=PFL

Structure du compilateur C

Francesco Mondada
IEM - STI - EPFL

=PFL
Plateforme pour ce cours

Vous avez pu noter que lors du premier TP, vous avez compilé un code sur un PC,
qui s’est ensuite exécuté sur le robot e-puck?.

Dans ce cours, nous allons aborder la structure de ce procéde, soit la compilation du
code C pour le transformer en un exécutable qui peut €tre exécute sur le robot.

=PFL &

Plateforme pour ce cours

client

vscode

=PFL

Introduction au compilateur C

Ce cours se base sur le compilateur GCC en mode croise.

GCC est le compilateur C du projet GNU, démarre en 1984 pour réaliser un OS similaire
a UNIX mais libre. Le développement de GCC a débuté en 1987 et on est actuellement a
la version 14.2 | le projet fait ~15M lignes de code. GCC est soumis a la license GPL
(General Public License).

GCC supporte la grande majorité des processeurs existants a ce jour, est modulaire et
permet de la compilation croisée (cross-compilation) pour un grand nombre de cibles.

=PFL

Introduction
Informatique (1¢re annce) Microcontroleur (2e annee)
Programme Programme asm
en C++ g

encoding

Exécution > Exécution >

=P-L

Exemple: MOV R1, #0x1

“The MOV instruction copies the value of Operand2 into Rd.”

3.5.6 MOV and MVN

Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16
MVN{S}{cond} Rd, Operand2

where:

S Is an optional suffix. If S is specified. the condition code flags are updated on the
result of the operation, see Conditional execution on page 3-18.

cond Is an optional condition code. See Conditional execufion on page 3-18.

Rd Specifies the destination register.

Operand2 Is a flexible second operand. see Flexible second operand on page 3-12 for details
of the options.

mm16 Is any value in the range 0-65535.

Cortex M4, Generic User Guide

Savozr qu’ily a
84 J,b"’ un encodage

cPrL &3

Exemple

Instruction MOV {S}

3.5.6 MOV and MVN

Move and Move NOT.

Syntax

MOV[S}l{cond} Rd,l Operand?2

MOV{cond} Rd, #imml6
MVN{S}{cond} Rd, Operand2

)

destination

ARM instruction set

Rn Rd

Operand 2

= .
= .
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rét= Op2

—] L]
Destination register

1st operand register

Set condition codes
0 = do not alter condition codes
1 = set condition codes

Operation Code

0000 = AND « Rd:= Op1 AND Op2
0001 = EOR « Rd:» Op1 EOR Op2
0010 = SUB « Ra:» (»l Op2

0011 = RSB -
0100 = ADO -
0101 = ADC «
0110 =S8C-

1110 = BIC - Re= Op1 AND NOT Op2
1111 = MVN « Rd:= NOT Op2

Immediate Operand

n 0= operand 2 is a register 43 °

Shift Rm —

2nd operand register

shift applied to Rm

1 = operand 2 is an immediate value
" [0

Rotate Imm [

L J L |
Unsigned 8 bit immediate value
shift applied to Imm

Condition field

=PFL %

Le compilateur C

Programme en C ‘ Programme asm

B
encoding \X

Exécution >

=PFL &

Structure du
compilateur C

C source files (*.c) H

\ 4

Header files (x.h) l

=(Preprocessor (in ccl))

v

C source files (.1) H
y
(C compiler (ccl))
v

ASM source files (x.s) JJ
v

=(Assembler (as))

ASM source files (x.8) l

(Archiver (ar)):

C compiler (gcc)

| v
object files (x.0) JJ

+

[A 4
|

v

»(Linker(d))

[

static libraries (*.a)

\

executable file

C run-time files (crt...)

|

=PFL %

CO mp I l el (from wikipedia)
A compiler 1s a computer program (or set of programs) that
transforms source code written in a computer language (the
source language) into another computer language (the target
language). The name "compiler" is primarily used for programs
that translate source code from a high-level programming
language to a lower level language (e.g., assembly language,
object code, or machine code) to create an executable program.

Linkel" (éditeur de lienS) (from wikipedia)

In computer science, a linker or link editor 1s a program that
takes one or more objects generated by a compiler and
combines them into a single executable program.

10

=PFL &

Exemples:

gcc -0 hello hello.c

#include <stdio.h>

int main ()

: {
C source files (+) Lu printf ("Hello World\n");
3 return (0);
L E/D }
Header files (.h) ‘”J" Preprocessor (in ccl)) 5
v a.
L - g
| C source files (.1) Lu 3
(C compiler (ccl))
, v
|ASM source files (*.s)_u
‘ASM source files (x.s) Assembler (as))
. v
(Archiver (ar) object files (x.0) Lu
[| — * rl;
L static libraries (x.a) ||r|- Linker (I1d) j: {C run-time files (crt...)
! |

| executable file ‘

=P-L

Exemples:

\

6cji§_.,b

as -0 hello.o hello.s

I
[

| C source files (*.c) Lu

t \/
Header files (:.h) UJ——’(Preprocessor (in ccl))
v

| C source files (:.1) LU

(C compiler (ccl))
v

|ASM source files (*.S)UJ

C compiler (gcc)

‘IASM source files (>|<.s)u-|

=L Assembler (as))

(Archiver (ar)):

| object files (x.0) UJ

.LCO:

World\0oOoO"

$function
main:

frame = 0

.ascii

.text

.align

.global

.syntax unified
. thumb

.thumb_ func
.fpu softvfp
.type

"Hello

1
main

main,

@ args = 0, pretend =

@ frame_needed

uses_anonymous_args = 0

.L4:

.L3:

[

<
‘ static libraries («.a) M——»(Linker (1d))4——‘C run-time files (crt...)l_u

\

| executable file ‘

push

add
ldr

bl

movs
mov

pop
.align

.word
.size

1,

0,

{r7, 1lr}
r7, sp, #0
r0, .L3

puts

r3, #0
r0, r3
{r7, pc}

2

.LCO
main,

.-main

12

=PFL &

Exemples:

gcc -S hello.c

C source files (*.c) Lu

Header files (.h)

> rLPreprocessor (in ccm
v

| C source files (3.1) Lu

(C compiler (ccl))

‘ASM source files (x.s) UJ—

(Archiver (ar))4—

.)
‘ static libraries (x.a) l_u—

‘|ASM source files (*.S)UJ ‘
1

C compiler (gcc)

—>(Assembler (as))
v

—|I object files (x.0) UJ
v

\

| executable file ‘

#include <stdio.h>

int main ()
{
printf ("Hello World\n");
return (0);

}

—>(Linker (1d))4——‘C run-time files (crt...)uJ

=PFL %

Cross-compilateur C

On parle de cross-compilateur quand le code est génére pour un autre processeur que celui
sur lequel tourne le compilateur.

Afin de distinguer gcc (propre a I’ordinateur) des cross-gcc on ajoute un préfix au nom de
gce. Exemples:

pic30-gcc
xcl6-gec
arm-none-eabi-gcc

La suite d’outils de gcc prennent la méme forme (arm-none-eabi-l1d, arm-none-eabi-as, etc.)

=PFL &

Compilation VS Cross-compilation

#include <stdio.h>

#include <stdio.h>

main ()

{

printf ("Hello World\n");
return (0);

}

main ()

{

printf ("Hello World\n");
return (0);

\\ «Hello world»

15

=PFL %

Cross-compilateur C de ARM

Il existe une version spécifique de GCC (arm-none-eabi-gcc) pour les microcontréleurs avec
une architecture ARM. C’est la chaine d’outil (Toolchain) GNU ARM Embedded. Ce sont

les fabricants des processeurs ARM qui maintiennent ce projet.

L’environnement vscode utilisé lors des TPs fait appel a ce compilateur lorsque vous faites
un “build” de votre projet. Le systéme de construction est un simple Makefile faisant appel
a tous les outil nécessaire. Mais il est aussi possible de lancer le compilateur a l'aide des

lignes de commandes.

=P-L

Exemples:

arm-none-eabi-gcc -S test.c

int main()
{
int 1, j, out = 05
forG = 0;1< 10; i++)
{
forG = 05 j < 105 j++)
{
out +=1tj;
b
)

return out;

C compiler (gcc)

—‘ object files (x.0)
L] —_—
—»(Linker (1d) F——‘C run-time files (crt...)

b

Il

Savozr lire ce
84 Lb"’ code

int main()

Main:

{
int 1, j, out = 0;)

for(i = 05 1 < 10; i++)
{
forG =053 < 10; j++)
{

out += 1tj;
h

;

return out;

push
sub
add

movs

str

movs

str

movs

str

Idr
Idr
add
Idr
add
str
Idr
adds
str

Idr
cmp
ble
Idr
adds

.size

{rr}

sp, sp, #20
r7, sp, #0
r3, #0

13, [r7, #4]
r3, #0

r3, [r7, #12]
L2

r3, #0
13, [r7, #8]
L3

r2, [r7, #12]
13, [r7, #8]
r3,r3,r2
r2, [r7, #4]
r3,r3,r2
r3, [r7, #4]
13, [r7, #8]
r3, r3, #1
13, [r7, #8]

13, [r7, #8]
r3, #9

L4

r3, [r7, #12]
r3, r3, #1
r3, [r7, #12]

r3, [r7, #12]
r3, #9

L5

r3, [r7, #4]
r0, r3
r7,r7,#20
sp, r7

{r7}
Ir
main, .-main

18

=PFL

Organisation de code

Frank Bonnet, Francesco Mondada
IMT - STI - EPFL

19

=PFL

Introduction

Afin de gérer des projets de tailles différentes, une structuration du code source est
nécessaire.

La structure peut prendre des formes différentes, mais quelques principes sont
geénéraux et font appel aux possibilités offertes par le compilateur.

Dans ce cadre 1l est important de comprendre:
® L’utilité de structurer le code en sous-parties
® Le role des différents fichiers et leur utilisation:
makefile, fichier source, définitions, librairies, de démarrage...

® Le contexte donn¢ par un BIOS (Basic Input/Ouput System)
ou un OS (Operating System)

20

=PFL &

Make

Header files (x.h)

Makefile

[

ASM source files (x.8)

(Archiver (ar)

[

C source files (.c)

)

y
_>‘ Preprocessor (in ccl
[

v

C source files (.1)

|

v

(C compiler (ccl))

v

ASM source files (x.8) H

v

—>(Assembler (as)

)

C compiler (gcc)

GNU Make

J

v

[

+

[A 4

static libraries (x.a)

object files (x.0)

v

o

Linker (1d)

Yo

executable file

[

C run-time files (crt...)

|

21

=PFL %

Make

Wikipedia: Make 1s a build automation tool that automatically builds executable
programs and libraries from source code by reading files called Makefiles which specify
how to derive the target program.

Lorsque vous executez “build” dans
vscode, vous lancez la commande Make
qui va faire utiliser les informations du
makefile pour compiler votre projet

Le makefile rend le procédé de compilation
de gros projets lourds avec plusieurs
contributeurs beaucoup plus simples.

=PrL
Makefile (Du TP)

Project, sources and paths
#

PROJECT = blinky

CSRC = main.c gpio.c timer.c
CSRC += ST/system_clock config.c ST/stm32f4xx 1l rcc.c ST/system_stm32f4xx.c

ASMSRC = ST/startup_stm32f407xx.s
INCDIR =. /ST

LIBS =
LIBDIR =

LD = linker
LDSCRIPT = ST/STM32F407VGTx_FLASH.Id

DEFS = -DSTM32F4 -DSTM32F407xx
OBJS = $(CSRC:.c=.0) $(ASMSRC:.s=.0)

IINCDIR = $(patsubst %,-1%,$(INCDIR))
LLIBDIR = $(patsubst %,-L%,$(LIBDIR))

=PFL

Makefile (Du TP)

Compiler settings
MCU = cortex-m4

TRGT = arm-none-eabi-

CC =3$(TRGT)gcc

LD =$(TRGT)gcc

AS = $(TRGT)gcc -x assembler-with-cpp
OD = $(TRGT)objdump

SZ =$(TRGT)size

NM = $(TRGT)nm

Compiler options
OPT =-00 -ggdb -fomit-frame-pointer -falign-functions=16

OPT += -ffunction-sections -fdata-sections -fno-common

THUMB-specific options
TOPT = -mthumb -mno-thumb-interwork

Define C warning options
CWARN = -Wall -Wextra -Wundef -Wstrict-prototypes

CFLAGS = -mcpu=$(MCU) $(OPT) $(CWARN) $(DEFS) $(TOPT)
ASFLAGS = -mcpu=$(MCU) $(TOPT)

LDFLAGS = -mcpu=$(MCU) $(OPT) -nostartfiles $(LLIBDIR) $(TOPT)
LDFLAGS += -Wl,--no-warn-mismatch,--gc-sections,--script=$(LDSCRIPT)

24

=P-L

Makefile (Du TP)

Make targets

#

.PHONY: all I

all: $(PROJECT).elf $(PROJECT).list $(PROJECT).size $(PROJECT).mem
$(SZ) $(PROJECT).elf

@ echo "> Done"

PHONY: clean

clean:
@echo "> Cleaning"
rm -f $(OBIJS)

Executable and Linkable Format

From Wikipedia, the free encyclopedia

In computing, the Executable and Linkable Format (ELF, formerly named Extensible Linking

Format), is a common standard file format for executable files, object code, shared libraries, and

core dumps. First published in the specification for the application binary interface (ABI) of the

Unix operating system version named System V Release 4 (SVR4),12! and later in the Tool

Interface Standard,['] it was quickly accepted among different vendors of Unix systems. In 1999, it

was chosen as the standard binary file format for Unix and Unix-like systems on x86 processors

by the 860pen project.
e —

rm -f $(PROJECT).elf $(PROJECT).list $(PROJECT).size $(PROJECT).mem

@echo "> Done"

$(PROJECT).mem: $(PROJECT).lf
@echo "> Creating" $@
$(NM) --numeric-sort --print-size $< > $@

PHONY: flash
flash: all

arm-none-eabi-gdb --command=../../debug.gdb --command=../../flash.gdb blinky.elf

25

=PFL
Makefile

Un makefile peut inclure plusieurs autres makefiles! (a partir du TP4), car chaque
librairie ou sous-projet peut avoir son propre makefile

Project, sources and paths
#

Imported source files and paths

CHIBIOS = $(GLOBAL PATH)/ChibiOS/

CHIBIOS_EXT = $(GLOBAL_PATH)/ChibiOS_ext/

Startup files.

include $(CHIBIOS)/os/common/ports/ ARMCMx/compilers/GCC/mk/startup stm32f4xx.mk
HAL-OSAL files.

include $(CHIBIOS)/os/hal/hal.mk

include $(CHIBIOS)/os/hal/ports/STM32/STM32F4xx/platform.mk

26

=PFL &

Structure du code

Implémentation

C source files (*.c)

Definitions

[

Header files (x.h)

Makefile

[

ASM source files (x.8)

C

Archiver (ar)

\d
ssor (in ccl))

v

_>(Preprocek

C source files (.1)

|

v

(C compiler (ccl))

v

ASM source files (x.8) H

v

—(

Assembler (as)

h

C compiler (gcc)

GNU Make

J

v

[

+

[

A 4

static libraries (x.a)

Librairies

object files (x.0)

v

o

Linker (1d)

Yo

executable file

[

C run-time files (crt...)

|

27

=P-L

Structure de code

Petit programme C:

28

=PFL

Structure de code

Programme moyen en C:

I

.C

N/

code source

définitions

29

=PFL

Structure de code

Programme complexe en C:

o=

.C

—y

N/

o=

.C

=9

N/

[

.C

—

N/

.C

code source + définitions

main

30

=PFL

Structure de code

Programme complexe en C:

[

.C

N/

O

.C

=

N/

.C

code standardf définitions

lib.a lib.h

code source + définitions

main

31

=PFL &

Creation de librairies

C source files (*.c) Lu

Preprocessor (in ccl))

. v
| C source files (.1) UJ

Header files (:.h)

CcC

C C compiler (ccl))
v

|ASM source files (*.S)Lu

Assembler (as))
1! |

object files (x.0) u-l
1

‘ASM source files (x.8)

(Archiver (ar)

‘ static libraries («.a) :(Linker (1d))4——‘C run-time files (crt...)uJ

\

executable file ‘

=PFL %

Environnement

[

=0

[

=9

.0.al.hl.c.h.cl.a
crt.o lib.a lib.h code + libc.a
définitions
\ J \
| |

Démarrage

Votre code avec librairies

33

=PFL

Environnement
|
crt.o0 bootloader lib.a lib.h code + libc.a
définitions
\ J \
| |
Deémarrage Reprogrammable en FLASH

Permanent en FLASH

=P-L

Host PC (running MPLAB® IDE)

User > Bootloader

Appl

Bootloader

Communication Channel
(CAN, UART, etc.)

Communication Channel
(CAN, UART, etc.)

A

1. Bootloader host program reads user application.
2. Bootloader transfers user application to target device (via communication channel).
3. Bootloader target program loads user application into target device memory.

Target dsPIC® or PIC24 Device

IVT/AIVT

Program Flash

EEPROM

Configuration
Registers

35

=P-L

Sans Bootloader

#include <stdio.h>

main ()
{
printf ("Hello World\n");
return (0);

}

client

36

=P-L

Avec Bootloader

#include <stdio.h>

main ()

{

printf ("Hello World\n");

return (0);

}

client

37

=P-L

Environnement

e]

clh.cl.a

code + définitions libc.a

crt.o bootloader lib.a lib.h

B IO S (Basic Input/Output

System)

=P-L

Environnement

+ Gestion de fichers

+ Gestion de mémoire

+ Gestion de taches

+ Gestion de /O

i H
a

o O |

.0

crt.o

bootloader lib.a lib.h code + définitions libc.a

=PFL

Abstraction matérielle: ou comment
utilizer le compilateur pour le bas niveau

Francesco Mondada
IEM - STI - EPFL

=PFL

Introduction

Les outils offerts par le compilateur permettent une abstraction qui facilite I’€criture,
la lecture et donc le debug.

Certains de ces outils ne sont pas specifiques du compilateur C, mais sont plus
complets dans un compilateur que dans un simple assembleur.

41

=PFL %

Introduction

La facilité d’écriture (et de lecture) d’un code source depend énormément de la
structure mise en place autour du code. Cette structure peut se faire a divers
niveaux, du nom des variables jusqu’a des librairies de fonctions.

Dans ce cadre 1l est important de comprendre:
e Les mécanismes de redéfinition de noms (#define)
e [’utilité de structures (par exemple) pour faciliter 1’€criture
e [’utilisation et la structuration de fonctions de bas niveau
e Le partage de ressources (timers etc)

42

Savozr faire cette

E P F L 84 ébb démarche

Ressources materielles

REMOTE

SDIO_CMD ’*sg

3.3VL

DI
KPA-3010SRC-PRV

RED LEDI

i

PD7
PDé6
PD5

PD3
PD2
PD1
PDO

PDS

43

=Pi-L

Ressources materielles

)

I
1 Voo
|

"
b4
PD5 ..
Write - s
= e B 1l
- -~
LED3 PD6 % g
LEDI 73 PD5 ﬁ 3
. PD4 M
REMOTE 837 - e 5
SDIO_CMD "s; s D et
8 2 “rom on-chip
PD1 ipheral Al function outp
3 P
PDO
15 14 13 12 1 10 ° 8 7 [s 4 3 2 1 0
OSPEEDRT(1 0] | OSPEEDRS{1.0] | OSPEEORS(1-0) | OSPEEDRM(10] | OSPEEDRY1D) | OsPesDRzre) | OSTTEDRT [OSFEEORO
. i ™ I w ~ I ™ w I ~ ™ l ™ ™ l ™ w l w ™ I ~ w~ I ™
5-void gpio_config_output_opendrain(GPIO_TypeDef *port, unsigned int pin)
6 {
7 // Output type open-drain : 0Ty = 1
8 port->0TYPER |= (1 << pin); i 1 12 12 " 10 ° 8 7 s 5 4 3 2 1 0
9
10 // Output data low : ODRy = @ MODERT[1:0] | MODER®{1:0) | MODERS{1:0] | MODER4{1:0] | MODER31.0) | MODER2{1:0] | MODER1[10] | MODERO(1-0)
11 port->0DR &= ~(1 << pin); mlm r\ilm m]m mlm f\vlm rwlu MIM mlm
12
13 // Floating, no pull-up/down : PUPDRy = 00 h
14 port->PUPDR &= ~(3 << (pin * 2)); 15 14 12 12 " 10 9 8 7] 5 B 3 2 1 0
15 OT15 | OT14 | OT13 | OT12 | OT11 | OT1I0 | OTO oTs o7 oTe ors oT4 or3 or2 oT orTo
16 // Output speed highest : OSPEEDRy = 11 = s = p— = = o = e e s s o = =i g
17 port->0SPEEDR |= (3 << (pin * 2));
18
19 // Output mode : MODERy = 01 1% 14 13 12 " 10 @ 8 7 L] L] B 3 2 1 [}
= X port->MODER = (port->MODER & ~(3 << (pin * 2))) | (1 << (pin * 2)); PUPOR7[1:0] | PUPOR®[1:0] | PUPDRS{1:0] | PUPDRA[1:0] | PUPDR310] | PUPDR2(1:0] | PUPDRI[1:0] | PUPDRO[10)

44

Savozr faire cette
84 J,bb demarche

Ressources materielles _ re
datasheet

[24MHz F407]

CIMU_INT 239- PDIS
Ll pD14

IMU 9 axis

4 INT_ENC R PDI3
4 . SPI CS ENCR ' R%D LED7 7S :g:f
g B (RED LED5_ 57,1 iran
SCLK - :
ADRSDO INT el W
SDXASDI AUX_CL
AUX DA p=---- o : :
: L RES VAl) GND GND GND
: RESWAne REGOUT |- - -
H =SV end -t -
: RESVY = [SPIT_CS _ENC L PBI10
E b1101000 Win ADO = 0) (2C O~@ = ggg
E bl110100] (@ ADO=1) IZC_F407

PB7

=PFL

Abstraction au niveau de nom de variables

Lecture de code:

® Que fait ’instruction port -> BSRR = (1 << (pin + 16))?
® Que fait ’instruction gpio set(no led) ?

Ecriture de code:
® Pour €crire port -> BSRR = (1 << (pin + 16)) 1l faut:
trouver sur quel port et quel bit est connecté la LED
V' voir dans quel registre on doit faire quoi
® L écriture gpio_set (ou led set..) est simple et intuitive

46

=P-L

Couches d’abstraction: stm32£407xx.h

typedef struct

8.4.7 GPIO port bit setireset register (GPIOX_BSRR) (x = A..IIJ/K) _ IO uint32_t MODER;
Address offset: 0x18 __ IO uint32_t OTYPER,
Reset value: 00000 0000 _ IO uint32_t OSPEEDR;
31 30 29 28 27 2 25 24 23 2 2 20 19 18 17 16 _IO U|nt32_t PUPDR,
BR15 | BR14 | BR13 | BR12 | BR11 | BRI0 | BRO | BR8 | BR7 | BR6 | BR5 | BR4 | BR3 | BR2 | BRI | BRO IO u|nt32 t IDR,
R R TI T T T S TISE __IO uint32_t ODR;
BS15 | BS14 | BS13 | BS12 | BS11 | BS10 | BS9 | BSs | BS7 | BS6 | BS5 | BS4 | BS3 | BS2 | BS1 | BSO IO u | nt32 t BS RR’

w w w w w w w w w w w w w w w w

_ IO uint32_t LCKR;
_ IO uint32_t AFR[2];
}» GPIO_TypeDef;

void gpio_set(GPIO_TypeDef *port,unsigned int pin)

VOTRE CODE ¢=—|° port ->BSRR = (1 << (pin + 16))

gpio.c

47

=P-L

Couches d’abstraction: fonctions

while (1)
{
LEDO = 1;
for (1=0;1i<300000; i++)
asm("nop") ;
LEDO = 0O;
LED1 = 1;
for (i '

void gpio_ set (led no) {
}
void gpio clear (led no) {
}
void wait nop (number of nops) {
}
while (1) {
for (led=0; led<3; led++) {
gpio_set (led);
walt nop (300000) ;

gpio_clear (led);
}

48

=P-L

Gestion d’interruptions: abstraction

#include <stm32f4dxx.h>
#include <gpio.h>
#include <main.h>

#define TIMER CLOCK 84000000 /* APBl clock */
#define PRESCALER TIM7 (TIMER CLOCK/10000) /* timer frequency: 10kHz */
#define COUNTER MAX TIM7 10000 /* timer max counter 1 sec */

49

=PFL

Gestion de temps par interruption

void timer7 start (void)
{
// Enable TIM7 clock
RCC->APB1lENR |= RCC_APBlENR_TIM7EN;

// Enable TIM7 interrupt vector
NVIC EnableIRQ (TIM7 IRQn) ;

// Configure TIM7

TIM7->PSC = PRESCALER TIM7;

TIM7->ARR = COUNTER MAX TIM7 - 1;// note: timer reload takes 1 cycle, thus -1
TIM7->DIER |= TIM DIER UIE; // enable update interrupt

TIM7->CR1 |= TIM CR1 CEN; // enable timer

}

void TIM7 IRQHandler (void)

{
// Clear interrupt flag

TIM7->SR &= ~TIM SR UIF;

/* toggle LED */
gpio_toggle (LED USED) ;

=P-L

Initialisation du TIMERS // Configure TIMT

TIM7->PSC = PRESCALER TIM7;
TIM7->ARR = COUNTER MAX TIM7 - 1;
TIM7->DIER |= TIM DIER UIE;

Figure 86. Advanced-control timer block diagram

= CK_TIM18 from RCC Internal clock (CK_INT) »
- Trigger
w, ETR Polarity selection, ETRF
g Edge detector and Prescaler | |eTrp
= TRGO o Toother timers
> TaAG w0
ITRO —— e
ITR1 ——) %
ITR2 —— P TRGI Slave mode
—» controlle:
ITR3 —— P —p i
TIF_ED
A -
»
A -
TIMFP1 Encoder
TI2FP2: » interface -
o
gI
S
£
T
o
g|
it e =
Repetition counter g S
CNT
(counter) DTG[7:0] registers ;
=)
& oy z
' THFP1 =
g Bl Input filter & IC1 Prescaler IC1PS Capture/Compare |QC1REF. S
- Edge detector THFP2 1 Register o 5
——P T
~ —‘TRC _ cca, JUTTTT cos A a5

=PFL

TP de cette semaine

Exercices de programmation en C
Etude de la structure du compilateur C

Utilisation de TIMER.
> Programmation d’un PWM pour régler I’intensité¢ d’une LED

>Programmation du controle de moteurs pas a pas en C

52

=P-L

1/1
<<< List of responses | @ Print this Response

Respondent: - Anonymous -

Evaluationdu coursetdu TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.

*

1 Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu ¢
Forme
2 Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu

Forme —

3 Vos commentaires en détail (si nécessaire):

Les installations de logiciels sont toujours longs et parfois compliquées : apparitions de bugs inconnus, etc... Cependant, les installations
pourraient étre simplifiées avec des consignes beaucoup plus claires, En effet, le site possédant toutes les marches a suivre est un vrai
labyrin s'y perd, Il donne des infos dans e désordre, ouvre plein de liens differents qui se retrouvent a différents endroits.
et faire un pdf avec les étapes dans I'ordre chronologique serait pIuAsefficace a mon avis.

m 53

=P-L

QuIZ

Vérification connaissances cours 1

Quiz Settings Questions Results Question bank More v

Ce quiz vous permet de vérifier vos connaissances acquises lors du premier cours.

Continue the last preview

Grading method: First attempt

Attempts: 23

54

=P-L

Just do git ¢

Introduction and basic commands

Come discover git, its advantages and how to start
Thursday, March 6 18:15 CM1105

Intermediate commands
Come improve your knowledge and speed up your usage
Thursday, March13 18:15 CM1105

55

Il

PFL

Résumé 1 a disposition!

Avez-vous utilisé le GPT mis a disposition? Des retours sont
bienvenus. Attention a 'usage d’autres GPTs (acemate):

8. Intellectual Property Rights

8.1 Users may only upload materials they have created themselves or for which they have been explicitly authorized to upload by
the rights holder.

8.2 By uploading materials, users grant acemate a transferable, non-exclusive right to use the respective content. These usage
rights are neither limited in time nor space. acemate is entitled to reproduce, distribute, and offer these contents to other users.
The right also includes publication. acemate is entitled to edit the uploaded materials to the extent necessary for presentation
and provision on the platform. acemate is entitled to convert the content into other formats and to watermark and/or logo the
uploaded materials to prevent reproduction or other misuse.

8.3 acemate may remove individual or all contents uploaded by users and individual or all links set by users without giving
reasons. This cannot be interpreted as acemate reviewing the uploaded content or set links.

8.4 If users infringe the intellectual property rights of others, acemate has the right to block their account.

56

