P

L

Gestion des ressources
(Suite cours 3)

Prof. Francesco Mondada
Dr. Frank Bonnet
IEM - STI - EPFL

=PrL

Les variables de types floats et les doubles

La semaine derniere, nous avons vu que la stack est utilisée pour stocker les variables
locales entieres.

Dans la premicre partie de cette legon, nous allons voir comment sont geres les calculs
utilisant les types float (32 bits) / double (64 bits). Nous allons voir ic1 que la stack est
aussi utilisée pour stocker les variables de types float et double locales, en utilisant le
méme principe de stockage, seulement avec une interpretation différente de la variable en
fonction du type.

=PrL

;. D

La mémoire (rappel du rappel) e

Le STM32F4 ayant donc une capacité de 32

bits pour les registres, un registre peut donc

en principe €tre codé sur 4 bytes, et est

stocké sur 4 bytes de mémoire
0x49 0x49
0x92 0x92
0x4B 0x4B
0x08 0x08

ex: registre 32 bits = 0x49924B08 =
1°234°324°232

Address
0x...
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

=PrL

Rappel de la semaine derniere

Nous avons vu comme ¢taient gérées les variables enticres

locales et globales:

int main ()

{

int a = 5;
unsigned int b

return 0O;

Test.c

17;

>

Compilation

main:

push

sub
add
movs
str
movs
str
movs
mov
adds
mov

@ sp needed

pop

Test.s

{r7}

SPy
r7,
r3,
r3,
r3,
r3,
r3,
ro,
r7,

Spy

{r7}

sp, #12
sp, #0
#5

[r7, #4]
#17

[r7]

#0

r3

r7, #12
r

=P

Gestion des nombres a
virgules (float)
arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-mé

-c essai.c -o essai.o

ABI = Application Binary Interface
AEABI = (Embedded) ABI for the ARM architecture

int main () {

float PI = 3.1415;

float mul = -;

float result = mul * PI;

return 0O;

Test.c

Compilation

push
sub
add
1ldr
str
mov
str
1ldr
1ldr
bl
mov
Str

pop
.align

.word

commentaire

{r7, 1r}

sp, sp, #16

r7, sp, #0

r3, L3

r3, [r7, #12] @ float
r3,

r3, [r7, #8] @ float

rl, [r7, #12] @ float

r0, [r7, #8]@ float
__aeabi fmul

r3, r0

r3, [r7, #4]1@ float

{r7, pc}

2

1078529622

Test.s -

=PFL %

Les variables de types floats et les doubles

Pour le processeur ARM Cortex M4 du microcontroleur STM32F4, les nombres a virgules
sont représenteés en suivant la norme IEEE 754. Dans ce format on exprime le signe (s,)
I’exposant (e) et partie fractionnaire (f)

31

s e(7..0) f(1..23)
1-bit 8-bit 23-bit
Single precision format
63 0
s e(10..0) f(1..52)
1-bit 11-bit 52-bit

Double precision format

=PFL %

Représentation des nombres: virgule flottante

ler pas: normalisation

567 m— 567 102 décimal

Comment

crompre 13 13 ™ 0X

2eéme pas:
encodage

D=> 1101 = _+

}

3 binaire

en float? /

p— | () 100 0001 O 101 0000 0000 0000 0000 0000
Sign Exponent Fraction
(signe) (exposant) (mantisse)

BIAS = 127 = Ox7F
= 0111 1111

(100 00000 -> 1, 100 0001 0 -> 3)

Exception: la valeur zéro est codée par des 0 partout

=PFL %

Représentation des nombres: virgule flottante

ldr r3, .13 _JOTEEE o 13: .word 1078529622

Attention: décimal
Décodage:

é OX4049OE56 En hexadécimal, plus facile a traiter

= 0 100 0000 O 100 1001 0000 1110 0101 0110

Sign Exponent Fraction

(signe) (exposant) (mantisse)
BIAS = 127 = Ox7F

=> +1.10010010000111001010110 2!
=> 1.57074999809 x 2

=PrL

Gestion des nombres a virgules

arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o

main:
push {r7, 1r}
sub sp, sp, #16
add r7, sp, #0
. . 1ldr r3, .L3
int main() { Str r3, [r7, #12]
mov r3, 41073741824 |

const float PI =|3.1415; r? “ﬂ'i8;@f“mt
-~ - ldr rl, [r7, #12]
float mul =|2.0; 1dr r0, [r7, #8]@ float
bl __aeabi fmul ??2?27?2°?°7
float result = mul * PI; r3, r0

r3, [r7, #4]@ float
return 0; {r7, pc}

2

>

1078529622
.size main, .-main

Compilation
Test.c
Test.s

Q@ float

Q@ float

=PFL &

Gestion des nombres a virgules

Le processeur ARM Cortex-M4 est équipeé d’une FPU (Floating Point Unit) permettant
d’effectuer des opérations sur des nombres flottants en utilisant un mécanisme
hardware, donc plus efficace que de le faire en software.

Cette unité doit €tre activee lors de la compilation du code. Si ce n’est pas le cas, les
calculs en float/double vont étre fait de maniere software (aeabi fmul), et donc

prendre beaucoup de cycles / temps!

=P

Gestion des nombres a virgules

arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o

int main () {

const float PI

3.1415;

float mul =

2.0;

float result =

return 0O;

Test.c

mul *

PI;

main:
push
sub
add
1ldr
str
mov
str
1ldr
1ldr
_—) -
mov
str

pop
.L4:
.align
> .L3:

Compilation

.word
.size

{r7, 1r}
sp, sp, #16

r7, sp, #0

r3, .L3

r3, [r7, #12]

r3, [$1073741824 |
r3, [r7, #8]@ float
rl, [r7, #12]

r0, [r7, #8] @ float
__aeabi fmul

r3, ro0
r3, [r7,

#41@ float

{7, pc}

2

1078529622

main, .—-main

Test.s

Q@ float

Q@ float

Savoir que cela existe et que
> [’exécution est longue

\

=PFL ¢

Gestion des nombres a virgules

17 BEGIN_ARM_FUNCTT|

18 .arch armv

19 MOV r12, 0Ox000000FF

20 ANDS r2, r12, ro, LSR @23 /* r2[8:31] = @, r2[0:7] = a@.biased_exponent, APSR.Z = (a@.biased_exponent == @ [zero or subnormal a@]) */
21 CMPNE r2, OxFF /* APSR.Z [[= (a@.biased exponent == OxFF [infinity or NaN a@]) */

22 ANDSNE r3, rl12, rl, LSR @23 /* If APSR.Z != @ then r3[8:31] = @, r3[0:7] = al.biased_exponent, APSR.Z [[= (al.biased exponent == @ [zero or subnormal al]) */
23 CMPNE r3, OxFF /¥ APSR.Z [[= (al.biased exponent == @xFF [infinity or NaN al]) */

24 BEQ .special_input /* Handle situations where any operand is zero, subnormal, infinite, or NaN */

25

26 /* Both operands are finite normalized normals */

27 EOR rl1l2, r@, rl /* rl2[31] = aB.sign ~ al.sign, rl2[0:30] = garbage */

28 ADD r2, r3 /* r2 = a@.biased_exponent + al.biased exponent */

29 MOV r3, 0x80000000

30 ORR r@, r3, ro, LSL @8 /¥ ro[8:31] = a@.mantissa_with_implied_bit (r@[31] == 1), re[e:7] = @ */

31 ORR rl1, r3, rl, LSL EIS /¥ r1[8:31] = al.mantissa_with_implied _bit (rl[31] == 1), ri[0:7] = 0 */

32 UMULL r@, r3, rl, r@ /* r3:r@ = (a@.mantissa_with_implied_bit * al.mantissa_with_implied_bit) << 16 */

33 AND r12, r12, ©x80000000 /* r12[31] = a@.sign ~ al.sign, rl2[0:30] = 0 */

34

35 CMP r3, 0Ox80000000 /* APSR.C = (r3 >= 0x80000000) */

36 ADDLO r3, r3, r3 /* If the high part of multiplication is only 31-bit wide, double it */

37 ADC r2, r2, -128 /* and add 1 to exponent. Here it is combined with subtracting ©x7F from biased exponent */
38

39 CMP r@, 0x0000001 /* APSR.C = (r@ !=0) */

40 LSRSCC r1, r3, @9 /* APSR.C [[= (r3[9] == 1)) */

41 ADC r3, r3, 0x0000007F /* If ((ré !=) [| (r3[9] == 1)) add 1 to guard bit. If guard bit is also one, addition will propogate to the least significant bit. */
42

43 CMP r2, OxFE

a4 BHS .normal_path_special_output

45

46 ORR r@, r12, r2, LSL [#23

47 ADD re@, ro, r3, LSR [#

48

49 BX 1r

=PFL %

Gestion des nombres a virgules

On peut donc spécifier a la compilation que la FPU sera
utilisée pour les opération avec des nombres a virgules.

Des lors, des registres spécifiques de la FPU ainsi que des
instructions assembleur dédiées au fonctionnement

de la FPU (utilisant un hardware
specifique) vont etre utilisés.

ARM Cortex M0+

ARM Cortex M3

Nested Vectored
e

Ceci augmente la :

ARM Cortex MO

consommation du
microcontroleur...

ARM Cortex M4

Jobi o WIC Interface

eeeeeeee

=PrL

Gestion des nombres a virgules (float)

arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o -mfloat-abi=hard

-mfpu=vfpv2

el

int main () {

const float PI

float mul =

float result

return 0O;

Test.c

3.1415;

mul * PI;

//W

main:
push {r7}
sub sp, sp, #20
add r7, sp, #0
ldr r3, .L3
str r3, [r7, #12] @ float
mov r3, #1073741824
str r3, [r7, #8] @ float
V]Ldr .32 sI4, 1 [x7, #8]
ldr.32 |s15,|[r7, #12]
vmul.f32 |sl5, @
vistr.32 |[sl15, |[[r7, #4]
ldr r7, [spl, #4
bx 1r

>
.L3:
Compilation .word 1078529622

Test.s

=PFL ¢

Gestion des nombres a virgules

La FPU contient ses propres registres
ou seront stockes les variables de types
float (32 bits) et double (64 bits).

A partir de ces registres,

la FPU effectuera les
operations de bases,
comme les multiplications,
divisions, en utilisant

des meécanismes hardware.

Attention aux float en interrupt, ces
registres doivent €tre sauvegardes!

64-bit ——»

32-bit —

Singleword

SO

S2

S4

S7

S6

S9

S8

S11

S10

S13

S12

S15

S14

S17

S16

S19

S18

S21

S20

S23

S22

S25

S24

S27

S26

S29

S28

S31

S30

Doubleword

/

DO

D1

D2

D3

D4

D6

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

~N

caller
saved
registers

L

callee-
saved
registers

=PFL %

Gestion des nombres a virgules

Operation Description Assembler Cycles

Move top/bottom half of double to/from core register VMoV 1
immediate/float to float-register VMOV 1
two floats/one double to/from two core registers or one VMoV 2
float to/from one core register
floating-point control/status to core register VMRS 1
core register to floating-point control/status VMSR 1

Multiply float VMUL.F32 1
then accumulate float VMLA.F32 3
then subtract float VMLS.F32 3
then accumulate then negate float VNMLA. F32 3
then subtract then negate float VNMLS. F32 3

Cortex-M4

Technical Reference Manual

=PFL &

Gestion des nombres a virgules (double)

arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o -mfloat-abi=hard

-mfpu=vfpv2

int main () {

const double PI = 3.1415;
double mul = 2.0;

double result = mul * PI;

return 0O;

>

Compilation
Test.c

main:

.L4:

L3

push {rd, r7}

sub sp, sp, #24
add r7, sp, #0
adr r4, .L3

1ldrd r3, [r4]

strd r3, [r7, #16]
mov r3, #0

mov rd, #1073741824
strd r3, [r7, #8]
v1dr[64 dai7,] (7, #8]
vldr| 64 die,| [r7, #16]
vmul| f64 dle,l d17, d
vstr| 64 dle,| [r7]

pop {rd, r7}

bx 1r

.align 3

.word -1065151889
.word 1074340298

Test.s

m 17

=PrL

Conversion float to double

Le choix d’utiliser une variable de type double ou float dépendra de la précisions qu’on
desire obtenir, ou la grandeur des nombres obtenus. Les conversions float <-> double sont
aussi traitées de maniere hardware par défaut sur les processeurs:

int main() { ldr r3, .L3
str r3, [r7, #20] @
const float PI = 3.1415; float
double mul = 2,' mov r3, #O
mov rd, #1073741824
double result = PI; strd r3, [x7, #8]
‘ vldr.32 s15, [r7, #20]
return 0; vevt.f64.£32dl6, sl15
} vstr.64 dle, [r7]
movs r3, #0

m 18

=PFL %

Calculs complexes

Méme avec une FPU, un calcul de type sin() ne pourra pas s’effectuer enticrement
hardware, une partie de la génération du sinus se fera de maniere software.

#include <math.h> mov r3, #0
mov

{ strd
vldr. 64

const double PI = 3.1415; vldr. 64
vmul.£64

double mul = 2.0;
vmov.fo64

bl
double result = sin(mul * PI); ‘ vstr.64

return 0;

int main ()

r4,
r3,
d17,
dle,
dle,
do,
sin
do,

#1073741824

[(r7, #8]
(r7, #8]
[r7, #16]
dl7, dle

dle

[r7]

21

=PFL %

Représentation des nombres: Tables stockees en mémoire

Un moyen d’éviter cela est de générer une Lookup table.

int i, sinus([360];

for (1i=0;1<360;1i++)
{
sinus[i] = 10*sin(1/180%*3.1415);
printf ("sin %d =
$d\n",1i,sinus[1]) ;

}

22

=PFL &

Représentation des nombres: changement d’échelle

Méme si, en activant la FPU, 1l est possible d’effectuer des operations a virgule
flottante de maniere tres rapide sur le microcontroleur STM32F4, pas toujours c’est
necessaire (consummation, type de nuC): il existe certaines techniques pour se passer
des nombres a virgules, comme le changement d’échelle.

0.01 = 1%

1.34m = 1340mm

23

=PFL %

Representation des nombres: Virgule fixe

Un autre moyen d’éviter 1’utilisation de nombre float est de travailler avec les nombres
a virgule fixe.

Représentation des nombres: virgule fixe

signe entier fraction

24

=PFL %

Calcul avec nombres en virgule fixe: multiplication

*1024
arrondi signe (1) entier (5) fraction (10)

3.481 = VF 3565 = OxDED = p 001 1| 0111101101

rd

X

-0.234 = VF -240 = OxFF10 =pn|1 11 1 1] 1100010000

>

-85560(0 = signe entier fraction

FFF2F1IDO =111 1111111111 00101111000111010000

/1024 \\\
arrondi

-0.815 = VF -835 = OxFCRC =1{1{1 11 1 1| 0010111100

<
<

25

=PFL %

Gestion des nombres a virgules et des cast

Enfin, 1l est trés important de se souvenir que certains casts sont effectu¢s de manicre

implicite en fonction des types de variables.

. . 1ldr r3, .L3
int main() { str r3, [r7, #12]
@ float
const float PI = 3.1415; movs r3, #2
. _ . str r3, [r7, #8]
int mul = 2; ldr r3, [(r7, #8]
vmov sl5, r3 @ int
. _ * . vevt.£32.s32s14, sl5
int result mu L PL; vldr.32 s15, [r7, #12]
vmul.f32 sl5, sl14, s15
return 0; vevt.s32.£32s15, s15
vmov r3, sl5 @ int
} str r3, [r7, #4]
>
L3
Compilation .word 1078529622

Test.c
Test.s

=PrL

Gestion des nombres a virgules et des cast

La maniere dont on “cast” une variable ou une operation va impacter le type de 1’opération
effectuée utilisant cette variable.

1ldr r3, .L3
int main () { str r3, [r7, #12]
@ float
const float PI = 3.1415; 22? ig:?i% 48]
int mul = 2; ldr r3, [r7, #8]
vmov sl5, r3 @ int
vevt.£32.832s14, s15
int result = (int) mul * PI; vldr.32 s15, [r7, #12]
vmul.f32 sl5, sl4, sl15
. vevt.s32.£32s15, s15
return 0O; vmov r3, sl5 @ int
} str r3, [r7, #4]
.L3:
.word 1078529622

Test.c Ceci ne change rien

Test.s

=PrL

Gestion des nombres a virgules et des cast

La maniere dont on ““cast” une variable ou une ope€ration va impacter le type de 1’opération
effectuée utilisant cette variable.

ldr r3, .L3

int main() { str r3, [r7, #12] d
float
movs r3, #2
const float PI = 3.1415; <ty 3, [r7, #8]
int mul = 2; vldr.32 s15, [r7, #12]
vevt.s32.£32s15, s15
. . vmov r2, sl5 @ int
int result = mul * (int)PI; 1dr r3, [r7, #8]
mul r3, r2, r3
t 3, 7, #4
return 0; Str £3, [x7, #4]
}
.word 1078529622

Ceci rameéne le calcul en int,
potentiellement perte de

précision m 28
Test.s

Compilation
Test.c

=PrL

Gestion des nombres a virgules et des cast

La maniere dont on ““cast” une variable ou une ope€ration va impacter le type de 1’opération
effectuée utilisant cette variable.

ldr r3, .L3
int main () { str r3, [r7, #12] @
float
const float PI = 3.1415; 22? ig:ﬁi% 4g]
int mul = 2; ldr r3, [r7, #8]
vmov sl5, r3 @ int
vevt.f£32.s832s14, sl15
int result = (int) (mul *PI); vldr.32 s15, [r7, #12]
vmul.f£32 sl5, sl14, sl15
0 vevt.s32.£32s15, sl15
return ’ vmov r3, sl15 @ int
} str r3, [r7, #4]
L3¢
Ceci ne change rien . yord 1078529622

Test.c
Test.s

P .~
CPFL @
Conseils sur la gestion des variables

Les microcontroleurs (microprocesseurs) offrent des capacités toujours plus grandes pour ce
qui est de la vitesse des calculs, grace a la vitesse du processeur et a des unités comme la
FPU ou le DSP, mais aussi de mémoire avec des capacités grandissante en RAM et en Flash.
Ceci est accompagné d’une consummation plus grande.

Il est donc toujours utile d’optimiser son code pour obtenir de meilleurs résultats a
I’execution, une reduction de la consummation et une meilleure intégration sur d’autres
systemes.

C’est pourquoi, pour les TPs et les miniprojets, pensez a utiliser les bons types de
variables et de la maniere la plus optimale possible! (voir checklist de la semaine
passée)

P

L

RTOS
Real-Time Operating System

Prof. Francesco Mondada
Dr. Frank Bonnet
IEM - STI - EPFL

=Pi-L
Introduction

Dans cette partie du cours, nous allons voir a quoi sert et comment fonctionne un systeme
RTOS pour les systemes embarqués.

Cela va impliquer I’introduction de concepts comme:
- Multi-taches / multi-threading

- Scheduling

=PFL %

Introduction: programmation concurrente et temps reel

Programmation concurrente:
par opposition a la programmation seéquentielle, elle est composée de processus en
parallele qui interagissent, utilisent des ressources communes etc.

Un robot qui a un contrdle de moteur, un processus de lecture de capteurs et un
algorithme de contrdle globale est par nature “concurrent” avec des processus
essentiellement asynchrones.

Mais: la mise a jour du PWM dans un profil de vitesse ne peut pas se faire “quand le
processeur a du temps”. Il faut respecter des timing, faire du “temps reel”.

33

=PFL %

Introduction: le OS (operating system)

Le systeme opératif est un ensemble de couches logicielles qui fournissent des
services aux programmeurs / applications:

* gestion de la mémoire

® gestion des entrées-sorties
* gestion des fichiers

® gestion des taches

* gestion du temps (réel)

34

=PFL &

Systemes d’exploitation en temps reel

Un RTOS est un systéme opérationnel dont les processus internes sont garantis d’étre en accord avec les
contraintes temps-réels hardwares et/ou logicielles. Un RTOS met plus de priorité sur la fiabilité du timing
des taches que sur la quantité de taches réalisées. Les deux qualités fondamentales d’'un systéme RTOS sont:

* Déterministe: La qualité de produire de maniére constantes les mémes types de résultats en fonctions

des mémes types de conditions.

Prédictibilité: La qualité d’étre prédictible avec un comportement programmeé

Attention: Les systémes RTOS sont souvent confondus avec les systémes opérationnels “rapides”. Méme si
I'efficacité est un des atout principal des RTOS, I'efficacité seule ne qualifie pas un OS pour étre un RTOS

From http://www.chibios.org

=Pi-L

Ceux-ci ne sont pas des RTOS...

Bl Windows

Mmac

OS

E P F L es embarqués et robotique

Exemples d’application des RTOS

=P

Systemes d’exploitation en temps reel et multi-taches

Dans le domaine des systemes embarqués, les RTOS sont trés couramment utilisées. De

nos jour, un robot doit en effet rarement effectuer une seule tache, et ces taches doivent
¢tre effectuces a des timing assez précis.

Exemple: Robot sur Mars (Curiosity)

Controler les moteurs pour avancer
Capturer une vidéo de 5 minutes
Communiquer avec la Terre a 10:00

38

=PrL

Systemes d’exploitation en temps reel et multi-taches

Au niveau des systemes embarqués, les RTOS se basent sur le systeme Timer/Interrupt qui
permet de realiser des taches avec des timing précis (TP1: Led qui clignote a 1 seconde).

Les interrupts ont aussi des niveaux de priorités configurables, ce qui permet de pouvoir
déterminer si une tache a une priorité sur une autre, et peut parfois I’interrompre.

IRQ #2 Higher priority
IRQ#1 | (Nested IRQ)

Lower priority
1 ==

https://community.arm.com

P
=PrL
Systemes d’exploitation en temps réel et multi-tdaches

La gestion de ces divers taches peut vite devenir tres compliquée suivant leurs nombres,
complexites et le timing a respecter.

L’interaction entre taches est un probleme classique:

imaginez un processus (A) qui fait la lecture de I’image de la caméra et la stocke en

mémoire, et un autre (B) qui de temps en temps vient prendre I’image pour en faire

I’analyse.

* Si B vient lire I’1image pendant que A la met a jour en mémoire, A aura une image
corrompue (moiti¢ la nouvelle et moiti¢ la vieille, par exemple).

* Si B est plus rapide que A, 1l va faire des analyses pour rien, car 1l va lire plusieurs fois
la méme image.

=PFL &

Systemes d’exploitation en temps reel et multi-taches

Dans la suite du cours et des travaux pratiques, nous allons donc travailler avec un
systeme d’exploitation en temps réels implémenté sur STM32F4 qui va permettre de
gerer a un niveau supérieur la programmation multi-tache.

Ce systeme s’appelle ChibiOS. C’est un systeme Open Source avec une implémentation
sur divers plateformes, dont le STM32F4.

(voir http://www.chibios.org pour la documentation complete)

=P
ChibiOS

Les travaux pratiques 3, 4 et 5 vont se baser sur ChibiOS.

La gestion des différents péripheriques du robot e-puck? (IMU, caméra, microphone,
moteurs, etc.) se fera sur la base de cette librairie, afin de faciliter la gestion de plusieurs
taches a la fois tout en respectant le bon timing.

Les miniprojets se feront aussi sur la base de cette méme librairie, afin d’exploiter les
possiblités multi-taches et temps reel.

=PrL

Limitation sans Threads

void move(){

}

/lrobot move the motors

void take_picture(){
llrobot take a picture

}

void communicate(){
/lrobot communicate to Earth

¥
void main(){
while(1)Y
move();
take_picture();
communicate();
wait(5); //wait 5sec
}
¥

43

=PrL

Base des systemes multi-taches

En informatique, la programmation multi-tache est trés commune.

La construction d’un code multi-thread est en principe la suivante:

void thread1(){
/lrobot move the motors
}

void thread2(){ Chacunes des taches est gérée par sa propre
lirobot take a picture — Thread, ce qui permet de mieux les synchroniser
} Et gérer les niveaux de priorités

void thread3(){
/lrobot communicate to Earth

} I

void main(){

}

[linitializations

44

=P

) Savoir que cela existe
"’d:j;bb

Thread en C : initialisation par crt0) v7m.s

/*
ChibiOS - Copyright (C) 2006..2015 Giovanni Di Sirio.
This file is part of ChibiOSs.
ChibiOS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
*/
/**
* @file crt0 vim.s < (?Ode de
* @brief Generic ARMv7-MN (Cortex-M3/M4/M7) startup file for ChibiOS. denHMTage
*
* @addtogroup ARMCMx GCC_STARTUP V7M
CR
*/
2 R E EE————————————————..
/* Module constants. */
/ g S —————— /

45

http://www.gnu.org/licenses/

: @ Savoir qu’il y a un stack
[] "’d:j;bb spécifique
Thread en C : crtQ v7m.s

/ g S ————— /
/* Module pre-compile time settings. */
/ g S —————— /
/ g S ————— /
/* Code section. */
/ S S —————— /
/~k

* Reset handler.

*/

.align 2

.thumb func
.global Reset Handler

Reset Handler:

/* Interrupts are globally masked initially.*/

id
cpst * Process Stack
/* PSP stack pointers initialization.*/ Pointer(PSP)
1ldr r0, = process_ stack end Initialisation
msr PSP, r0
en plus du
main stack

=P

Thread en C : crtQ v7m.s

#if CRTO_INIT FPU == TRUE
/* FPU FPCCR initialization.*/
movw r0, #CRTO FPCCR_INIT & OxFFFF
movt r0, #CRTO FPCCR_INIT >> 16
movw rl, #SCB_FPCCR & OxFFFF
movt rl, #SCB_FPCCR >> 16
str rO0, [rl]

fendif
/* CONTROL register initialization as configured.*/
msr CONTROL, rO
isb

/* Early initialization..*/ 4

I Se trouve

| Remplissage

bl __early init £
N | dans crtl.s
#1f CRTO INIT STACKS == TRUE
- - A
ldr r0, =CRTO_STACKS FILL PATTERN (‘5
/* Main Stack initialization. Note, 1t asSsumes that the

stack size is a multiple of 4 so the linker
ensure this.*/

ldr rl, = main stack base

ldr r2, = main stack end
Msloop:

cmp rl, r2

itt lo

strlo r0, [rl], #4

blo msloop

file must

| du main stack

47

=P

Thread en C : crtQ v7m.s

/* Process Stack initialization.

Note, it assumes that the

stack size is a multiple of 4 so the linker file must
ensure this.*/

~_process_stack base
~_process_stack end

A | Remplissage du
<< | process stack

it assumes that the DATA size

is a multiple of 4 so the linker file must ensure this.*/

ldr rl, =
ldr r2, =
Psloop:
cmp rl, r2
itt lo
strlo r0, [rl], #4
blo psloop
#endif
#if CRTO_INIT DATA == TRUE
/* Data initialization.
1ldr rl, = textdata
1ldr r2, =_data
1ldr r3, = edata
Dloop:
cmp r2, r3
ittt 1o
ldrlo r0, [rl], #4
strlo r0, [r2], #4
blo dloop
#endif

(4 I Data: variable
N | initialisées

48

: @ Savoir que le main est
[] 6Ji:b’5 appelé depuis ici

Thread en C : crtQ v7m.s

#if CRTO_INIT BSS == TRUE
/* BSS initialization. Note, it assumes that the DATA size
is a multiple of 4 so the linker file must ensure this.*/

movs r0, #0
ldr rl, = bss start
ldr r2, = bss _end
Bloop:
cmp rl, r2 <‘ Initialisation a
itt lo s
strlo r0, [rl], #4 N I Z€ero
blo bloop
fendif
/* Late initializatiop..*/ |
bl ~ late init <P Se trouve
| dans crt1.s
#if CRTO_ CALL CONSTRUCTORS == TRUE
/* Constructors invocation.*/
ldr r4d, = 1nit array start
ldr r5, = 1init array end
Initloop:
cmp r4, r5
bge endinitloop
ldr rl, [r4], #4
blx rl
b initloop
endinitloop:
fendif

/* Main program invocation, r0 contains the returned value.*/
bl main

: @ Savoir qu’il y a un retour
[] "’d:j;bb aprés le main

Thread en C : crtQ v7m.s

#if CRTO CALL CONSTRUCTORS == TRUE

/* Destructors invocation.*/

ldr r4, = fini array start
ldr r5, = fini array end
Finiloop:
cmp r4, rb5
bge endfiniloop
ldr rl, [r4], #4
blx rl
b finiloop
endfiniloop:
#endif
/* Branching to the defined exit handler.*/ I
b __default exit (
N
#endif /* !defined(DOXYGEN_) */
/** @} */

Il'y aune vie

apres le main!

Se trouve dans crt1.s,

| boucle infinie

50

=PFL %

Thread en C

Type de la Thread
void thread1 () /

Espace contenant par

int a; / exemple des déclarations

de variables.

(X \ Le bloc de “base” composé

en principe d’'une boucle
infinie

sleep(1000); — La tache a effectuer

| N

a = read_sensor();

Une indication de la
fréquence d’appel de cette
tache

51

=PFL
Thread en C

void thre

int a;

ad1({

(TH

a= read_senior();/
sleep(1000);

Le sleep() ici n'est pas une
boucle d’'attente pendant
laquelle on ne fait rien
d’autre. Cela indique que la
thread thread1 va entrer
dans I'état sleep pendant
un certains temps, et sera
ensuite a nouveau
executee apres ce laps de
temps. Pendant ce temps,
d’autres taches (threads)
peuvent s’effectuer.

=PFL &

Architecture de ChibiOS

ChibiOS, comme tout OS, comporte un noyau (kernel) permettant la gestion du systeme de
maniere abstraite pour 1’utilisateur.

Binary Semaphores Mailboxes Condvars

SN

Semaphores

Messages

Scheduler

'

Port Layer

https://chibios.org

=PrL

Architecture de ChibiOS

On ne va pas voir tous les composants aujourd’hui en détail, mais notez que tous les
composants de ce noyau semblent converger vers un ¢lément en particulier qui est le

scheduler.

Binary Semaphores Mailboxes

SN

Condvars

Semaphores

\

https://chibios.org

Messages

Scheduler

\ J

Port Layer

54

| J
SPFL @
Scheduling

Sur un processseur avec un seul coeur, on peut seulement exeécuter une tache a la fois.

Comment donc faire du multi-tache? En alternant les taches tout en tenant compte de leur
priorité.

ChibiOS va justement permettre de gérer différentes taches qui tournent “en parallele”, en
respectant les timings imposés et les priorités. C’est cela qui s’appelle en bon frangais du
Scheduling.

Une fois que les taches sont définies, avec des niveaux de priorites et des timing bien precis,
le RTOS va s’occuper de faire la programmation de I’exécution de ces taches.

=P

Scheduling

Exemple d’un (mauvais) planning pour un systeme avec 4 taches avec différents rythmes et

utilisations de ressources.

haute priorité mais attends
A une ressource utilisée par
Threads, Th d4
Priorities rea
2

0
HW g

http://www.playembedded.org/blog/en/2016/10/29/explanation-multithreading-chibios/ RS

main 1

Thread1

Thread?2
3 6
4

Waiting Thread4 7¢

ady
50ms
1 15 18
1 {16f

Thread3

Thread4 W

idle

> 20
i

=P

Exemple de déclaration de Thread avec ChibiOS

#include <ch.h>

macro
/*
* Working area for the LED flaghing thread.
¥/

static THD_WORKING_AREA(myThreadWorkingArea, 128

/*

* LED flashing thread.

¥/

static THD_FUNCTION(myThread, arg] .

Code faisant clignoter une LED, avec

true ye
LED_ON 500ms d’intervalles entre chaque
chThdSleepMilliseconds(500 3«
LED. OFF changement d’'état de la LED

chThdSleepMilliseconds(500

int main(int argc, char *argv

/* Starting the flashing LEDs thread.”/
void)chThdCreateStatic(myThreadWorkingArea, sizeof(myThreadWorkingArea
NORMALPRIO, myThread, NULL

57

=Pr-L

Exemple avec ChibiOS

#include <ch.h>

/*
* Working area for the LED flashing thread.
¥/
static THD_WORKING_AREA(myThreadWorkingArea, 128

/*
* LED flashing thread.
¥/
static THD_FUNCTION(myThread, arg

while (true
LED_ON
chThdSleepMilliseconds(500
LED_OFF
chThdSleepMilliseconds(500

int main(int argc, char *argv

/* Starting the flashing LEDs thread\/
void)chThdCreateStatic(myThread\} orkingArea, sizeof(myThreadWorkingArea
NORMALPRIO, myThread, NULL

Allocation de la mémoire
pour ce Thread

~ Fonctionnalité du Thread

___ Function main

58

=PFL %

Exemple avec ChibiOS onaioue de la mémoire Quiest-ce qui finit

pour la stack de ce

sur la stack?

thread, sur laquelle on
#include <ch.h> peut stocker les variables

/* Working area for the LED flashing thread.

st/atic THD_WORKING_AREA(myThreadWorkingArea, 128);
Ve

* LED flashing thread.

st/atic THD_FUNCTION(myThread, arg) {

while (true) {

LED_ON();
EETDTglFeF??;M'"'Seconds(SOO); La définition de I'attente
chThdSleepMilliseconds(500); avant un nouvel appel a

} cette thread. Durant ce

} temps, d’autres Threads

int main(int argc, char *argv[]) { peuvent étre exécutées!!!

/* Starting the flashing LEDs thread.”/

(void)chThdCreateStatic(myThreadWorkingArea, sizeof(myThreadWorkingArea),

NORMALPRIO, myThread, NULL);

}' \ Création/initialisation du
Thread dans la fonction main

—_

propres a cette thread

Allocation de la mémoire
pour ce Thread

~ Fonctionnalité du Thread
A Et si on ne met
pas de sleep???

___ Function main

59

Thread Working Area

Lors de la création d’une Thread, on alloue
de la mémoire pour le stack qui permet de
stocker toutes les informations liées a cette
Thread. Notamment les variables locales de
cette Thread, les variables de gestions des
interrupts (timing, priorités), les variables
des sous-fonctions, etc.

https://chibios.org

WA top

Stack Pointer =

Stack Limit
WA base

Thread Stack

port_extctx structure

PORT_INT_REQUIRED_STACK

port_intctx structure

thread_t structure

60

=P

Les Threads avec ChibiOS

La durée de vie d’une Thread sur ChibiOS est dictée par une machine d’état. On verra
qu’il est possible pendant I’exécution d’un programme de créer des Thread, de les
supprimer, de les mettre en attente, etc.

chThdCreate()

chThdExit()

chThdCreate()

Reschedule

Sleeping
States

chSchGoSleepS() chSchwakepuS()

chTthreateffTThdStanO

chSchwakepuS()

chThdStart()

https://chibios.org

=PFL %

Delay vs deadline

Il y deux principaux moyens de mettre un thread en attente. Une relative
a la duré¢e de Thread, et une ne la prenant pas en compte (TP3).

chThdSleepUntilWindows() Task 1 I I I I
<

Durée
d’exécution

ChThdSIGGp() Task 1 H%

temps >

=PrL

Application typique en robotique

Un robot doit capter des données d’un capteur (ex: accélérometre), et les
utiliser pour controler un moteur.

void getSensor(){
llrobot get sensor data
}

void controlActuator(){
/lrobot control the motors in function of the sensor data

}

void main(){
llinitializations

}

63

=PrL

Application typique en robotique

Un robot doit capter des donnees d’un capteur (ex: accélérometre), et les
utiliser pour controler un moteur.

50 Hz, on veut prendre beaucoup de donnée

void getSensor() et filtrer le signal

/lrobot get sensor data Passage de
} I'information a
10 Hz
void controlActuator(){
IlIrobot control the motors in function of the sensor data : 1 kHz, important
} d’avoir une fréquence
précise pour réguler
les moteurs.
void main(){

[linitializations

}

Lors du TP3, vous verrez un moyen efficace de transmettre des messages entre des
Threads (librairie MessageBus)

=PrL

TP de cette semaine: TP3

Prise en main de ChibiOS/RT.

Implémentation et gestion de Threads

Gestion de I’IMU (accélérometre + gyroscope)

65

=Pi-L

1/ 5 | Next > | Last Respondent >>
<<< List of responses | @ Print this Response

Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 . Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

1 2
Contenu
Forme
2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)
1 2
Contenu

Forme

3 Vos commentaires en détail (si nécessaire):

-

=Pi-L

<< First Respondent | < Previous | 2 [5 | Next > | Last Respondent >>
<<< List of responses | ® Print this Response

S Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.

*

1 Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu
Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu
Forme

3 Vos commentaires en détail (si nécessaire):

- - i e

Le systeme d'appel des assistants est trés efficace. | faudrait si possible mettre a disposition sur moodle les slides d'introductionlies
s avant/au début de ceux-ci. Certaines instructions sont parfois vagues concernant les TPs, mais d'un cote cela nous pousse a aller
chercher par nous méme.

=Pi-L

<< First Respondent | < Previous | 3 [5 | Next > | Last Respondent >>
<<< List of responses | @ Print this Response

& Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.

1

" Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

1 2 3 4 5 6
Contenu
Forme
* Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)
1 2 3 4 5 6
Contenu
Forme

Vos commentaires en détail (si nécessaire):

J'apprécie |'effort visible fourni pour organiser les TP, beaucoup d'éléments sont prévus pour nous aider, ce qui est bien, merci !

l Cependant, je me suis trouvé comg@ement perdu tout le Iona de ce TP.]e pense que les README.md des TP ne sont pas assez
précis en général (surtout concernant les registres (leur réle par exemple), et ce méme avec les hints). Le lien entre le README et le
code ne m'est pas toujours trés clair (on me demande de créer une fonction qui existe déja, ou un assistant me dit que dans le corrigé

une fonction est créée alors que ce n'est pas demandé)

68

=Pi-L

<< First Respondent | < Previous | 4 [5 | Next > | Last Respondent >>
<<< List of responses | # Print this Response

Respondent: - Anonymous -
Evaluation ducoursetdu TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 ¥ Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu
Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu
Forme

3 Vos commentaires en détail (si nécessaire):

69

=Pi-L

<< First Respondent | < Previous | 5/5
<<< List of responses | @ Print this Response

- Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.

1

2

3

*

-

Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

1 2 3 4 5 6
Contenu
Forme
Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

1 2 3 4 5 6

Contenu
Forme

Vos commentaires en détail (si nécessaire):

g P

Les TPs ne sont ;s;ssezaidés :fon ne comprend pas exactement |'utilité de chaque registre, leur fonctionnement ni comment les
configurer, malgré la datasheet. Certaines informations essentielles a une bonne compréhension semblent manquer. Peut-étre que
des explications supplémentaires lors de I'introduction ou la mise a disposition de la correction pendant le TP pourraient aider a mieux
assimiler les concepts.

70

