
Systèmes embarqués et robotique

Gestion des ressources
(suite cours 3)

Prof. Francesco Mondada
Dr. Frank Bonnet
IEM - STI - EPFL

Systèmes embarqués et robotique

Les variables de types floats et les doubles

La semaine dernière, nous avons vu que la stack est utilisée pour stocker les variables
locales entières.

Dans la première partie de cette leçon, nous allons voir comment sont gérés les calculs
utilisant les types float (32 bits) / double (64 bits). Nous allons voir ici que la stack est
aussi utilisée pour stocker les variables de types float et double locales, en utilisant le
même principe de stockage, seulement avec une interprétation différente de la variable en
fonction du type.

2

Systèmes embarqués et robotique

La mémoire (rappel du rappel)

Le STM32F4 ayant donc une capacité de 32
bits pour les registres, un registre peut donc
en principe être codé sur 4 bytes, et est
stocké sur 4 bytes de mémoire

...

...

...

...

...

...

...

...

0x49

0x92

0x4B

0x08

...

...

Data Address

0x01
0x02
0x03

0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D

0x...

ex: registre 32 bits = 0x49924B08 =
1’234’324’232

0x49

0x92

0x4B

0x08

3

Systèmes embarqués et robotique

Rappel de la semaine dernière

Nous avons vu comme étaient gérées les variables entières
locales et globales:

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

Test.c Test.s
Compilation

4

Systèmes embarqués et robotique

main:
push {r7, lr}
sub sp, sp, #16
add r7, sp, #0
ldr r3, .L3
str r3, [r7, #12] @ float
mov r3, #1073741824
str r3, [r7, #8]@ float
ldr r1, [r7, #12] @ float
ldr r0, [r7, #8]@ float
bl __aeabi_fmul
mov r3, r0
str r3, [r7, #4]@ float
…
pop {r7, pc}

.L4:
.align 2

.L3:
.word 1078529622

Gestion des nombres à
virgules (float)
arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4
-c essai.c -o essai.o

int main() {

float PI = 3.1415;
float mul = 2.0;

float result = mul * PI;

return 0;
}

Test.c Test.sCompilation

commentaire

ABI = Application Binary Interface
AEABI = (Embedded) ABI for the ARM architecture

5

Systèmes embarqués et robotique

Les variables de types floats et les doubles

Pour le processeur ARM Cortex M4 du microcontrôleur STM32F4, les nombres à virgules
sont représentés en suivant la norme IEEE 754. Dans ce format on exprime le signe (s,)
l’exposant (e) et partie fractionnaire (f)

63

6

Systèmes embarqués et robotique

Représentation des nombres: virgule flottante

567 5.67 102

13 0xD 1101 +1.101 23

Sign
(signe)

Exponent
(exposant)

BIAS = 127 = 0x7F
= 0111 1111

Fraction
(mantisse)

1er pas: normalisation

binaire

décimal

0 100 0001 0 101 0000 0000 0000 0000 0000

Exception: la valeur zéro est codée par des 0 partout

(100 0000 0 -> 1 , 100 0001 0 -> 3)

Comment
représenter

le nombre 13
en float?

2ème pas:
encodage

7

Systèmes embarqués et robotique

Représentation des nombres: virgule flottante

ldr r3, .L3

0x40490E56

.L3: .word 1078529622

Sign
(signe)

Fraction
(mantisse)

0 100 0000 0 100 1001 0000 1110 0101 0110

+1.10010010000111001010110 21

1.57074999809 x 2

Exponent
(exposant)

BIAS = 127 = 0x7F

Attention: décimal

En hexadécimal, plus facile à traiter

Décodage:

8

Pointe vers

Systèmes embarqués et robotique

main:
push {r7, lr}
sub sp, sp, #16
add r7, sp, #0
ldr r3, .L3
str r3, [r7, #12] @ float
mov r3, #1073741824
str r3, [r7, #8]@ float
ldr r1, [r7, #12] @ float
ldr r0, [r7, #8]@ float

bl __aeabi_fmul ??????
mov r3, r0
str r3, [r7, #4]@ float
…
pop {r7, pc}

.L4:
.align 2

.L3:
.word 1078529622
.size main, .-main

Gestion des nombres à virgules

arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o

int main() {

const float PI = 3.1415;
float mul = 2.0;

float result = mul * PI;

return 0;
}

Test.c
Test.s

Compilation

9

Systèmes embarqués et robotique

Gestion des nombres à virgules

Le processeur ARM Cortex-M4 est équipé d’une FPU (Floating Point Unit) permettant
d’effectuer des opérations sur des nombres flottants en utilisant un mécanisme
hardware, donc plus efficace que de le faire en software.

Cette unité doit être activée lors de la compilation du code. Si ce n’est pas le cas, les
calculs en float/double vont être fait de manière software (__aeabi_fmul), et donc
prendre beaucoup de cycles / temps!

10

Systèmes embarqués et robotique

main:
push {r7, lr}
sub sp, sp, #16
add r7, sp, #0
ldr r3, .L3
str r3, [r7, #12] @ float
mov r3, #1073741824
str r3, [r7, #8]@ float
ldr r1, [r7, #12] @ float
ldr r0, [r7, #8]@ float
bl __aeabi_fmul
mov r3, r0
str r3, [r7, #4]@ float
…
pop {r7, pc}

.L4:
.align 2

.L3:
.word 1078529622
.size main, .-main

Gestion des nombres à virgules
arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o

int main() {

const float PI = 3.1415;
float mul = 2.0;

float result = mul * PI;

return 0;
}

Test.c
Test.s

Compilation

11

Systèmes embarqués et robotique

Gestion des nombres à virgules

12

Savoir que cela existe et que
l’exécution est longue

Systèmes embarqués et robotique

Gestion des nombres à virgules

On peut donc spécifier à la compilation que la FPU sera
utilisée pour les opération avec des nombres à virgules.

Dès lors, des registres spécifiques de la FPU ainsi que des
instructions assembleur dédiées au fonctionnement
de la FPU (utilisant un hardware
spécifique) vont être utilisés.
Ceci augmente la
consommation du
microcontrôleur...

13

Systèmes embarqués et robotique

main:
push {r7}
sub sp, sp, #20
add r7, sp, #0
ldr r3, .L3
str r3, [r7, #12] @ float
mov r3, #1073741824
str r3, [r7, #8]@ float
vldr.32 s14, [r7, #8]
vldr.32 s15, [r7, #12]
vmul.f32 s15, s14, s15
vstr.32 s15, [r7, #4]
...

ldr r7, [sp], #4
bx lr

.L3:
.word 1078529622

Gestion des nombres à virgules (float)

arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o -mfloat-abi=hard
-mfpu=vfpv2

int main() {

const float PI = 3.1415;
float mul = 2.0;

float result = mul * PI;

return 0;
}

Test.c
Test.s

Compilation

14

Systèmes embarqués et robotique

Gestion des nombres à virgules

La FPU contient ses propres registres
où seront stockés les variables de types
float (32 bits) et double (64 bits).

A partir de ces registres,
la FPU effectuera les
opérations de bases,
comme les multiplications,
divisions, en utilisant
des mécanismes hardware.

Attention aux float en interrupt, ces
registres doivent être sauvegardés!

Singleword Doubleword

15

Systèmes embarqués et robotique

Gestion des nombres à virgules

Cortex-M4
Technical Reference Manual 16

Systèmes embarqués et robotique

main:
push {r4, r7}
sub sp, sp, #24
add r7, sp, #0
adr r4, .L3
ldrd r3, [r4]
strd r3, [r7, #16]
mov r3, #0
mov r4, #1073741824
strd r3, [r7, #8]
vldr.64 d17, [r7, #8]
vldr.64 d16, [r7, #16]
vmul.f64 d16, d17, d16
vstr.64 d16, [r7]
...
pop {r4, r7}
bx lr

.L4:
.align 3

.L3:
.word -1065151889
.word 1074340298

Gestion des nombres à virgules (double)
arm-none-eabi-gcc -save-temps=obj -mcpu=cortex-m4 -c essai.c -o essai.o -mfloat-abi=hard
-mfpu=vfpv2

int main() {

const double PI = 3.1415;
double mul = 2.0;

double result = mul * PI;

return 0;
}

Test.c

Test.s

Compilation

17

Systèmes embarqués et robotique

Conversion float to double

Le choix d’utiliser une variable de type double ou float dépendra de la précisions qu’on
désire obtenir, ou la grandeur des nombres obtenus. Les conversions float <-> double sont
aussi traîtées de manière hardware par défaut sur les processeurs:

int main() {

const float PI = 3.1415;
double mul = 2;

double result = PI;

return 0;
}

ldr r3, .L3
str r3, [r7, #20] @

float
mov r3, #0
mov r4, #1073741824
strd r3, [r7, #8]
vldr.32 s15, [r7, #20]
vcvt.f64.f32d16, s15
vstr.64 d16, [r7]
movs r3, #0

18

Systèmes embarqués et robotique

Calculs complexes

Même avec une FPU, un calcul de type sin() ne pourra pas s’effectuer entièrement
hardware, une partie de la génération du sinus se fera de manière software.

#include <math.h>

int main() {

const double PI = 3.1415;
double mul = 2.0;

double result = sin(mul * PI);

return 0;
}

mov r3, #0
mov r4, #1073741824
strd r3, [r7, #8]
vldr.64 d17, [r7, #8]
vldr.64 d16, [r7, #16]
vmul.f64 d16, d17, d16
vmov.f64 d0, d16
bl sin
vstr.64 d0, [r7]

21

Systèmes embarqués et robotique

Représentation des nombres: Tables stockées en mémoire

Un moyen d’éviter cela est de générer une Lookup table.

int i, sinus[360];
…
for(i=0;i<360;i++)
{

sinus[i] = 10*sin(i/180*3.1415);
printf("sin %d =

%d\n",i,sinus[i]);
}

22

Systèmes embarqués et robotique

Représentation des nombres: changement d’échelle

Même si, en activant la FPU, il est possible d’effectuer des opérations à virgule
flottante de manière très rapide sur le microcontrôleur STM32F4, pas toujours c’est
necessaire (consummation, type de µC): il existe certaines techniques pour se passer
des nombres à virgules, comme le changement d’échelle.

0.01 = 1%

1.34m = 1340mm

23

Systèmes embarqués et robotique

Représentation des nombres: Virgule fixe

Un autre moyen d’éviter l’utilisation de nombre float est de travailler avec les nombres
à virgule fixe.

signe entier fraction

Représentation des nombres: virgule fixe

24

Systèmes embarqués et robotique

Calcul avec nombres en virgule fixe: multiplication

signe (1) entier (5) fraction (10)

x

= fractionentiersigne

3.481 = VF 3565 = OxDED = 0 0 0 0 1 1 0111101101

*1024
arrondi

-0.234 = VF -240 = OxFF10 = 1 1 1 1 1 1 1100010000

FFF2F1D0 = 1 1 1 1 1 1 1 1 1 1 1 1 00101111000111010000
-855600 =

-0.815 = VF -835 = OxFCBC = 1 1 1 1 1 1 0010111100

/1024
arrondi

25

Systèmes embarqués et robotique

Gestion des nombres à virgules et des cast

Enfin, il est très important de se souvenir que certains casts sont effectués de manière
implicite en fonction des types de variables.

int main() {

const float PI = 3.1415;
int mul = 2;

int result = mul * PI;

return 0;
}

ldr r3, .L3
str r3, [r7, #12]
@ float
movs r3, #2
str r3, [r7, #8]
ldr r3, [r7, #8]
vmov s15, r3 @ int
vcvt.f32.s32s14, s15
vldr.32 s15, [r7, #12]
vmul.f32 s15, s14, s15
vcvt.s32.f32s15, s15
vmov r3, s15 @ int
str r3, [r7, #4]

.L3:
.word 1078529622

Test.c
Test.s

Compilation

26

Systèmes embarqués et robotique

Gestion des nombres à virgules et des cast

La manière dont on “cast” une variable ou une opération va impacter le type de l’opération
effectuée utilisant cette variable.

int main() {

const float PI = 3.1415;
int mul = 2;

int result = (int) mul * PI;

return 0;
}

ldr r3, .L3
str r3, [r7, #12]
@ float
movs r3, #2
str r3, [r7, #8]
ldr r3, [r7, #8]
vmov s15, r3 @ int
vcvt.f32.s32s14, s15
vldr.32 s15, [r7, #12]
vmul.f32 s15, s14, s15
vcvt.s32.f32s15, s15
vmov r3, s15 @ int
str r3, [r7, #4]

.L3:
.word 1078529622

Test.c
Test.s

Compilation
Ceci ne change rien

27

Systèmes embarqués et robotique

Gestion des nombres à virgules et des cast

La manière dont on “cast” une variable ou une opération va impacter le type de l’opération
effectuée utilisant cette variable.

int main() {

const float PI = 3.1415;
int mul = 2;

int result = mul * (int)PI;

return 0;
}

ldr r3, .L3
str r3, [r7, #12] @

float
movs r3, #2
str r3, [r7, #8]
vldr.32 s15, [r7, #12]
vcvt.s32.f32s15, s15
vmov r2, s15 @ int
ldr r3, [r7, #8]
mul r3, r2, r3
str r3, [r7, #4]

.L3:
.word 1078529622

Test.c
Test.s

Compilation Ceci ramène le calcul en int,
potentiellement perte de
précision 28

Systèmes embarqués et robotique

ldr r3, .L3
str r3, [r7, #12] @

float
movs r3, #2
str r3, [r7, #8]
ldr r3, [r7, #8]
vmov s15, r3 @ int
vcvt.f32.s32s14, s15
vldr.32 s15, [r7, #12]
vmul.f32 s15, s14, s15
vcvt.s32.f32s15, s15
vmov r3, s15 @ int
str r3, [r7, #4]

.L3:
.word 1078529622

Gestion des nombres à virgules et des cast

La manière dont on “cast” une variable ou une opération va impacter le type de l’opération
effectuée utilisant cette variable.

int main() {

const float PI = 3.1415;
int mul = 2;

int result = (int)(mul *PI);

return 0;
}

Test.c
Test.s

Compilation
Ceci ne change rien

29

Systèmes embarqués et robotique

Conseils sur la gestion des variables

Les microcontrôleurs (microprocesseurs) offrent des capacités toujours plus grandes pour ce
qui est de la vitesse des calculs, grâce à la vitesse du processeur et à des unités comme la
FPU ou le DSP, mais aussi de mémoire avec des capacités grandissante en RAM et en Flash.
Ceci est accompagné d’une consummation plus grande.
Il est donc toujours utile d’optimiser son code pour obtenir de meilleurs résultats à
l’execution, une reduction de la consummation et une meilleure intégration sur d’autres
systèmes.

C’est pourquoi, pour les TPs et les miniprojets, pensez à utiliser les bons types de
variables et de la manière la plus optimale possible! (voir checklist de la semaine
passée)

30

Systèmes embarqués et robotique

RTOS
Real-Time Operating System

Prof. Francesco Mondada
Dr. Frank Bonnet
IEM - STI - EPFL

Systèmes embarqués et robotique

Introduction

Dans cette partie du cours, nous allons voir à quoi sert et comment fonctionne un système
RTOS pour les systèmes embarqués.

Cela va impliquer l’introduction de concepts comme:

- Multi-tâches / multi-threading

- Scheduling

32

Systèmes embarqués et robotique

Introduction: programmation concurrente et temps réel

Programmation concurrente:
par opposition à la programmation séquentielle, elle est composée de processus en
parallèle qui interagissent, utilisent des ressources communes etc.

Un robot qui a un contrôle de moteur, un processus de lecture de capteurs et un
algorithme de contrôle globale est par nature “concurrent” avec des processus
essentiellement asynchrones.

Mais: la mise à jour du PWM dans un profil de vitesse ne peut pas se faire “quand le
processeur a du temps”. Il faut respecter des timing, faire du “temps réel”.

33

Systèmes embarqués et robotique

Introduction: le OS (operating system)

Le système opératif est un ensemble de couches logicielles qui fournissent des
services aux programmeurs / applications:

• gestion de la mémoire
• gestion des entrées-sorties
• gestion des fichiers
• gestion des tâches
• gestion du temps (réel)

34

Systèmes embarqués et robotique

Systèmes d’exploitation en temps réel

Un RTOS est un système opérationnel dont les processus internes sont garantis d’être en accord avec les
contraintes temps-réels hardwares et/ou logicielles. Un RTOS met plus de priorité sur la fiabilité du timing
des tâches que sur la quantité de tâches réalisées. Les deux qualités fondamentales d’un système RTOS sont:

• Déterministe: La qualité de produire de manière constantes les mêmes types de résultats en fonctions
des mêmes types de conditions.

• Prédictibilité: La qualité d’être prédictible avec un comportement programmé

Attention: Les systèmes RTOS sont souvent confondus avec les systèmes opérationnels “rapides”. Même si
l’efficacité est un des atout principal des RTOS, l’efficacité seule ne qualifie pas un OS pour être un RTOS

From http://www.chibios.org

35

Systèmes embarqués et robotique

Ceux-ci ne sont pas des RTOS...

36

Systèmes embarqués et robotique

Exemples d’application des RTOS

37

Systèmes embarqués et robotique

Systèmes d’exploitation en temps réel et multi-tâches

Dans le domaine des systèmes embarqués, les RTOS sont très couramment utilisées. De
nos jour, un robot doit en effet rarement effectuer une seule tâche, et ces tâches doivent
être effectuées à des timing assez précis.

Exemple: Robot sur Mars (Curiosity)

- Contrôler les moteurs pour avancer
- Capturer une vidéo de 5 minutes
- Communiquer avec la Terre à 10:00
- ...

38

Systèmes embarqués et robotique

Systèmes d’exploitation en temps réel et multi-tâches

Au niveau des systèmes embarqués, les RTOS se basent sur le système Timer/Interrupt qui
permet de réaliser des tâches avec des timing précis (TP1: Led qui clignote à 1 seconde).

Les interrupts ont aussi des niveaux de priorités configurables, ce qui permet de pouvoir
déterminer si une tâche à une priorité sur une autre, et peut parfois l’interrompre.

https://community.arm.com 39

Systèmes embarqués et robotique

Systèmes d’exploitation en temps réel et multi-tâches

La gestion de ces divers tâches peut vite devenir très compliquée suivant leurs nombres,
complexités et le timing à respecter.

L’interaction entre tâches est un problème classique:
imaginez un processus (A) qui fait la lecture de l’image de la caméra et la stocke en
mémoire, et un autre (B) qui de temps en temps vient prendre l’image pour en faire
l’analyse.
• Si B vient lire l’image pendant que A la met à jour en mémoire, A aura une image

corrompue (moitié la nouvelle et moitié la vieille, par exemple).
• Si B est plus rapide que A, il va faire des analyses pour rien, car il va lire plusieurs fois

la même image.
40

Systèmes embarqués et robotique

Systèmes d’exploitation en temps réel et multi-tâches

Dans la suite du cours et des travaux pratiques, nous allons donc travailler avec un
système d’exploitation en temps réels implémenté sur STM32F4 qui va permettre de
gérer à un niveau supérieur la programmation multi-tâche.

Ce système s’appelle ChibiOS. C’est un système Open Source avec une implémentation
sur divers plateformes, dont le STM32F4.
(voir http://www.chibios.org pour la documentation complète)

41

Systèmes embarqués et robotique

ChibiOS

Les travaux pratiques 3, 4 et 5 vont se baser sur ChibiOS.

La gestion des différents périphériques du robot e-puck2 (IMU, caméra, microphone,
moteurs, etc.) se fera sur la base de cette librairie, afin de faciliter la gestion de plusieurs
tâches à la fois tout en respectant le bon timing.

Les miniprojets se feront aussi sur la base de cette même librairie, afin d’exploiter les
possiblités multi-tâches et temps réel.

42

Systèmes embarqués et robotique

Limitation sans Threads

43

void move(){
//robot move the motors

}

void take_picture(){
//robot take a picture

}

void communicate(){
//robot communicate to Earth

}

void main(){
while(1){

move();
take_picture();
communicate();
wait(5); //wait 5sec

}
}

Systèmes embarqués et robotique

Base des systèmes multi-tâches

En informatique, la programmation multi-tâche est très commune.

La construction d’un code multi-thread est en principe la suivante:

void thread1(){
//robot move the motors

}

void thread2(){
//robot take a picture

}

void thread3(){
//robot communicate to Earth

}

void main(){
//initializations

}

Chacunes des tâches est gérée par sa propre
Thread, ce qui permet de mieux les synchroniser
Et gérer les niveaux de priorités

44

Systèmes embarqués et robotique

Thread en C : initialisation par crt0_v7m.s
/*

ChibiOS - Copyright (C) 2006..2015 Giovanni Di Sirio.

This file is part of ChibiOS.

ChibiOS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

ChibiOS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

*/

/**
* @file crt0_v7m.s
* @brief Generic ARMv7-M (Cortex-M3/M4/M7) startup file for ChibiOS.
*
* @addtogroup ARMCMx_GCC_STARTUP_V7M
* @{
*/

/*===*/
/* Module constants. */
/*===*/

...

Code de
démarrage

45

Savoir que cela existe

http://www.gnu.org/licenses/

Systèmes embarqués et robotique

Thread en C : crt0_v7m.s
/*===*/
/* Module pre-compile time settings. */
/*===*/

...

/*===*/
/* Code section. */
/*===*/

...

/*
* Reset handler.
*/

.align 2

.thumb_func

.global Reset_Handler

Reset_Handler:

/* Interrupts are globally masked initially.*/
cpsid i

/* PSP stack pointers initialization.*/
ldr r0, =__process_stack_end__
msr PSP, r0

Process Stack
Pointer(PSP)
Initialisation
en plus du
main stack

46

Savoir qu’il y a un stack
spécifique

Systèmes embarqués et robotique

#if CRT0_INIT_FPU == TRUE
/* FPU FPCCR initialization.*/
movw r0, #CRT0_FPCCR_INIT & 0xFFFF
movt r0, #CRT0_FPCCR_INIT >> 16
movw r1, #SCB_FPCCR & 0xFFFF
movt r1, #SCB_FPCCR >> 16
str r0, [r1]

...

#endif

/* CONTROL register initialization as configured.*/
msr CONTROL, r0
isb

/* Early initialization..*/
bl __early_init

#if CRT0_INIT_STACKS == TRUE

ldr r0, =CRT0_STACKS_FILL_PATTERN
/* Main Stack initialization. Note, it assumes that the

stack size is a multiple of 4 so the linker file must
ensure this.*/

ldr r1, =__main_stack_base__
ldr r2, =__main_stack_end__

Msloop:
cmp r1, r2
itt lo
strlo r0, [r1], #4
blo msloop

Remplissage
du main stack

Se trouve
dans crt1.s

47

Thread en C : crt0_v7m.s

Systèmes embarqués et robotique

/* Process Stack initialization. Note, it assumes that the
stack size is a multiple of 4 so the linker file must
ensure this.*/

ldr r1, =__process_stack_base__
ldr r2, =__process_stack_end__

Psloop:
cmp r1, r2
itt lo
strlo r0, [r1], #4
blo psloop

#endif

#if CRT0_INIT_DATA == TRUE
/* Data initialization. Note, it assumes that the DATA size

is a multiple of 4 so the linker file must ensure this.*/

ldr r1, =_textdata
ldr r2, =_data
ldr r3, =_edata

Dloop:
cmp r2, r3
ittt lo
ldrlo r0, [r1], #4
strlo r0, [r2], #4
blo dloop

#endif

Data: variable
initialisées

Remplissage du
process stack

48

Thread en C : crt0_v7m.s

Systèmes embarqués et robotique

#if CRT0_INIT_BSS == TRUE
/* BSS initialization. Note, it assumes that the DATA size

is a multiple of 4 so the linker file must ensure this.*/

movs r0, #0
ldr r1, =_bss_start
ldr r2, =_bss_end

Bloop:
cmp r1, r2
itt lo
strlo r0, [r1], #4
blo bloop

#endif
/* Late initialization..*/
bl __late_init

#if CRT0_CALL_CONSTRUCTORS == TRUE

/* Constructors invocation.*/
ldr r4, =__init_array_start
ldr r5, =__init_array_end

Initloop:
cmp r4, r5
bge endinitloop
ldr r1, [r4], #4
blx r1
b initloop

endinitloop:

#endif
/* Main program invocation, r0 contains the returned value.*/
bl main

Initialisation à
zéro

Le main est

un process,

lancé par crt0

Se trouve
dans crt1.s

49

Thread en C : crt0_v7m.s

Savoir que le main est
appelé depuis ici

Systèmes embarqués et robotique

#if CRT0_CALL_CONSTRUCTORS == TRUE

/* Destructors invocation.*/
ldr r4, =__fini_array_start
ldr r5, =__fini_array_end

Finiloop:
cmp r4, r5
bge endfiniloop
ldr r1, [r4], #4
blx r1

b finiloop

endfiniloop:

#endif
/* Branching to the defined exit handler.*/

b __default_exit

#endif /* !defined(__DOXYGEN__) */

/** @} */

Il y a une vie
après le main!

Se trouve dans crt1.s,
boucle infinie

50

Thread en C : crt0_v7m.s

Savoir qu’il y a un retour
après le main

Systèmes embarqués et robotique

void thread1(){

int a;

while(1){

a = read_sensor();

sleep(1000);

}

Thread en C Type de la Thread

Espace contenant par
exemple des déclarations
de variables.

Le bloc de “base” composé
en principe d’une boucle
infinie

La tâche à effectuer

Une indication de la
fréquence d’appel de cette
tâche 51

Systèmes embarqués et robotique

void thread1(){

int a;

while(1){

a = read_sensor();

sleep(1000);

}

Thread en C
Le sleep() ici n’est pas une
boucle d’attente pendant
laquelle on ne fait rien
d’autre. Cela indique que la
thread thread1 va entrer
dans l’état sleep pendant
un certains temps, et sera
ensuite à nouveau
exécutée après ce laps de
temps. Pendant ce temps,
d’autres tâches (threads)
peuvent s’effectuer.

52

Systèmes embarqués et robotique

Architecture de ChibiOS

ChibiOS, comme tout OS, comporte un noyau (kernel) permettant la gestion du système de
manière abstraite pour l’utilisateur.

https://chibios.org
53

Systèmes embarqués et robotique

Architecture de ChibiOS

On ne va pas voir tous les composants aujourd’hui en détail, mais notez que tous les
composants de ce noyau semblent converger vers un élément en particulier qui est le
scheduler.

https://chibios.org
54

Systèmes embarqués et robotique

Scheduling

Sur un processseur avec un seul coeur, on peut seulement exécuter une tâche à la fois.
Comment donc faire du multi-tâche? En alternant les tâches tout en tenant compte de leur
priorité.

ChibiOS va justement permettre de gérer différentes tâches qui tournent “en parallèle”, en
respectant les timings imposés et les priorités. C’est cela qui s’appelle en bon français du
Scheduling.

Une fois que les tâches sont définies, avec des niveaux de priorités et des timing bien précis,
le RTOS va s’occuper de faire la programmation de l’exécution de ces tâches.

55

Systèmes embarqués et robotique

Scheduling

Exemple d’un (mauvais) planning pour un système avec 4 tâches avec différents rythmes et
utilisations de ressources.

http://www.playembedded.org/blog/en/2016/10/29/explanation-multithreading-chibios/

haute priorité mais attends
une ressource utilisée par
Thread 4

56

Systèmes embarqués et robotique

Exemple de déclaration de Thread avec ChibiOS
#include <ch.h>

/*
* Working area for the LED flashing thread.
*/

static THD_WORKING_AREA(myThreadWorkingArea, 128);

/*
* LED flashing thread.
*/

static THD_FUNCTION(myThread, arg) {

while (true) {
LED_ON();
chThdSleepMilliseconds(500);
LED_OFF();
chThdSleepMilliseconds(500);

}
}

int main(int argc, char *argv[]) {

/* Starting the flashing LEDs thread.*/
(void)chThdCreateStatic(myThreadWorkingArea, sizeof(myThreadWorkingArea),

NORMALPRIO, myThread, NULL);
.
.
.

}

Code faisant clignoter une LED, avec
500ms d’intervalles entre chaque
changement d’état de la LED

macro

57

Systèmes embarqués et robotique

Exemple avec ChibiOS
#include <ch.h>

/*
* Working area for the LED flashing thread.
*/

static THD_WORKING_AREA(myThreadWorkingArea, 128);

/*
* LED flashing thread.
*/

static THD_FUNCTION(myThread, arg) {

while (true) {
LED_ON();
chThdSleepMilliseconds(500);
LED_OFF();
chThdSleepMilliseconds(500);

}
}

int main(int argc, char *argv[]) {

/* Starting the flashing LEDs thread.*/
(void)chThdCreateStatic(myThreadWorkingArea, sizeof(myThreadWorkingArea),

NORMALPRIO, myThread, NULL);
.
.
.

}

Function main

Fonctionnalité du Thread

Allocation de la mémoire
pour ce Thread

58

Systèmes embarqués et robotique

Exemple avec ChibiOS
#include <ch.h>

/*
* Working area for the LED flashing thread.
*/

static THD_WORKING_AREA(myThreadWorkingArea, 128);

/*
* LED flashing thread.
*/

static THD_FUNCTION(myThread, arg) {

while (true) {
LED_ON();
chThdSleepMilliseconds(500);
LED_OFF();
chThdSleepMilliseconds(500);

}
}

int main(int argc, char *argv[]) {

/* Starting the flashing LEDs thread.*/
(void)chThdCreateStatic(myThreadWorkingArea, sizeof(myThreadWorkingArea),

NORMALPRIO, myThread, NULL);
.
.
.

}

Function main

Fonctionnalité du Thread

Allocation de la mémoire
pour ce Thread

Création/initialisation du
Thread dans la fonction main

La définition de l’attente
avant un nouvel appel à
cette thread. Durant ce
temps, d’autres Threads
peuvent être exécutées!!!

On alloue de la mémoire
pour la stack de ce
thread, sur laquelle on
peut stocker les variables
propres à cette thread

Qu’est-ce qui finit
sur la stack?

Et si on ne met
pas de sleep???

59

Systèmes embarqués et robotique

Thread Working Area

Lors de la création d’une Thread, on alloue
de la mémoire pour le stack qui permet de
stocker toutes les informations liées à cette
Thread. Notamment les variables locales de
cette Thread, les variables de gestions des
interrupts (timing, priorités), les variables
des sous-fonctions, etc.

https://chibios.org
60

Systèmes embarqués et robotique

Les Threads avec ChibiOS
La durée de vie d’une Thread sur ChibiOS est dictée par une machine d’état. On verra
qu’il est possible pendant l’exécution d’un programme de créer des Thread, de les
supprimer, de les mettre en attente, etc.

https://chibios.org
61

Systèmes embarqués et robotique

Delay vs deadline

Il y deux principaux moyens de mettre un thread en attente. Une relative
à la durée de Thread, et une ne la prenant pas en compte (TP3).

temps

Task 1chThdSleep()

Task 1chThdSleepUntilWindows()

Durée
d’exécution

62

Systèmes embarqués et robotique

Application typique en robotique

Un robot doit capter des données d’un capteur (ex: accéléromètre), et les
utiliser pour contrôler un moteur.

void getSensor(){
//robot get sensor data

}

void controlActuator(){
//robot control the motors in function of the sensor data

}

void main(){
//initializations

}

63

Systèmes embarqués et robotique

Application typique en robotique

Un robot doit capter des données d’un capteur (ex: accéléromètre), et les
utiliser pour contrôler un moteur.

void getSensor(){
//robot get sensor data

}

void controlActuator(){
//robot control the motors in function of the sensor data

}

void main(){
//initializations

}

50 Hz, on veut prendre beaucoup de donnée
et filtrer le signal

1 kHz, important
d’avoir une fréquence
précise pour réguler
les moteurs.

Passage de
l’information à
10 Hz

Lors du TP3, vous verrez un moyen efficace de transmettre des messages entre des
Threads (librairie MessageBus) 64

Systèmes embarqués et robotique

TP de cette semaine: TP3

Prise en main de ChibiOS/RT.

Implémentation et gestion de Threads

Gestion de l’IMU (accéléromètre + gyroscope)

65

Systèmes embarqués et robotique

66

Systèmes embarqués et robotique

67

Systèmes embarqués et robotique

68

Systèmes embarqués et robotique

69

Systèmes embarqués et robotique

70

