élargissement des lignes spectrales)
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Diagramme de Jablonski

• Permet de déterminer toutes les transitions optiques possibles, en tenant compte de 
tous les niveaux énergétiques

www.quora.com

Taux d'émission: Fluorescence ~108 s-1, Phosphorescence entre 1 et 103 s-1
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Durée de vie et taux d’émission

• On caractérise une transition optique soit par sa durée de vie  (unités [s]) soit par 
son taux de transition p (unités [s-1]), écrit aussi parfois  ou 

• La population du niveau excité décroît de façon exponentielle:

• Si un état excité a plusieurs canaux de dé-excitation, on additionne les taux de 
chaque canal pour avoir le taux de transition total (comme pour les résistances en 
parallèle):

1p




1 2
1 2

1 1 1

eq

I I I
R R R

   
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Spectres d’absorption et d’émission

• Il y a toujours une différence d’énergie entre l’absorption et l’émission (fluorescence 
ou phosphorescence), on parle de Stokes’shift

• On introduit aussi l’efficacité quantique q0 (quantum yield) qui exprime le nombre de 
photons émis (par fluorescence) pour un photon absorbé; en général q0≈1

Rhodamine 6G

George Gabriel Stokes
(1819 – 1903)
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Fluorescence

• Une immense variété de molécules fluorescentes existe

American Chemical Society

quinine
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Microscopie par fluorescence

• Trajet d'un virus marqué par une
molécule fluorescente alors qu'il
essaye d'infester une cellule

Science vol. 294, p. 1929 (2001)
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Microscopie par fluorescence

• Souvent on combine des images 
avec différentes molécules qui 
fluorescent à différentes 
longueurs d'onde et se fixant sur 
des organelles spécifiques

• Cellule cancéreuse humaine: 
bleu – ADN, vert – protéine 
particulière, rouge – microtubules

Nikon   www.microscopyu.com
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Biological assay

• GFP (green fluorescent protein), une protéine qui peut être générée par un 
organisme vivant

• On peut ajouter le gène qui code pour GFP (reporter gene) à un autre gène que l’on 
souhaite étudier

• Si cet autre gène est produit par l’organisme («exprimé»), la GFP est aussi produite 
et l’organisme produit un signal de fluorescence vert
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Biological assay

• Souris exprimant GFP

Wikimedia
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FRET et transfert de Förster

• Couplage entre deux molécules et transfert d'énergie de l'une vers l'autre, dépend 
très fortement de la distance

• Permet d'étudier la conformation de protéines en marquant deux extrêmités
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Quantum dots (boîtes quantiques)

• La fluorescence de molécules est très 
sensible à l'environnement

• Elle peut s'interrompre (clignoter=blinking) 
ou même s'arrêter complètement 
(quenching)

• Cela rend le signal difficile à interpréter
• Une boîte quantique est moins sensible à 

ce phénomène et produit aussi un signal 
lumineux
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Quantum dots (boîtes quantiques)

• Généralement un cœur en semiconducteur entouré d'une couche protectrice 
permettant la dispersion dans l'eau

Analytical Chemistry 2011
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Niveaux vibrationnels

• Jusqu’à présent, nous avons considéré uniquement les niveaux électroniques
• Pour une molécule, il existe aussi des niveaux

– vibrationnelles (infrarouge)
– rotationnelles (infrarouge lointain)

• Les niveaux vibrationnels et rotationnels
se comprennent comme des niveaux 
"mécaniques", avec une énergie bien
déterminée
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Niveaux vibrationnels
• Dans un solide aussi, il existe des vibrations mécaniques, on parle de phonons:

• Les photons interagissent avec ces vibrations, dans les molécules et les solides
• De la lumière est absorbée et excite les vibrations mécaniques

quora.com
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• La spectroscopie Raman utilise directement ces niveaux vibratoires (on parle de 
diffusion inélastique de la lumière, phénomène peu efficace)

• Comme chaque molécule a des liaisons chimiques différentes, elle peut vibrer dans 
des modes différents et produire un spectre Raman spécifique (empreinte digitale)

Spectroscopie Raman

Niveaux
vibrationnels

63
3 

nm

65
7 

nm

70
7 

nm
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Occupation des niveaux d'énergie en function de la température

• Les niveaux sont donnés par la structure des atomes/molécules/solides
• Leur occupation dépend de la température et suit la loi de Boltzmann:
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Occupation des niveaux d'énergie en function de la température

• La distribution de Boltzmann correspond à une distribution par équipartitions
• Si on a     atomes, le rapport des populations dans les niveaux 1 et 2 est

• Ce rapport dépend de la température; à                 tous les atomes sont dans le 
niveau fondamental 

• En augmentant la température, la population des niveaux d'énergies supérieures 
augmente

• A l'équilibre, la population d'un niveau d'énergie donné est toujours plus grande que 
celle des niveaux d'énergies supérieures

• Ce n'est pas nécessairement le cas hors équilibre: il peut alors y avoir une inversion 
de population → lasage
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Dépendance en température

• Dans un système quantique, on doit aussi tenir compte du principe d'exclusion de 
Pauli qui empêche qu'un état d'énergie/spin soit occupé par plus d'un électron

• La probabilité qu'un niveau d'énergie E soit occupé suit alors la distribution de 
Fermi-Dirac:

• Au dessus de l'énergie de Fermi Ef , cette distribution s'approche de la distribution 
de Boltzmann

• Les transitions qui jouent un rôle en
optique ont une énergie plus grande
que l'énergie de Fermi


