
Systèmes embarqués et robotique

La mémoire et la
gestion de données

Prof. Francesco Mondada
Dr. Frank Bonnet
IEM - STI - EPFL

1

Systèmes embarqués et robotique

Exemple https://www.youtube.com/watch?v=gp_D8r-2hwk

Ariane 5

2

https://www.youtube.com/watch?v=gp_D8r-2hwk

Systèmes embarqués et robotique

Exemple (Wikipedia)

“En effet, l'accélération horizontale maximum produite par Ariane 4
donnait une valeur décimale d'environ 64. La valeur d'accélération
horizontale de la fusée étant traitée dans un registre mémoire à 8 bits, …. Mais Ariane
5 était bien plus puissante et brutale : son accélération pouvait atteindre la valeur 300,
qui … nécessite un registre à 9 bits. Ainsi, la variable codée sur 8 bits a connu un
dépassement de capacité, … De ce dépassement de capacité a résulté une valeur
absurde dans la variable, ne correspondant pas à la réalité. Par effet domino, le logiciel
décida de l'autodestruction de la fusée …”

Résultat -> 500 millions de dollars de perdu à cause d’un
dépassement de capacité d’un bit

3

Systèmes embarqués et robotique

Introduction

Les ressources utilisées pour le traitement de données (calcul ou autre) dépendent
fortement du type de variables utilisées, des opérations utilisées et du code généré par
le compilateur.

4

Systèmes embarqués et robotique

Exemple de gestion de “variable”: Dimensionnement
d’un timer (gestion du TMR7):

#define TIMER_CLOCK 84000000 // APB1 clock

#define PRESCALER_TIM7 (TIMER_CLOCK/100000) // timer freq.: 100kHz

#define COUNTER_MAX_TIM7 100000 // timer max counter 1 sec

Même sur le STM32F4...les compteurs des timers sont codés sur un registre de taille 16 bits ->
overflow (16 bits = 0 -> 65535):

From the Reference Manual
5

Systèmes embarqués et robotique

La mémoire

Sur vos laptop/PC, nous avons en général une très grande quantité de mémoire stockée
sur des disques/SSD, jusqu’à plusieurs TBytes.

Sur les systèmes embarqués, comme le STM32F4, la quantité de mémoire est très
limitée! On est plutôt dans l’ordre des 100 KBytes au MBytes. Il faut donc toujours
penser à optimiser la taille que va prendre votre code, aussi bien en terme de mémoire
flash que de mémoire RAM, ce qui implique par exemple de bien gérer les types des
variables.

6

Systèmes embarqués et robotique

La mémoire (rappel du
cours de microcontrôleur)

La mémoire est organisée de la
manière suivante:

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x...

1 bit

1 byte
7

Systèmes embarqués et robotique

La mémoire (rappel du
cours de microcontrôleur)

Le STM32F4 ayant donc une
capacité de 32 bits pour les
registres, un registre est codé sur 4
bytes, et est stocké sur 4 bytes de
mémoire

...

...

...

...

...

...

...

...

0x49

0x92

0x4B

0x08

...

...

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x...

ex: registre 32 bits = 0x49924B08 = 1’234’324’232

0x49

0x92

0x4B

0x08

8

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

Les zones de mémoire sont organisées d’une certaine manière qui est propre à chaque
plateforme, et le compilateur doit connaître cette organisation pour savoir quelle adresse
correspond à quel endroit/type de mémoire.

Pour le programmeur, cette information est contenue dans ce qui s’appelle le Memory Map
du microcontrôleur. (cf datasheet du STM32F4 Ch. 4).

9

Systèmes embarqués et robotique

STM32F407
datasheet

RAM

FLASH 10

Savoir différence entre RAM et FLASH

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

Il y a trois grandes catégories de mémoire:

● La mémoire programme (non-volatile, FLASH)

● La mémoire des données (volatile, RAM)

● Les registres (volatile, RAM)

11

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

C’est lors de la compilation que, en connaissant la plateforme sur laquelle on va faire
fonctionner le code, le compilateur (avec l’aide du linker) va déterminer la taille et
l’emplacement de la mémoire qui seront utilisés lors de l’exécution de notre code sur
cette plateforme (voir TP1).

Flash

RAM

12

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

Rappel TP1:

• text : Segment pour le programme en mémoire Flash [Flash].

• data : Segment pour les variables globales et variables statiques initialisées
non-nulles [RAM].

• bss : Segment pour les variables globales et variables statiques non-
initialisées ou initialisées nulles [RAM].

13

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

Il faut compter encore comme segments de mémoire:

• stack (pile): La pile est un emplacement de la mémoire utilisée lors de l’exécution de
certaines tâches, notamment pour stocker les variables locales [RAM].

• heap (tas): Le tas est un emplacement de la mémoire utilisé pour les allocation
dynamiques [RAM].

• rodata: Les données constantes qui seront inchangées [Flash].

• isr_vector: La table des vecteurs d’interruption [Flash]

14

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

La Memory Map concernant le stockage des données est indiquée au compilateur dans un
des fichiers appelé par le linker lors de la compilation (STM32F407VGTx_FLASH.ld):

Il est donc possible de réserver certaines parties de Flash ou de RAM pour des buts
précis, mais, attention, il faut que cela reste cohérent avec la Memory Map du
microcontrôleur, qui elle est donnée!

MEMORY
{

RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
CCMRAM (rw) : ORIGIN = 0x10000000, LENGTH = 64K
FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 1024K

}

15

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

Dans le fichier STM32F407VGTx_FLASH.ld, il est aussi spécifié où vont être
stockées les différents types de données (data, bss), sur la RAM ou la CCRAM.

En effet, sur le STM32F4, il y a deux types de RAM (Random Access Memory):

• SRAM : une RAM standard assez grosse (128 KB) mais peu rapide d’accès.

• CCM RAM: Une RAM deux fois plus petite en taille que la SRAM (64 KB)
mais qui est rapide d’accès.

16

Systèmes embarqués et robotique

SRAM

Schéma du microcontrôleur STM32F407 (Datasheet)

La cartographie de la mémoire (Memory map)
CCRAM

17

Savoir lire le
schéma

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

Dans le fichier STM32F407VGTx_FLASH.ld, dans notre cas, le segment bss
et data sont stockés en SRAM, mais cela est configurable.

.bss :
{
/* This is used by the startup in order to initialize

the .bss section */
_sbss = .; /* define a global symbol at bss

start */
__bss_start__ = _sbss;
*(.bss)
(.bss)
*(COMMON)

. = ALIGN(4);
_ebss = .; /* define a global symbol at bss

end */
__bss_end__ = _ebss;

} >RAM

.data :
{
/* Initialized data sections goes into RAM
. = ALIGN(4);
_sdata = .; /* create a global symbol at

data start */
(.data) / .data sections */
(.data) /* .data* sections */

. = ALIGN(4);
_edata = .; /* define a global symbol at

data end */
} >RAM AT> FLASH

D’où vient le contenu
18

Systèmes embarqués et robotique

La cartographie de la mémoire (Memory map)

/* Constant data goes into FLASH */
.rodata :
{
. = ALIGN(4);
(.rodata) / .rodata sections (constants,

strings, etc.) */
(.rodata) /* .rodata* sections (constants,

strings, etc.) */
. = ALIGN(4);

} >FLASH

.text :
{
. = ALIGN(4);
(.text) / .text sections (code) */
(.text) /* .text* sections (code) */
(.glue_7) / glue arm to thumb code */
(.glue_7t) / glue thumb to arm code */
*(.eh_frame)

KEEP (*(.init))
KEEP (*(.fini))

. = ALIGN(4);
_etext = .; /* define a global symbols at end of

code */
} >FLASH

Dans le fichier STM32F407VGTx_FLASH.ld, les définitions de ce qui va
dans le segment de mémoire Flash.

19

Systèmes embarqués et robotique

La mémoire programme

20

Systèmes embarqués et robotique

Le code que l’on écrit, une fois
assemblé, est transformé en binaire,
puis lorsque on programme le
robot, il est stocké sur le segment
de mémoire Flash.

La mémoire programme

21

Systèmes embarqués et robotique

Le code flashé a une structure qui peut être simplifiée
comme ceci:

● .isrvect: table des vecteurs d’interruption

● .text: contient le code que vous avez écrit

● .rodata: contient les constantes

La mémoire programme
.isrvect

.text

.rodata

other
stuff...

Flash

0x...

0x...

22

Systèmes embarqués et robotique

La table des vecteurs d’interruption va
indiquer le liens au Program Counter (PC)
entre les interruption générées lors de
l’exécution du code (externe ou interne) et les
routines d’interruptions écrites dans le code.

La mémoire programme, la table des
vecteurs d’interruption

address TIM7_IRQ =
0x1000

toggle_LED()
……
……

main
…….
…….

TIM7_IRQHandler(){
toggle_LED()

}

.rodata

other
stuff...

Flash

0x...

0x...

0x1000

23

Connaître le
mécanisme

Systèmes embarqués et robotique

address TIM7_IRQ =
0x1000

toggle_LED()
……
……

main
…….
…….

TIM7_IRQHandler(){
toggle_LED()

}

.rodata

other
stuffs...

Flash

0x...

0x...

0x1000

PC

Le program counter exécute le code
tranquillement

24

Connaître le
mécanisme

La mémoire programme, la table des
vecteurs d’interruption

Systèmes embarqués et robotique

address TIM7_IRQ =
0x1000

toggle_LED()
……
……

main
…….
…….

TIM7_IRQHandler(){
toggle_LED()

}

.rodata

other
stuffs...

Flash

0x...

0x...

PC

Une interruption générée par
le Timer 7!

25

0x1000

Connaître le
mécanisme

La mémoire programme, la table des
vecteurs d’interruption

Systèmes embarqués et robotique

address TIM7_IRQ =
0x1000

toggle_LED()
……
……

main
…….
…….

TIM7_IRQHandler(){
toggle_LED()

}

.rodata

other
stuffs...

Flash

0x...

0x...

PC

On toggle la LED de l’epuck2 (TP1)

26

0x1000

Connaître le
mécanisme

La mémoire programme, la table des
vecteurs d’interruption

Systèmes embarqués et robotique

La mémoire programme,
.text et .const address TIM7_IRQ =

0x1000

fonction1
……
……

main
…….
…….

TIM7_IRQHandler(){
…...

}

.rodata

other
stuffs...

Flash

0x...

0x...

Le segment .text contient donc tout le code écrit
par le programmeur, et le .rodata notamment les
variables constantes déclarées comme:

const int a = 2;

qui ne pourront pas être modifiée lors de
l’exécution du code.

27

Connaître le
mécanisme

Systèmes embarqués et robotique

Pour savoir où se trouve le code à
exécuter lorsqu’on démarre, un
vecteur d’interruption special est
tout au début: le RESET

Le démarrage

28

Systèmes embarqués et robotique

Le RESET est une interruption spéciale à très haute priorité
qui est appelée lors de la mise sous tension ou lors d’un
RESET en fonctionnement.

Le démarrage: RESET

29

Savoir qu’il y a
un encodage

Systèmes embarqués et robotique

Il y a deux informations essentielles au démarrage: l’emplacement
du stack et le début du code. Ces informations sont à l’adresse 0. 30

Le démarrage: RESET

Systèmes embarqués et robotique

La cartographie de la mémoire (Registres des périphériques)

Les registres sont aussi stockés à des adresses bien précises. Exemple, le
registre MODER des GPIOs:

STM32F407
Reference
Manual 31

Systèmes embarqués et robotique

Les registres

32

Systèmes embarqués et robotique

STM32F407
datasheet

Les registres pour configurer
les GPIOs sont stockés et
peuvent être modifiés en
accédant à une zone où sont
stockés tous les registres liés
aux périphériques du
microcontrôleur

Les registres

33

Systèmes embarqués et robotique

Registres (périphériques)

Exemple de code:

Code du TP1
34

Systèmes embarqués et robotique

Registres (périphériques)

Une manière de trouver cette information pour le programmeur sur STM32F en utilisant
le fichier stm32f407xx.h:

main.c
main.h

35

Systèmes embarqués et robotique

Registres (périphériques)
Dans le fichier stm32f407xx.h, l’adresse de base des periphériques est indiquée, ensuite, il
s’agit seulement de faire des shifts pour retrouver l’adresse exacte du registre dans la
mémoire.

main.h

stm32F407xx.h 36

Connaître le
principe

Systèmes embarqués et robotique

Registres (périphériques)

Tous les registres propres au GPIOD sont donc localisé en mémoire à
l’adresse:

stm32F407xx.h

0x40000000U
+ 0x00020000U
+ 0x00000C00U

=. 0x40020C00U

37

Systèmes embarqués et robotique

Registres (périphériques)

Sinon, il y a le Reference Manual qui donne cette information:

38

Systèmes embarqués et robotique

Registres (périphériques)

Même principe pour trouver des registres propres à la structure du GPIOD:

gpio.c stm32F407xx.h
39

Systèmes embarqués et robotique

Registres (périphériques)

Même principe pour trouver des registres propres à la structure du GPIOD

gpio.c stm32F407xx.h
40

Systèmes embarqués et robotique

Registres (périphériques)

Les registres sont simplement définis comme un offset sur l’adresse attribuées
au GPIOD -> 0x40020C00U + offet = adresse du registre

stm32F407xx.h 41

Systèmes embarqués et robotique

Registres (périphériques)

Le registre MODER se trouve à l’adresse mémoire 0x40020C00, le registre
OTYPER 0x40020C04, etc.

42

Systèmes embarqués et robotique

Registres (périphériques)

Le registre MODER se trouve à l’adresse mémoire 0x40020C00, le registre
OTYPER 0x40020C04, etc.

43

Systèmes embarqués et robotique

Le registre MODER
(longueur 4 bytes) du
port GPIOD se trouve à
l’adresse mémoire
0x40020C00

Registres (périphériques)

44

Systèmes embarqués et robotique

La mémoire pour les
données

45

Systèmes embarqués et robotique

La gestion des variables

Dans le cadre de la compilation, il est important de comprendre:
• Comment sont gérées les divers types de variables
• Quel code est généré par le compilateur
• Quelles possibilités offre le compilateur sur le processeur utilisé

Pour cela nous allons observer les problèmes à partir de:
• Types de variables
• Gestion de types (cast)
• Gestion des cast implicite

46

Systèmes embarqués et robotique

C’est en SRAM que vont être
stockées les variables globales et
locales durant l’exécution du code.

Les variables locales seront sockées
sur la stack (pile) qui est aussi en
SRAM.

La gestion des variables

47

Systèmes embarqués et robotique

Types des
variables:

Quelles valeurs peut
prendre la variable?
Quel type choisir?

Types Taille (Bytes) Range

char 1 -128 -> 127

unsigned char 1 0 -> 255

short 2 -32768 -> 32767

unsigned short 2 0 -> 65535

int 4 -2147483648 -> 2147483647

unsigned int 4 0 -> 4294967295

long 4 -2147483648 -> 2147483647

unsigned long 4 0 -> 4294967295

long long 8 -9223372036854775808 ->
9223372036854775807

unsigned long long 8 0 -> 18446744073709551615

float 4 1.17594351e-38 -> 3.40282347e+38

double 8 2.22507385850720138e-308 ->
1.79769313486231571e+308

48

Systèmes embarqués et robotique

Types des variables:

Type Signe Byte

int8_t signé 1 (-> équivalent à un char)

uint8_t non-signé 1

int16_t signé 2 (-> équivalent à un short)

uint16_t non-signé 2

int32_t signé 4 (-> équivalent à un int)

uint32_t non-signé 4

int64_t signé 8 (-> équivalent à un long long)

uint64_t non-signé 8

Plutôt que d’utiliser des char, short et des long, la convention est souvent
d’utiliser la nomenclature intN_t ou uintN_t pour les entiers qui sont
définies comme:

49

Systèmes embarqués et robotique

Gestion des variables locales:

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

Test.c
Test.s

Compilation 50

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

Content of r7

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

0x??

0x??

0x??

0x??

r3

r7

0x??

0x??

0x??

0x??

stack

Gestion des variables locales:

51

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

0x??

0x??

0x??

0x??

r3

r7

0x??

0x??

0x??

0x??

stack

Gestion des variables locales:

52

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

0x??

0x??

0x??

0x??

r3

r7 stack

Gestion des variables locales:

53

0x00

0x00

0x00

0x01 r7

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

0x00

0x00

0x00

0x05

0x00

0x00

0x00

0x01

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

r3

r7 stack

Gestion des variables locales:

54

r7

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

0x00

0x00

0x00

0x05

0x00

0x00

0x00

0x01

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

0x00

0x00

0x00

0x05

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

r3

r7 stack

Gestion des variables locales:

55

r7

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

0x00

0x00

0x00

0x11

0x00

0x00

0x00

0x01

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

0x00

0x00

0x00

0x05

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

r3

r7 stack

Gestion des variables locales:

56

r7

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

0x00

0x00

0x00

0x11

0x00

0x00

0x00

0x01

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

0x00

0x00

0x00

0x05

0x00

0x00

0x00

0x11

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

r3

r7 stack

Gestion des variables locales:

57

r7

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x0D

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

0x00

0x00

0x00

0x05

0x00

0x00

0x00

0x11

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

r3

r7 stack

Gestion des variables locales:

58

r7

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x0D

int main()
{

int a = 5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #5
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

…………………..

…………………..

0x00

0x00

0x00

0x05

0x00

0x00

0x00

0x11

Data Address

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

SP

r3

r7 stack

Gestion des variables locales:

59

r7

Comprendre l’exécution et
l’implication pour la pile

Systèmes embarqués et robotique

Gestion des variables locales:

Si on résume:

- Les variables locales d’une fonction sont stockées sur la pile
(qui se trouve dans la mémoire RAM).

- Au début de la fonction, un espace suffisant sur la pile est attribué pour stocker les
variables locales

- Les variables locales sont créées lors de l’appel de la fonction et ensuite supprimées
à la fin de la fonction.

60

Systèmes embarqués et robotique

Gestion des variables lors de passages de
paramètres à des fonctions:

int foo(int param) {
return param + 1;

}

int main() {

int var1 = 1;

int var2 = foo(var1);

return 0;
}

main:
push {r7, lr}
sub sp, sp, #8
add r7, sp, #0
movs r3, #1
str r3, [r7, #4]
ldr r0, [r7, #4]
bl foo
str r0, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #8
mov sp, r7
@ sp needed
pop {r7, pc}

foo:
push {r7}
sub sp, sp, #12
add r7, sp, #0
str r0, [r7, #4]
ldr r3, [r7, #4]
adds r3, r3, #1
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}
bx lr

passage de
paramètres

branchements

61

Systèmes embarqués et robotique

Gestion des variables lors de passages de paramètres à des
fonctions:

- Le registre r0 est utilisé pour passer le paramètre d’une fonction s’il n’y a qu’un
seul paramètre 32bits, et pour retourner une valeur.

- S’il y a plus de paramètres passés à la fonction, quelques registres peuvent être
utilisés pour peu de paramètres, sinon on passe par le stack

- Le retour d’une fonction appelée avec BL est fait avec le registre lr (link register).
bx lr fait le branchement pour revenir à la fonction main initiale.

- Si on fait un appel BL dans une fonction, il faut sauver lr

62

Systèmes embarqués et robotique

créées dans la fonction 3
appelée par la fonction 2

heap

Gestion des variables locales:
Comme la quantité de mémoire n’est pas infinie, il y a un toujours un risque
d’overflow. Typiquement, si on génère de gros tableaux déclarés en variables
locales, ou si on a une très grande quantités de fonctions “imbriquées” avec des
variables déclarées en locales, une partie de la mémoire peut être corrompue!

stack

bss

data
Tableau
de taille
correcte

Tableau
de taille
incorrecte

variables
locales

créées dans la fonction 1

créées dans la fonction 2
appelée par la fonction 1

63

Systèmes embarqués et robotique

Gestion des variables locales:

Une solution est de déclarer les gros tableaux en tant que variables globales ou statiques.

Mais attention, les variables globales par exemple peuvent poser des risques pour le
programmeur car elles peuvent être accessible à plusieurs endroit, donc il ne faut pas en
abuser!

64

Systèmes embarqués et robotique

From the Cortex-M4 Generic User Guide

Gestion des variables locales: nombres entiers négatifs:

int main()
{

int a = -5;
unsigned int b = 17;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
mvn r3, #4
str r3, [r7, #4]
movs r3, #17
str r3, [r7]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

65

Systèmes embarqués et robotique

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #12
str r3, [r7, #4]
movs r3, #17
strb r3, [r7, #3]
ldr r3, [r7, #4]
strb r3, [r7, #3]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

Gestion des variables locales:
cast

int main()
{

int a = 12;
char b = 17;

b = (char) a;

return 0;
}

From the Cortex-M4
Generic User Guide

66

Systèmes embarqués et robotique

Gestion des variables locales:
cast

int main()
{

int a = 1600;
char b = 17;

b = (char) a;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
mov r3, #1600
str r3, [r7, #4]
movs r3, #17
strb r3, [r7, #3]
ldr r3, [r7, #4]
strb r3, [r7, #3]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}

67

Systèmes embarqués et robotique

Gestion des variables statiques:

int main()
{

static int a = 27;
int b = 48;

a = b;

return 0;
}

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #48
str r3, [r7, #4]
ldr r2, .L3
ldr r3, [r7, #4]
str r3, [r2]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}
bx lr

.L4:
.align 2

.L3:
.word a.4100
.size main, .-main
.data
.align 2
.type a.4100, %object
.size a.4100, 4

a.4100:
.word 27

Les variables statiques ne sont pas stockées sur la pile, mais dans
un autre endroit sur la RAM (bss ou data en fonction de leur
initialisation). Elles sont gérées de manières différentes que les
variables locales et peuvent être vues seulement depuis la
fonction où elles sont déclarées. 68

Systèmes embarqués et robotique

Gestion des variables globales:

int a = 27;

int main()
{

int b = 48;

a = b;

return 0;
}

a: .word 27
.text
.align 1
.global main
.syntax unified
.thumb
.thumb_func
.fpu softvfp
.type main, %function

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #48
str r3, [r7, #4]
ldr r2, .L3
ldr r3, [r7, #4]
str r3, [r2]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}
bx lr

.L4:
.align 2

.L3:
.word a

Les variables globales ne sont pas non-plus stockées sur la stack,
mais dans un autre endroit sur la RAM (bss ou data en fonction de
leur initialisation). Elles sont gérées d’une manière similaire aux
variables statiques mais peuvent être utilisées de manière globales par
plusieurs fonctions.

69

Systèmes embarqués et robotique

Gestion des variables globales:

int a = 27;

int main()
{

int b = 48;

a = b;

return 0;
}

a: .word 27
.text
.align 1
.global main
.syntax unified
.thumb
.thumb_func
.fpu softvfp
.type main, %function

main:
push {r7}
sub sp, sp, #12
add r7, sp, #0
movs r3, #48
str r3, [r7, #4]
ldr r2, .L3
ldr r3, [r7, #4]
str r3, [r2]
movs r3, #0
mov r0, r3
adds r7, r7, #12
mov sp, r7
@ sp needed
pop {r7}
bx lr

.L4:
.align 2

.L3:
.word a

ATTENTION à ne pas abuser des variables globales, belle source de
bugs!!!!!!! Alternatives correctes:
• Variable locale statique: aussi hors stack, si ceci est le but
• Variable globale statique (que dans fichier, avec éventuellement des

fonction get et put)
70

Systèmes embarqués et robotique

Allocation dynamique de mémoire

Il existe encore une autre manière d’allouer dynamiquement de la mémoire
en utilisant le segment mémoire tas (heap) à l’aide par exemple de
l’instructionmalloc.

Ce sujet sera abordé plus tard dans le cours.

71

Systèmes embarqués et robotique

Résumé: choix d’un type de variable

1. Evaluer la gamme de variation de la variable
Minimum et maximum

2. Evaluer la résolution nécessaire
3. Estimer le type de calcul nécessaire sur la variable
4.Vérifier le temps à disposition pour faire ces calculs
5. Choisir une unité pour la variable
6. Choisir le type de la variable

72

Systèmes embarqués et robotique

TP de cette semaine

Etude de la structure du compilateur C

Programmation d’un PWM pour régler l’intensité d’une LED

Programmation du contrôle de moteurs pas à pas en C

Création d’une librairie de contrôle de moteur pour ce robot

ATTENTION:
Venez à l’introduction à 10h15

73

Systèmes embarqués et robotique

74

Problème de audio dans l’enregistrement
(et la transmission zoom)

Systèmes embarqués et robotique

75

Systèmes embarqués et robotique

76

Systèmes embarqués et robotique

77

Systèmes embarqués et robotique

78

Systèmes embarqués et robotique

79

Systèmes embarqués et robotique

80

