
Systèmes embarqués et robotique

Structure du compilateur C

Francesco Mondada
IEM - STI - EPFL

1

Systèmes embarqués et robotique

Plateforme pour ce cours

Vous avez pu noter que lors du premier TP, vous avez compilé un code sur un PC,
qui s’est ensuite exécuté sur le robot e-puck2.

Dans ce cours, nous allons aborder la structure de ce procédé, soit la compilation du
code C pour le transformer en un exécutable qui peut être exécuté sur le robot.

2

Systèmes embarqués et robotique

Plateforme pour ce cours

Code GNU ARM
Embedded

Exécutable Programmeur
Debugger
(STM32F413) uC

(STM32F407) Périphs

GDB
client

GDB
Server

vscode
3

Systèmes embarqués et robotique

Introduction au compilateur C

Ce cours se base sur le compilateur GCC en mode croisé.

GCC est le compilateur C du projet GNU, démarré en 1984 pour réaliser un OS similaire
à UNIX mais libre. Le développement de GCC a débuté en 1987 et on est actuellement à
la version 14.2 , le projet fait ~15M lignes de code. GCC est soumis à la license GPL
(General Public License).

GCC supporte la grande majorité des processeurs existants à ce jour, est modulaire et
permet de la compilation croisée (cross-compilation) pour un grand nombre de cibles.

4

Systèmes embarqués et robotique

Introduction

Programme
en C++

Exécution

Programme asm

Exécution

encoding

Informatique (1ère année) Microcontroleur (2e année)

5

Systèmes embarqués et robotique

Exemple: MOV R1, #0x1
“The MOV instruction copies the value of Operand2 into Rd.”

Cortex M4, Generic User Guide 6

Systèmes embarqués et robotique

Exemple

Instruction MOV{S}

INSTRUCTION (32 bits)

ARM instruction set

destination

7

Savoir qu’il y a
un encodage

Systèmes embarqués et robotique

Le compilateur C

Programme en C Programme asm

Exécution

encoding✓

8

Systèmes embarqués et robotique

Structure du
compilateur C

9

Systèmes embarqués et robotique

Compiler (from wikipedia)

A compiler is a computer program (or set of programs) that
transforms source code written in a computer language (the
source language) into another computer language (the target
language). The name "compiler" is primarily used for programs
that translate source code from a high-level programming
language to a lower level language (e.g., assembly language,
object code, or machine code) to create an executable program.

Linker (éditeur de liens) (from wikipedia)

In computer science, a linker or link editor is a program that
takes one or more objects generated by a compiler and
combines them into a single executable program.

10

Systèmes embarqués et robotique

Exemples: gcc -o hello hello.c #include <stdio.h>

int main()
{
printf("Hello World\n");
return (0);

}

11

Systèmes embarqués et robotique

Exemples: as -o hello.o hello.s
.LC0:

.ascii "Hello
World\000"

.text

.align 1

.global main

.syntax unified

.thumb

.thumb_func

.fpu softvfp

.type main,
%function
main:

@ args = 0, pretend = 0,
frame = 0

@ frame_needed = 1,
uses_anonymous_args = 0

push {r7, lr}
add r7, sp, #0
ldr r0, .L3
bl puts
movs r3, #0
mov r0, r3
pop {r7, pc}

.L4:
.align 2

.L3:
.word .LC0
.size main, .-main

12

Systèmes embarqués et robotique

Exemples: gcc -S hello.c #include <stdio.h>

int main()
{
printf("Hello World\n");
return (0);
}

13

Systèmes embarqués et robotique

Cross-compilateur C
On parle de cross-compilateur quand le code est généré pour un autre processeur que celui
sur lequel tourne le compilateur.

Afin de distinguer gcc (propre à l’ordinateur) des cross-gcc on ajoute un préfix au nom de
gcc. Exemples:

pic30-gcc
xc16-gcc
arm-none-eabi-gcc

La suite d’outils de gcc prennent la même forme (arm-none-eabi-ld, arm-none-eabi-as, etc.)

14

Systèmes embarqués et robotique

Compilation vs Cross-compilation

#include <stdio.h>

main()
{
printf("Hello World\n");
return (0);
}

Hello
World

#include <stdio.h>

main()
{
printf("Hello World\n");
return (0);
}

«Hello world»

15

Systèmes embarqués et robotique

Cross-compilateur C de ARM
Il existe une version spécifique de GCC (arm-none-eabi-gcc) pour les microcontrôleurs avec
une architecture ARM. C’est la chaîne d’outil (Toolchain) GNU ARM Embedded. Ce sont
les fabricants des processeurs ARM qui maintiennent ce projet.

L’environnement vscode utilisé lors des TPs fait appel à ce compilateur lorsque vous faites
un “build” de votre projet. Le système de construction est un simple Makefile faisant appel
à tous les outil nécessaire. Mais il est aussi possible de lancer le compilateur à l’aide des
lignes de commandes.

16

Systèmes embarqués et robotique

Exemples: arm-none-eabi-gcc -S test.c

int main()
{

int i, j, out = 0;
for(i = 0; i < 10; i++)
{

for(j = 0; j < 10; j++)
{

out += i+j;
}

}
return out;

}
17

Systèmes embarqués et robotique

...
Main:

...
push {r7}
sub sp, sp, #20
add r7, sp, #0
movs r3, #0
str r3, [r7, #4]
movs r3, #0
str r3, [r7, #12]
b .L2

.L5:
movs r3, #0
str r3, [r7, #8]
b .L3

.L4:
ldr r2, [r7, #12]
ldr r3, [r7, #8]
add r3, r3, r2
ldr r2, [r7, #4]
add r3, r3, r2
str r3, [r7, #4]
ldr r3, [r7, #8]
adds r3, r3, #1
str r3, [r7, #8]

.L3:
ldr r3, [r7, #8]
cmp r3, #9
ble .L4
ldr r3, [r7, #12]
adds r3, r3, #1
str r3, [r7, #12]

.L2:
ldr r3, [r7, #12]
cmp r3, #9
ble .L5
ldr r3, [r7, #4]
mov r0, r3
adds r7, r7, #20
mov sp, r7

pop {r7}
bx lr
.size main, .-main
...

int main()
{

int i, j, out = 0;
for(i = 0; i < 10; i++)
{

for(j = 0; j < 10; j++)
{

out += i+j;
}

}
return out;

}

18

Savoir lire ce
code

Systèmes embarqués et robotique

Organisation de code

Frank Bonnet, Francesco Mondada
IMT - STI - EPFL

19

Systèmes embarqués et robotique

Introduction
Afin de gérer des projets de tailles différentes, une structuration du code source est
nécessaire.
La structure peut prendre des formes différentes, mais quelques principes sont
généraux et font appel aux possibilités offertes par le compilateur.

Dans ce cadre il est important de comprendre:
• L’utilité de structurer le code en sous-parties
• Le rôle des différents fichiers et leur utilisation:

makefile, fichier source, définitions, librairies, de démarrage...
• Le contexte donné par un BIOS (Basic Input/Ouput System)

ou un OS (Operating System)

20

Systèmes embarqués et robotique

Make

G
N

U
 M

ak
e

Makefile

21

Systèmes embarqués et robotique

Make
Wikipedia: Make is a build automation tool that automatically builds executable
programs and libraries from source code by reading files called Makefiles which specify
how to derive the target program.
Lorsque vous exécutez “build” dans
vscode, vous lancez la commande Make
qui va faire utiliser les informations du
makefile pour compiler votre projet
Le makefile rend le procédé de compilation
de gros projets lourds avec plusieurs
contributeurs beaucoup plus simples.

22

Systèmes embarqués et robotique

Makefile (Du TP)
Project, sources and paths
#

PROJECT = blinky

CSRC = main.c gpio.c timer.c
CSRC += ST/system_clock_config.c ST/stm32f4xx_ll_rcc.c ST/system_stm32f4xx.c

ASMSRC = ST/startup_stm32f407xx.s

INCDIR = . ./ST

LIBS =
LIBDIR =

LDSCRIPT = ST/STM32F407VGTx_FLASH.ld

DEFS = -DSTM32F4 -DSTM32F407xx

OBJS = $(CSRC:.c=.o) $(ASMSRC:.s=.o)
IINCDIR = $(patsubst %,-I%,$(INCDIR))
LLIBDIR = $(patsubst %,-L%,$(LIBDIR))

LD = linker

23

Systèmes embarqués et robotique

Makefile (Du TP)
Compiler settings

MCU = cortex-m4

TRGT = arm-none-eabi-
CC = $(TRGT)gcc
LD = $(TRGT)gcc
AS = $(TRGT)gcc -x assembler-with-cpp
OD = $(TRGT)objdump
SZ = $(TRGT)size
NM = $(TRGT)nm

Compiler options
OPT = -O0 -ggdb -fomit-frame-pointer -falign-functions=16
OPT += -ffunction-sections -fdata-sections -fno-common

THUMB-specific options
TOPT = -mthumb -mno-thumb-interwork

Define C warning options
CWARN = -Wall -Wextra -Wundef -Wstrict-prototypes

CFLAGS = -mcpu=$(MCU) $(OPT) $(CWARN) $(DEFS) $(TOPT)

ASFLAGS = -mcpu=$(MCU) $(TOPT)

LDFLAGS = -mcpu=$(MCU) $(OPT) -nostartfiles $(LLIBDIR) $(TOPT)
LDFLAGS += -Wl,--no-warn-mismatch,--gc-sections,--script=$(LDSCRIPT)

24

Systèmes embarqués et robotique

Makefile (Du TP)
Make targets
#

.PHONY: all
all: $(PROJECT).elf $(PROJECT).list $(PROJECT).size $(PROJECT).mem

$(SZ) $(PROJECT).elf
@ echo "> Done"

.PHONY: clean
clean:

@echo "> Cleaning"
rm -f $(OBJS)
rm -f $(PROJECT).elf $(PROJECT).list $(PROJECT).size $(PROJECT).mem
@echo "> Done"

…
...

$(PROJECT).mem: $(PROJECT).elf
@echo "> Creating" $@
$(NM) --numeric-sort --print-size $< > $@

.PHONY: flash
flash: all

arm-none-eabi-gdb --command=../../debug.gdb --command=../../flash.gdb blinky.elf

25

Systèmes embarqués et robotique

Makefile
Un makefile peut inclure plusieurs autres makefiles! (à partir du TP4), car chaque
librairie ou sous-projet peut avoir son propre makefile

Project, sources and paths
#

Imported source files and paths
CHIBIOS = $(GLOBAL_PATH)/ChibiOS/
CHIBIOS_EXT = $(GLOBAL_PATH)/ChibiOS_ext/
Startup files.
include $(CHIBIOS)/os/common/ports/ARMCMx/compilers/GCC/mk/startup_stm32f4xx.mk
HAL-OSAL files.
include $(CHIBIOS)/os/hal/hal.mk
include $(CHIBIOS)/os/hal/ports/STM32/STM32F4xx/platform.mk

26

Systèmes embarqués et robotique

Structure du code

G
N

U
 M

ak
e

Makefile

Definitions

Implémentation

Librairies
27

Systèmes embarqués et robotique

Structure de code

Petit programme C:

.c

28

Systèmes embarqués et robotique

Structure de code

Programme moyen en C:

.c .h
code source définitions

29

Systèmes embarqués et robotique

Structure de code

Programme complexe en C:

.c .c
code source + définitions

.h .c .h .c .h .h .c
main

30

Systèmes embarqués et robotique

Structure de code

Programme complexe en C:

.c .c
code source + définitionsdéfinitions

.c .h .h .c .h .h .c
lib.a

code standard

lib.h

main

31

Systèmes embarqués et robotique

Création de librairies

32

Systèmes embarqués et robotique

Environnement

.h.o .a .h .c .c
lib.a code +

définitions
libc.a

.a
crt.o lib.h

Démarrage Votre code avec librairies
33

Systèmes embarqués et robotique

Environnement

.h.o .a .h .c .c
lib.a code +

définitions
libc.a

.a
crt.o bootloader lib.h

Démarrage
Permanent en FLASH

Reprogrammable en FLASH
34

Systèmes embarqués et robotique

35

Systèmes embarqués et robotique

Code GNU ARM
Embedded

Exécutable Programmeur
Debugger
(STM32F413) uC

(STM32F407)

GDB
client

GDB
Server

#include <stdio.h>

main()
{
printf("Hello World\n");
return (0);
}

«Hello world»

Sans Bootloader

Périphs

36

Systèmes embarqués et robotique

Code GNU ARM
Embedded

Exécutable Programmeur
Debugger
(STM32F413) uC

(STM32F407)

GDB
client

GDB
Server

#include <stdio.h>

main()
{
printf("Hello World\n");
return (0);
}

«Hello world»

Avec Bootloader

Périphs

37

Systèmes embarqués et robotique

Environnement

.h.o .a .h .c .c
libc.a

.a
crt.o bootloader

BIOS (Basic Input/Output
System)

code + définitionslib.hlib.a

38

Systèmes embarqués et robotique

Environnement

.h.o .a .h .c .c
lib.a libc.a

.a
crt.o bootloader

BIOS

+ Gestion de fichers

+ Gestion de mémoire

OS
+ Gestion de tâches

+ Gestion de I/O

code + définitionslib.h

39

Systèmes embarqués et robotique

Abstraction matérielle: ou comment
utilizer le compilateur pour le bas niveau

Francesco Mondada
IEM - STI - EPFL

40

Systèmes embarqués et robotique

Introduction
Les outils offerts par le compilateur permettent une abstraction qui facilite l’écriture,
la lecture et donc le debug.

Certains de ces outils ne sont pas spécifiques du compilateur C, mais sont plus
complets dans un compilateur que dans un simple assembleur.

41

Systèmes embarqués et robotique

Introduction
La facilité d’écriture (et de lecture) d’un code source depend énormément de la
structure mise en place autour du code. Cette structure peut se faire à divers
niveaux, du nom des variables jusqu’à des librairies de fonctions.

Dans ce cadre il est important de comprendre:
● Les mécanismes de redéfinition de noms (#define)
● L’utilité de structures (par exemple) pour faciliter l’écriture
● L’utilisation et la structuration de fonctions de bas niveau
● Le partage de ressources (timers etc)

42

Systèmes embarqués et robotique

Ressources matérielles

PD5

43

Savoir faire cette
démarche

Systèmes embarqués et robotique

Ressources matérielles

PD5

44

Systèmes embarqués et robotique

Ressources matérielles

45

Savoir faire cette
démarche

Systèmes embarqués et robotique

Abstraction au niveau de nom de variables

Lecture de code:

• Que fait l’instruction port -> BSRR = (1 << (pin + 16))?
• Que fait l’instruction gpio_set(no_led) ?

Ecriture de code:
• Pour écrire port -> BSRR = (1 << (pin + 16)) il faut:
✓ trouver sur quel port et quel bit est connecté la LED
✓ voir dans quel registre on doit faire quoi

• L’écriture gpio_set (ou led_set..) est simple et intuitive

46

Systèmes embarqués et robotique

gpio.c

stm32f407xx.h

typedef struct
{

__IO uint32_t MODER;
__IO uint32_t OTYPER;
__IO uint32_t OSPEEDR;
__IO uint32_t PUPDR;
__IO uint32_t IDR;
__IO uint32_t ODR;
__IO uint32_t BSRR;
__IO uint32_t LCKR;
__IO uint32_t AFR[2];

} GPIO_TypeDef;

Couches d’abstraction:

VOTRE CODE
void gpio_set(GPIO_TypeDef *port,unsigned int pin)
{

port ->BSRR = (1 << (pin + 16));
}

47

Systèmes embarqués et robotique

Couches d’abstraction: fonctions
while(1)
{
LED0 = 1;
for(i=0;i<300000;i++)
asm("nop");

LED0 = 0;
LED1 = 1;
for(i=0;i<300000;i++)
asm("nop");

LED1 = 0;
LED2 = 1;
for(i=0;i<300000;i++)
asm("nop");

LED2 = 0;
}

void gpio_set(led_no){
…
}

void gpio_clear(led_no){
…
}

void wait_nop(number_of_nops){
…
}

while(1){
for(led=0;led<3;led++) {
gpio_set(led);
wait_nop(300000);
gpio_clear(led);

}
}

48

Systèmes embarqués et robotique

#include <stm32f4xx.h>
#include <gpio.h>
#include <main.h>

#define TIMER_CLOCK 84000000 /* APB1 clock */
#define PRESCALER_TIM7 (TIMER_CLOCK/10000) /* timer frequency: 10kHz */
#define COUNTER_MAX_TIM7 10000 /* timer max counter 1 sec */

Gestion d’interruptions: abstraction

49

Systèmes embarqués et robotique

void timer7_start(void)
{

// Enable TIM7 clock
RCC->APB1ENR |= RCC_APB1ENR_TIM7EN;

// Enable TIM7 interrupt vector
NVIC_EnableIRQ(TIM7_IRQn);

// Configure TIM7
TIM7->PSC = PRESCALER_TIM7;
TIM7->ARR = COUNTER_MAX_TIM7 - 1;// note: timer reload takes 1 cycle, thus -1
TIM7->DIER |= TIM_DIER_UIE; // enable update interrupt
TIM7->CR1 |= TIM_CR1_CEN; // enable timer

}

void TIM7_IRQHandler(void)
{

// Clear interrupt flag
TIM7->SR &= ~TIM_SR_UIF;

/* toggle LED */
gpio_toggle(LED_USED);

}

Gestion de temps par interruption

50

Systèmes embarqués et robotique

Initialisation du TIMER5 // Configure TIM7
TIM7->PSC = PRESCALER_TIM7;
TIM7->ARR = COUNTER_MAX_TIM7 - 1;
TIM7->DIER |= TIM_DIER_UIE;

51

Systèmes embarqués et robotique

TP de cette semaine

(suite TPIntro si besoin!!!!!)

Exercices de programmation en C
Etude de la structure du compilateur C

Utilisation de TIMER.
> Programmation d’un PWM pour régler l’intensité d’une LED

>Programmation du contrôle de moteurs pas à pas en C

52

Systèmes embarqués et robotique

53

Systèmes embarqués et robotique

54

Systèmes embarqués et robotique

55

Systèmes embarqués et robotique

56

Résumé 1 à disposition!

Avez-vous utilisé le GPT mis à disposition? Des retours sont
bienvenus. Attention à l’usage d’autres GPTs (acemate):

