=PFL

La mémoire et la
gestion de données

Prof. Francesco Mondada
Dr. Frank Bonnet
IEM - STI - EPFL

E P F L Systemes embarqués et robotique

Exemple https://www.youtube.com/watch?v=gp D8r-2hwk

Ariane 5

https://www.youtube.com/watch?v=gp_D8r-2hwk

=PFL

Exemple (Wikipedia)

“En effet, 'accélération horizontale maximum produite par Ariane 4

donnait une valeur décimale d'environ 64. La valeur d'accélération

horizontale de la fusée étant traitée dans un registre mémoire a 8 bits, Mais Ariane
5 ¢tait bien plus puissante et brutale : son accélération pouvait atteindre la valeur 300,
qui ... nécessite un registre a 9 bits. Ainsi, la variable codée sur 8 bits a connu un
dépassement de capacite, ... De ce dépassement de capacite a résulté une valeur
absurde dans la variable, ne correspondant pas a la realité. Par effet domino, le logiciel
decida de l'autodestruction de la fusée ...”

Résultat -> 500 millions de dollars de perdu a cause d’un
dépassement de capacité d’un bit

=PFL

Introduction

Les ressources utilisées pour le traitement de données (calcul ou autre) dépendent

fortement du type de variables utilisées, des opé€rations utilisées et du code genéré par
le compilateur.

=PFL

Exemple de gestion de “variable”: Dimensionnement

d’un timer (gestion du TMR?7):
#define TIMER CLOCK 84000000 // APB1 clock
#define PRESCALER TIM7 (TIMER_CLOCK/lOOOOO) // timer freg.: 100kHz

#define COUNTER MAX TIM7 100000 // timer max counter 1 sec

Méme sur le STM32F4...les compteurs des timers sont codés sur un registre de taille 16 bits ->
overflow (16 bits = 0 -> 65535):

TIM6&TIM7 introduction

The basic timers TIM6 and TIM7 consist of a| 16-bit auto-reload counter|driven by a
programmable prescaler.

They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

From the Reference Manual

=PFL
La mémoire

Sur vos laptop/PC, nous avons en géneral une trés grande quantité de mémoire stockee
sur des disques/SSD, jusqu’a plusieurs TBytes.

Sur les systemes embarqués, comme le STM32F4, la quantite de mémoire est tres
limitee! On est plutdt dans I’ordre des 100 KBytes au MBytes. Il faut donc toujours
penser a optimiser la taille que va prendre votre code, aussi bien en terme de mémoire
flash que de mémoire RAM, ce qui implique par exemple de bien gérer les types des
variables.

=PFL %

La mémoire (rappel du
cours de microcontroleur)

Data Address
0x...
0x0D
0x0C

La mémoire est organisée de la 0x0B

maniere suivante: 0x0A

0x09
0x08
0x07
0x06
0x05
0x04
0x03

! 0x02
1 byte 0x01

1 bit

p—
—

=PFL %

La mémoire (rappel du
cours de microcontroleur)

Le STM32F4 ayant donc une
capacité de 32 bits pour les
registres, un registre est codé sur 4
bytes, et est stocké sur 4 bytes de

mémoire

S

0x49

0x92

0x4B

Ox

-

ex: registre 32 bits = 0x49924B

=1°234324°232

Data

0x49

0x92

0x4B

0x08

Address
0x...
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

| J
=PFL &
La cartographie de la mémoire (Memory map)

Les zones de mémoire sont organisées d’une certaine manicre qui est propre a chaque

plateforme, et le compilateur doit connaitre cette organisation pour savoir quelle adresse
correspond a quel endroit/type de mémoire.

Pour le programmeur, cette information est contenue dans ce qui s’appelle le Memory Map
du microcontroleur. (cf datasheet du STM32F4 Ch. 4).

STM32F407

datasheet

Savoir différence entre RAM et FLASH

RAM

Reserved

AHB2

Resanved

AHB1

Resanved

0x2002 0000 - 0x3FFF FFFF

SRAM (16 KB allased
by bit-banding)

0x2001 C000 - 0x2001 FFFF

Resanved

SRAM (112 KB allased
by Dit-banding)

0x2000 0000 - 0x2001 BFFF

Reserved

0x1FFF C008 - 0x1FFF FFFF

Option Bytes

ox1FFF C000 - 0x1FFF Coo7

Reserved

Ox1FFF 7A10 - Ox1FFF 7FFF

System memory + OTP

FFF 0000 - 0x1FFF 7A0F

Reservea

CCM cata RAM
(64 KB data SRAM)

Reserved

Flash

OXFFFF FFFF. S12-Mbyte
biock 7
Cortex-M4's
Internal
OXEQ00 0000| peripherals
OXDFFF FFFF
512-Mbyte
block 8
Not used
0xC000 0000
OXBFFF FFFF
512-Mbyte
block 5
FSMC registers|
B .
512-Mbyte
block 4
FSMC bank 3
& bank4
0x80000000(_ _________]
OX7FFF FFFF
512-Mbyte
block 3
FSMC bank1
0x8000 0000 S Donee
OXSFFF FFFF
512-Mbyte
block 2
Peripherals
0x4000 0000
OX3FFF FFFF
512-Mbyte
) | Dok
SRAM
Ox2000 0000
OXTFFF FFFF
512-Mbyte
block 0
Code
0x0000 0000

Reserved

Allased 10 Flash, system

memory or SRAM depending

on the BOOT pins

APB1

OxE010 0000 - OXFFFF FFFF
0xEC0) 0000 - OXEQOF FFFF
(OXAD0D 1000 - OXDFFF FFFF
OXAD0D OFFF
0x6000 0000
Ox5006 0C00 - OXSFFF FFFF
Ox5006 0BFF

0x5000 0000
0x4008 0000 - ON4FFF FFFF
Ox4007 FFFF

0x4002 000
0x4001 5300 - Ox4001 FFFF
Ox4001 57FF

0x4001 0000
0x4000 7800 - Ox4000 FFFF
Ox4000 7FFF

0x4000 0000
ai18513f

10

| J
=PFL &
La cartographie de la mémoire (Memory map)

[l y a trois grandes catégories de mémoire:
® [a mémoire programme (non-volatile, FLASH)

® [a mémoire des données (volatile, RAM)

® [es registres (volatile, RAM)

11

| J
=PFL &
La cartographie de la mémoire (Memory map)

C’est lors de la compilation que, en connaissant la plateforme sur laquelle on va faire
fonctionner le code, le compilateur (avec 1’aide du linker) va déterminer la taille et

I’emplacement de la mémoire qui seront utilisés lors de 1’exécution de notre code sur
cette plateforme (voir TP1).

RAM
drm-none-edol-xX¥1/c DY LINKY.CLT
Flash — text data bss dec hex filename
as 1640 4 1540 3184 c70 blinky.elf

> Done

16:07:31 Build Finished (took 146ms)

12

=PFL %

La cartographie de la mémoire (Memory map)
Rappel TP1:
* text : Segment pour le programme en mémoire Flash [Flash].

* data : Segment pour les variables globales et variables statiques initialisées
non-nulles [RAM].

* bss : Segment pour les variables globales et variables statiques non-
initialisées ou initialisées nulles [RAM].

13

=PFL

La cartographie de la mémoire (Memory map)

Il faut compter encore comme segments de memoire:

» stack (pile): La pile est un emplacement de la mémoire utilisée lors de I’exécution de
certaines taches, notamment pour stocker les variables locales [RAM].

* heap (tas): Le tas est un emplacement de la mémoire utilis¢€ pour les allocation
dynamiques [RAM].

* rodata: Les données constantes qui seront inchangees [Flash].

* isr_vector: La table des vecteurs d’interruption [Flash]

14

F
=PFL
La cartographie de la mémoire (Memory map)

La Memory Map concernant le stockage des données est indiquée au compilateur dans un
des fichiers appelé par le linker lors de la compilation (STM32F407VGTx FLASH.1d):

MEMORY

{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
CCMRAM (rw) : ORIGIN = 0x10000000, LENGTH = 64K
FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 1024K

}

Il est donc possible de réserver certaines parties de Flash ou de RAM pour des buts

précis, mais, attention, il faut que cela reste cohérent avec la Memory Map du
microcontroleur, qui elle est donn¢e!

F
=PFL
La cartographie de la mémoire (Memory map)

Dans le fichier STM32F407VGTx_ FLASH.1d, 1l est aussi spécifi€¢ ou vont étre
stockées les differents types de données (data, bss), sur la RAM ou la CCRAM.

En effet, sur le STM32F4, 1l y a deux types de RAM (Random Access Memory):
* SRAM : une RAM standard assez grosse (128 KB) mais peu rapide d’acces.

* CCM RAM: Une RAM deux fois plus petite en taille que la SRAM (64 KB)
mais qui est rapide d’acces.

16

cPrL &3

Savozr lire le
84 Lbb schema

La cartographie de la mémoire (Memory map)

NJTRST, JTDI,
JTCK/SWCLK

JTDO/SWD, JTDO

TRACECLK
TRACED[3:0] <:

Ml or RMII as AF
MDIO as AF

DP, DM C
7:0], DIR, STP, NXT

ID, VBUS, SOF

CCRAM

| CCM data RAM 64 KB K

JTAG & SW

MPU

ETM

NVIC

ARM Cortex-M4

D-BUS

AHB bus-matrix 8S7TM

(B Y SRAM, PSRAM, NOR Flash,

External memory
controller (FSMC)

PC Card (ATA), NAND Flash

ART ACCEL/

SRAM 112 KB
SRAM 16 KB

AHB2 168 MHz

168 MHZ 1-BUS /‘\':>
FPU
L] ¢—
Ethernet MAC DMA
10/100 FIFo K———
> USB DMA/
| orteHs FIFO <:>
8 St
DMAZ | #5vers
8 Strea
DMA1 g

|~

AHB1 168 MHz

\
SRAM

Schema du microcontroleur STM32F407 (Datasheet)

17

=PFL

La cartographie de la mémoire (Memory map)

Dans le fichier STM32F407VGTx_FLASH.Id, dans notre cas, le segment bss
et data sont stockés en SRAM, mais cela est configurable.

.bss :

{

the .bss section */

[* This is used by the startup in order to initialize

_sbss = [* define a global symbol at bss

start */
__bss start = _sbss;

*(-
*(.bss™)
*(COMMON)

.= ALIGN(4);

_ebss = ; /* define a global symbol at bss

end */
__bss end__ = ebss;
} >RAM

.data :
{
/* Initialized data sections goes into RAM
. = ALIGN(4);
_sdata = ; [* create a global symbol at
data start */
(.data) / .data sections */
(.data®) / .data* sections */
. = ALIGN(4);
_edata= /* define a global symbol at
data end */

} >RAM AT> FLASH

i

D’ou vient le contenu

18

=PFL

La cartographie de la mémoire (Memory map)

Dans le fichier STM32F407VGTx_FLASH.1d, les définitions de ce qui va

dans le segment de mémoire Flash.

/* Constant data goes into FLASH */
.rodata :

{
. = ALIGN(4);
(.rodata) /[.rodata sections (constants,
strings, etc.) */

(.rodata) [* .rodata* sections (constants,

strings, etc.) */
. = ALIGN(4);
} >FLASH

text:

{
. = ALIGN(4);
(.text) [.text sections (code) */
(.text™) [.text* sections (code) */
(.glue_7) / glue arm to thumb code */
(.glue_T7t) / glue thumb to arm code */
*(.eh_frame)

KEEP (*(.init))
KEEP (*(fini))

. = ALIGN(4);
_etext = ; [* define a global symbols at end of
code */
} >FLASH

19

=PFL

La memoire programme

20

=PFL &

La mémoire programme

Le code que I’on €crit, une fois
assemblé, est transformé en binaire,
puis lorsque on programme le
robot, 1l est stocke sur le segment
de mémoire Flash.

OXFFFF FFFF

Reserved

512-Mbyte
block 7
Cortex-M4's
Internal
OXE000 0000 herals
OXOFFF PP
512-Mbyte
block 6
Not used
OXBFFF FFFF
512-Mbyte
block 5
FSMC registers|
SR oo
512-Mbyte
block 4
FSMC bank 3
& bank4
0x80000000(__________]
OXTFFF FFFF
512-Mbyte
block 3
FSMC bank1
& & bank2
OXGFFF FFFF
512-Mbyte
block 2
Peripherals
0X4000 0000
OXGFFF FFFF
512-Mbyte
block 1
SRAM
0x2000 0000
OXTFFF FFFF
512-Mbyte
block 0
Code
0X0000 0000

SRAM (16 KB allased
by bit-banding)

SRAM (112 KB allased
by Dit-banding)

e

CORTEXMA rtarrad pacphara

Faservd

AHB3

Resanved

AHB2

Resaned

AHB1

Resaned

0x2002 0000 - 0x3FFF FFFF

Resanved

0x2001 C000 - 0x2001 FFFF

0x2000 0000 - 0x2001 BFFF

Reserved

Ox1FFF C008 - ox1FFF FFFF

Option Bytes

ox1FFF C000 - ox1FFF Coo7

Reserved

Ox1FFF 7A10 - Ox1FFF 7FFF

System memory + OTP

FFF 0000 - 0x1FFF 7A0F

Reservea

0x1dQ1 0000 - 0x1FFE FFFF

CCM aata RAM
(64 KB data SRAM)

Flash

Allased 10 Flash, system
memory or SRAM depending|

0x0000 0000 - 0x000F FF

on the BOOT pins

OXEQ10 0000 - OXFFFF FFFF
OXE000 0000 - OXEDOF FFFF
OXAD00 1000 - OXDFFF FFFF
OXAD00 OFFF
OxE000 0000
05006 0C00 - OXSFFF FFFF
OX5006 0BFF

0X5000 0000
OX4008 0000 - OX4FFF FFFF
Ox4007 FFFF

0x4002 000
0x4001 5300 - Ox4001 FFFF
0x4001 57FF

0x4001 0000
0x4000 7800 - Ox4000 FFFF
Ox4000 7FFF

0x4000 0000
ai18513f

21

=PFL %

La mémoire programme

Le code flash¢ a une structure qui peut €tre simplifice
comme cecl:

® _.isrvect: table des vecteurs d’interruption
® _text: contient le code que vous avez €crit

® .rodata: contient les constantes

.isrvect

text

.rodata

other
stuff...

0x.].

0x|..

yse|d

22

F Connaltre le

h 6d$b"’ mécanisme

La mémoire programme, la table des
vecteurs d’interruption

La table des vecteurs d’interruption va
indiquer le liens au Program Counter (PC)
entre les interruption générées lors de
I’exécution du code (externe ou interne) et les
routines d’interruptions écrites dans le code.

0x1000

address TIM7_IRQ =
0x1000

toggle LED()

main

TIM7_IRQHandler(){
toggle_LED()

.rodata

other
stuff...

0x.].

0x|..

yse|d

23

F Connaltre le

63&&,6 mecanisme
La mémoire programme, la table des
vecteurs d’interruption

Le program counter exécute le code
tranquillement

PC
o

0x1000

address TIM7_IRQ =
0x1000

toggle LED()

main

TIM7_IRQHandler(){
toggle_LED()

.rodata

other
stuffs...

0x.].

0x|..

yse|d

24

F Connaltre le

63&&,6 mecanisme
La memoire programme, la table des
vecteurs d’interruption -

0x1000

Une interruption générée par
le Timer 7!

address TIM7_IRQ =
0x1000

toggle LED()

main

TIM7_IRQHandler(){
toggle_LED()

.rodata

other
stuffs...

0x.].

0x|..

yse|d

25

F Connaltre le

63&&,6 mecanisme
La mémoire programme, la table des
vecteurs d’interruption

PC
e 0X 1000

On toggle la LED de I’epuck2 (TP1)

address TIM7_IRQ =
0x1000

toggle LED()

main

TIM7_IRQHandler(){
toggle_LED()

.rodata

other
stuffs...

0x.].

0x|..

yse|d

26

F Connaltre le
6%56 mecanisme
La MémOire pl”Ogl/'amme,
text et .const

Le segment .text contient donc tout le code €crit
par le programmeur, et le .rodata notamment les
variables constantes déclarées comme:

const inta = 2;

qui ne pourront pas €tre modifi¢e lors de
I’execution du code.

address TIM7_IRQ =
0x1000

fonction1

main

.rodata

other
stuffs...

0x.].

0x|..

yse|d

27

=P-L

Le démarrage

Pour savoir ou se trouve le code a
exécuter lorsqu’on démarre, un
vecteur d’interruption special est
tout au début: le RESET

OXFFFF FFFF

Reserved

0x2002 0000 - 0x3FFF FFFF

512-Mbyte
block 7
Cortex-M4's
Internal
OXE00O 0000 herals
OXOFFF PP
512-Mbyte
block 6
Not used
0xC000 0000
OXBFFF FFFF
512-Mbyte
block 5
FSMC registers|
SRR
512-Mbyte
block 4
FSMC bank 3
& bank4
0x8000 0000__________J
OXTFFF FFFF
512-Mbyte
block 3
FSMC bank1
o & bank2
OXSFFF FFFF
512-Mbyte
block 2
Peripherals
0x4000 0000
OX3FFF FFFF
512-Mbyte
block 1
SRAM
0x2000 0000
OXTFFF FFFF
512-Mbyte
block 0
Code
0x0000 0000

SRAM (16 KB allased
by bit-banding)

0x2001 C000 - 0x2001 FFFF

SRAM (112 KB allased
by Dit-banding)

0x2000 0000 - 0x2001 BFFF

Reserved

Ox1FFF C008 - ox1FFF FFFF

Option Bytes

ox1FFF C000 - ox1FFF Coo7

Reserved

Ox1FFF 7A10 - Ox1FFF 7FFF

System memory + OTP

FFF 0000 - 0x1FFF 7A0F

Reservead

CCM aata RAM
(64 KB data SRAM)

Reserved

Flash

Allased 10 Flash, system
memory or SRAM depending|
on the BOOT pins

)0 0000 - 0x000F FF

e

CORTEXMA rtarred pacpharin

Faservd

AHB3

Resanved

AHB2

Resanved

AHB1

Resaned

Resanved

OxE010 0000 - OXFFFF FFFF
OxEQ0O 0000 - OXEDOF FFFF

OXAD00 1000 - OXDFFF FFFF
OXADOD OFFF

OxE000 0000
05006 0C00 - OXSFFF FFFF
OX5006 0BFF

0X5000 0000
OX4008 0000 - OX4FFF FFFF
04007 FFFF

0x4002 000
0x4001 5800 - 04001 FFFF
0x4001 57FF

0x4001 0000
0x4000 7800 - 0x4000 FFFF
Ox4000 7FFF

0x4000 0000
ai18513f

28

P F L Savozr qu’ily a
84 éb"’ un encodage
Le demarrage: RESET

Reset Reset is invoked on power up or a warm reset. The exception model treats
reset as a special form of exception. When reset is asserted, the operation
of the processor stops, potentially at any point in an instruction. When
reset 1s deasserted, execution restarts from the address provided by the

reset entry in the vector table. Execution restarts as privileged execution
in Thread mode.

Le RESET est une interruption spéciale a trés haute priorité
qui est appelée lors de la mise sous tension ou lors d’un
RESET en fonctionnement.

29

=PFL %

14
Le démarrage: RESET

7

6 -10 Usage fault
0x0018

5 -11 Bus fault
0x0014

4 -12 Memory management fault
0x0010

3 -13 Hard fault
0x000C

2 -14 U NMI

1 Reset
0x0004

Initial SP value

0x0000

Figure 2-2 Vector table

On system reset, the vector table 1s fixed at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the range
0x00000080 to Ox3FFFFF80, see Vector Table Offset Register on page 4-16.

Il y a deux informations essentielles au démarrage: I’emplacement
du stack et le début du code. Ces informations sont a 1’adresse 0.

30

=P-L

La cartographie de la mémoire (Registres des péripheriques)

Les registres sont aussi stockés a des adresses bien précises. Exemple, le

registre MODER des GPIOs:

8.4 GPIO registers
This section gives a detailed description of the GPIO registers.
For a summary of register bits, register address offsets and reset values, refer to Table 39.
The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).
8.4.1 GPIO port mode register (GPIOX_MODER) (x = A..IN/K)
Address offset: 0x00
Reset values:
e 0xA800 0000 for port A
e 0x0000 0280 for port B
e 0x0000 0000 for other ports
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MODER15[1:0] | MODER14[1:0] | MODER13[1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODER9[1:0] | MODERS[1:0]
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
STM 3 2 F4 07 MODER7[1:0] | MODER6[1:0] | MODER5[1:0] | MODERA4[1:0] | MODER3[1:0] | MODER2[1:0] | MODER1[1:0] MODERO[1:0]
Reference

Manual

31

=P-L

Les registres

=P-L

Les registres

Les registres pour configurer
les GPIOs sont stockeés et
peuvent étre modifiés en
accedant a une zone ou sont
stockés tous les registres li€s
aux périphériques du
microcontroleur

STM32F407
datasheet

OXFFFF FFFF

Reserved

512-Mbyte
block 7
Cortex-M4's
Internal
OXE00 0000 herals
OXOFFF FrrF [
512-Mbyte
block 6
Not used
XCl
OXBFFF FFFF
512-Mbyte
block 5
FSMC registers|
SR oo
512-Mbyte
block 4
FSMC bank 3
& banks
0x80000000(__________]
OXTFFF FFFF
512-Mbyte
block 3
FSMC bank1
0XB000
OXGFFF FF
512-Mbyte
block 2
Peripherals
0X4000
OXGFFF FF
512-Mbyte
block 1
SRAM
0x2000 0000
OXTFFF FFFF
512-Mbyte
block 0
Code
0X0000 0000

SRAM (16 KB allased
Dy bit-banding)

SRAM (112 KB allased
by Dit-banding)

Reserved

Option Bytes

Reserved

System memory + OTP

Reservead

CCM aata RAM
(64 KB data SRAM)

Reserved

Flash

Reserved

Allased 10 Flash, system

meamory or SRAM depending|
on the BOOT pins

0x2002 0000 - 0x3FFF FFFF
0x2001 C000 - 0x2001 FFFF

0x2000 0000 - 0x2001 BFFF

Oox1FFF C008 - ox1FFF FFFF
Oox1FFF C000 - ox1FFF Coo7
Ox1FFF 7A10 - Ox1FFF 7FFF

FFF 0000 - 0x1FFF 7A0F
0x1dQ1 0000 - 0x1FFE FFFF

0x1000 - 0x1000 FFFF

0x0810 0000 -~QOFFF FFFF
00800 0000 - 0 FFFF
0x0010 0000 - 0x07FRFFFF

0x0000 0000 - 0x000F FF

e

CORTEXMA rharrd pacphara

Faserved

AHB3
Resaned

AHB2

Resaned

AHB1

Resanved

Resaned

OXEO10 0000 - OXFFFF FFFF
OXE000 0000 - OXEDOF FFFF
OXADOD 1000 - OXDFFF FFFF
OXADOD OFFF

(£000 0000
5006 0C00 - OXSFFF FFFF
5006 0BFF

5000 0000
14008 0000 - OX4FFF FFFF
14007 FFFF

4002 000
(4001 5800 - Ox4001 FFFF
4001 57FF

4001 0000
4000 7800 - 0x4000 FFFF
14000 TFFF

4000 0000
ai18513f

33

=P-L

Registres (périphéeriques)
Exemple de code:

int main(void)

{
// Enable GPIOB and GPIOD peripheral clock for the LEDs
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIODEN;
// LEDs defined in main.h
gpio_config output_opendrain(LEDS);
// Set the D
gpio_setl(LED5); |
while (1) {
¥
}

Code du TP1

34

=PFL

Registres (peripheriques)

Une maniere de trouver cette information pour le programmeur sur STM32F en utilisant

le fichier stm32f407xx.h:

// LEDs defined in main.h

gpio_config output_opendrain

(LED5)

main.c

#define LEDS GPIOD, 10
#define LED7 GPIOD, 11
#define FRONT_LED GPIOD, 14

main.h

void gpio_config_output_opendrain(GPIO_TypeDef *port, unsigned int pin)

35

Connaltre le
84 ébb principe

Registres (périphéeriques)

Dans le fichier stm32{407xx.h, I’adresse de base des periphériques est indiquee, ensuite, 1l
s’agit seulement de faire des shifts pour retrouver I’adresse exacte du registre dans la
meémoire.

#define| PERIPH_BASE|<._0x40000000U

#define |AHB1PERIPH_BASE | (PERIPH_BASE|+ 0x00020000U)

#define 0x0800U)
A #define aq 0x0CeeU)
#define LEDS GPIOD, 10 #define GPIOE ¥¥ i 0x1000U)

#define LED7 GPIOD, 11
#define FRONT_LED GPIOD, 14
#define GPIOC

#define GPIOD ((GPIO_TypeDef *)YGPIOD BASE
#define GPIOE ((GPIO TypeDef ¥) GPIOE BASE)

main.h

stm32F407xx.h

=P-L

Registres (périphériques)

Tous les registres propres au GPIOD sont donc localisé en mémoire a
I’adresse:

#define PERIPH_BASE 0x40000000U

0x40000000U
#define AHB1PERIPH BASE (PERIPH BASE + 0x00020000U) + 0x00020000U
#define GPIOC BASE (AHBIPERIPH_BASE + 0x0800U) + 0x00000C0O0U
#define GPIOD BASE (AHB1PERIPH BASE + 0x0C00U)
#define GPIOE BASE (AHBIPERIPH BASE + @x1000U) ~~~-"=============------
=. 0x40020C00U

#define GPIOC ((GPIO TypeDef *) GPIOC_BASE)
#define GPIOD ((GPIO TypeDef *) GPIOD BASE)
#define GPIOE ((GPIO TypeDef *) GPIOE_BASE)

stm32F407xx.h

37

=P-L

Registres (péripheriques)

Sinon, 1l y a le Reference Manual qui donne cette information:

0x4002 2000 - 0x4002 23FF GPIOI
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE Section 8.4.11: GPIO register map on page 286
0x4002 0CO0O0 - 0x4002 OFFF GPIOD
0x4002 0800 - 0x4002 OBFF GPIOC
0x4002 0400 - 0x4002 O7FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA

=P-L

Registres (périphériques)

Méme principe pour trouver des registres propres a la structure du GPIOD:

void gpio_config_output_opendrain(GPIO_TypeDef *port, unsigned int pin)

{

// Output type open-drain : 0Ty = 1
port->0TYPER |= (1 << pin);

// Output data low : ODRy = ©
port->0DR &= ~(1 << pin);

// Floating, no pull-up/down : PUPDRy = 00
port->PUPDR &= ~(3 << (pin * 2));

// Output speed highest : OSPEEDRy = 11
port->0SPEEDR |= (3 << (pin * 2));

// Output mode : MODERy = 01

port->MODER = (port->MODER & ~(3 << (pin * 2))) | (1 << (pin * 2));

gpio.c

typedef struct

{
_ 10
_ 10
_ 10
_ 10
_ 10
10
10
10
10

uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32 t
uint32_t
uint32_t

} GPIO_TypeDef;

MODER;
OTYPER;
OSPEEDR;
PUPDR;
IDR;
ODR;
BSRR;
LCKR;
AFR[2];

stm32F407xx.h

39

=P-L

Registres (périphériques)

Méme principe pour trouver des registres propres a la structure du GPIOD

void gpio_config_output_opendrain(GPIO_TypeDef *port, unsigned int pin)

{
// Output type open-drain : 0Ty =1
port->0TYPER |= (1 << pin);
// Output data low : ODRy = ©
port->0DR &= ~(1 << pin);
// Floating, no pull-up/down : PUPDRy
port->PUPDR &= ~(3 << (pin * 2));
// Output speed highest : OSPEED
port->0SPEEDR |= (3 << (pin)is
// Ou e Ry = 01
port-pMODER

¥

gpio.c

= 00

port->MODER & ~(3 << (pin * 2))) | (1 << (pin * 2));

i

typedef struct

I0

uint32_t

——‘J' 10
_Io
_Io
_Io
_Io
_I0
_I0
_I0

uint3Z. t UIYPER,

uint32_t
uint32_t
uint32_t
uint32 t
uint32_t
uint32_t
uint32 t

} GPIO_TypeDef;

MODER;

OSPEEDR;
PUPDR;
IDR;
ODR;
BSRR;
LCKR;
AFR[2];

stm32F407xx.h

40

=P-L

Registres (péripheriques)

Les registres sont simplement définis comme un offset sur 1’adresse attribuées
au GPIOD -> 0x40020C00U + offet = adresse du registre

typedef struct

!

__I0 uint32_t MODER; /*1< GPIO port mode register, Address offset: 0x00)
—10 ulnt3Z.t UOIYPER; /*!< GPIO port output type register, Tess OTToct: OX * [
__TI0 uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 4
__I0 uint32_t PUPDR; /*1< GPIO port pull-up/pull-down register, Address offset: 0x0C i
__I0 uint32_t IDR; /*!1< GPIO port input data register, Address offset: 0x10 ®f
__T0 uint32_t ODR; /*1< GPIO port output data register, Address offset: 0x14 &/
__I0 uint32_t BSRR; /*1< GPIO port bit set/reset register, Address offset: 0x18 */
__I0 uint32_t LCKR; /*1< GPIO port configuration lock register, Address offset: 0x1C e |

I0 uint32_t AFR[2]; /*1< GPI0O alternate function registers, Address offset: 0x20-0x24 */

} EEIO_TypeDef;

stm32F407xx.h

=P-L

Registres (péripheriques)

Le registre MODER se trouve a I’adresse mémoire 0x40020C00, le registre

OTYPER 0x40020C04, etc.

8.4 GPIO registers
This section gives a detailed description of the GPIO registers.
For a summary of register bits, register address offsets and reset values, refer to Table 39.
The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).
8.4.1 GPIO port mode register (GPIOX_MODER) (x = A..IN/K)
Address offset: 0x00
Reset values:
e« 0xA800 0000 for port A
e« 0x0000 0280 for port B
e 0x0000 0000 for other ports
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MODER15[1:0] | MODER14[1:0] | MODER13[1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODER9[1:0] | MODERS[1:0]
15 14 13 12 1" 10 9 8 il: 6 5 4 3 2 1 0
MODER7[1:0] | MODER6[1:0] | MODER5[1:0] | MODERA4[1:0] | MODER3[1:0] | MODER2[1:0] | MODER1[1:0] | MODERO[1:0]

42

=P-L

Registres (périphériques)

Le registre MODER se trouve a I’adresse mémoire 0x40020C00, le registre
OTYPER 0x40020C04, etc.

8.4.2 GPIO port output type register (GPIOX_OTYPER)
(x = A.I/IK)
Address offset: 0x04
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
OT15 | OT14 | OT13 | OT12 | OT11 OoT10 o719 oT8 oT17 OoT6 oT5 oT4 OoT3 oT12 oT1 oT0
w w w w w w w w w w w w w w w w

43

=P-L

Registres (périphériques)

Le registre MODER
(longueur 4 bytes) du
port GPIOD se trouve a
I’adresse meémoire
0x40020C00

OXFFFF FFFF

e

CORTEXMA rtarred pacpharin

Faservd

AHB3

Resanved

AHB2

Resanved

AHB1

Resaned

Reserved

0x2002 0000 - 0x3FFF FFFF

512-Mbyte
block 7
Cortex-M4's
Internal
OXE00O 0000 herals
OXOFFF PP
512-Mbyte
block 6
Not used
0xC000 0000
OXBFFF FFFF
512-Mbyte
block 5
FSMC registers|
SRR -1
512-M|
MC bank 3
& bank4
0x8000 0000__________J
OXTFFF FFFF
512-Mbyte
block 3
FSMC bank1
o 0000 & bank2
OXSFFF FFFF
512-Mbyte
block 2
Peripherals
0x4000 0000
OX3FFF FFFF
512-Mbyte
block 1
SRAM
0x2000 0000
OXTFFF FFFF
512-Mbyte
block 0
Code
0x0000 0000

SRAM (16 KB allased
by bit-banding)

Resanved

0x2001 C000 - 0x2001 FFFF

SRAM (112 KB allased
by Dit-banding)

0x2000 0000 - 0x2001 BFFF

Reserved

Ox1FFF C008 - ox1FFF FFFF

Option Bytes

ox1FFF C000 - ox1FFF Coo07

Reserved

Ox1FFF 7A10 - Ox1FFF 7FFF

System memory + OTP

FFF 0000 - 0x1FFF 7A0F

Reservead

CCM aata RAM
(64 KB data SRAM)

Reserved

Flash

Reserved

Allased 10 Flash, system

memory or SRAM depending|

0x0000 0000 - 0x000F FFI

on the BOOT pins

OXEQ10 0000 - OXFFFF FFFF
OXE000 0000 - OXEDOF FFFF

OXAD00 1000 - OXDFFF FFFF
OXADOD OFFF

OxE000 0000
05006 0C00 - OXSFFF FFFF
OX5006 0BFF

0X5000 0000
OX4008 0000 - OX4FFF FFFF
04007 FFFF

0x4002 000
0x4001 5800 - 04001 FFFF
0x4001 57FF

0x4001 0000
0x4000 7800 - 0x4000 FFFF
Ox4000 7FFF

0x4000 0000
ai18513f

44

=PFL

La memoire pour les
donnees

45

=PFL
La gestion des variables

Dans le cadre de la compilation, 1l est important de comprendre:
®* Comment sont gérées les divers types de variables
® Quel code est génére par le compilateur
® Quelles possibilités offre le compilateur sur le processeur utilisé

Pour cela nous allons observer les problemes a partir de:

® Types de variables
® Gestion de types (cast)
® Gestion des cast implicite

46

=P-L

La gestion des variables

C’est en SRAM que vont €tre
stockées les variables globales et
locales durant I’exécution du code.

Les variables locales seront sockées
sur la stack (pile) qui est aussi en
SRAM.

OXFFFF FFFF

512-Mbyte
block 7
Cortex-M4's
Internal
OXE000 0000 herals
OXDFFF FFFF[—s
512-Mbyte
block 6
Not used
0xC000 0000
OXBFFF FFFF
512-Mbyte
block 5
FSMC registers|
SR oo
512-Mbyte
block 4
FSMC bank 3
& bank4
0x80000000(__________]
OXTFFF FFFF
512-Mbyte
block 3
FSMC bank1
oxe000 0000| & P2
OXGFFF FFFF
512-Mbyte
block 2
Peripherals
0X4000 0000
OXGFFF FFFF
512-Mbyte
block 1
SRAM
0x2000 0000
OXTFFF FFFF
Code
0X0000 0000

SRAM (16 KB allased
by bit-banding)

SRAM (112 KB allased
by Dit-banding)

Reserved

e

CORTEXMA rtarrad pacphara

Faservd

AHB3

Resanved

AHB2

Resaned

AHB1

Resarved

002 0000 - 0x3FFF FFFF

Resanved

001 CO00 - 0x2001 FFFF

000 0000 - 0x2001 BFFF

Ox1FFF C008 - ox1FFF FFFF

Option Bytes

ox1FFF C000 - ox1FFF Coo7

Reserved

Ox1FFF 7A10 - Ox1FFF 7FFF

System memory + OTP

FFF 0000 - 0x1FFF 7A0F

Reservea

0x1dQ1 0000 - 0x1FFE FFFF

CCM aata RAM
(64 KB data SRAM)

Reserved

Flash

Reserved

Allased 10 Flash, system

memory or SRAM depending|
on the BOOT pins

0x0000 0000 - 0x000F FF

OXEQ10 0000 - OXFFFF FFFF
OXE000 0000 - OXEDOF FFFF
OXAD00 1000 - OXDFFF FFFF
OXAD00 OFFF
OxE000 0000
05006 0C00 - OXSFFF FFFF
OX5006 0BFF

0X5000 0000
OX4008 0000 - OX4FFF FFFF
Ox4007 FFFF

0x4002 000
0x4001 5300 - Ox4001 FFFF
0x4001 57FF

0x4001 0000
0x4000 7800 - Ox4000 FFFF
Ox4000 7FFF

0x4000 0000
ai18513f

47

=PFL &

Types des
variables:

Quelles valeurs peut
prendre la variable?
Quel type choisir?

Types Taille (Bytes) Range
char 1 -128 -> 127
unsigned char 1 0->255

short 2 -32768 -> 32767

unsigned short 2 0 -> 65535

int 4 -2147483648 -> 2147483647

unsigned int 4 0 -> 4294967295

long 4 -2147483648 -> 2147483647

unsigned long 4 0 -> 4294967295

long long 8 -9223372036854775808 ->
9223372036854775807

unsigned long long 8 0 -> 18446744073709551615

float 4 1.17594351e-38 -> 3.40282347e+38

double 8 2.22507385850720138e-308 ->

1.79769313486231571e+308

48

=PFL %

Types des variables:

Plut6t que d’utiliser des char, short et des long, la convention est souvent
d’utiliser la nomenclature intN _t ou uintN _t pour les entiers qui sont
deéfinies comme:

Type Signe Byte

int8_t signé 1 (-> équivalent a un char)
uint8_t non-signé 1

int16_t signé 2 (-> équivalent a un short)
uint16_t non-signé 2

int32_t signé 4 (-> équivalent a un int)
uint32_t non-signé 4

int64_t signé 8 (-> équivalent a un long long)

uint64_t non-signé 8

Comprendre [’exécution et
6%56 [’implication pour la pile

=PFL 5

Gestion des variables locales:

int main ()

{
int a = 5;
unsigned int b = 17;
return 0;

}

Test.c

>

Compilation

main:

Test.s

push
sub
add
movs
str
movs
str
movs
mov
adds
mov

@ sp needed

pop

{r7}

Spl
r7,
r3,
r3,
r3,
r3,
r3,
r0,
r7,

SpPr

{r7}

sp, #12
sp, #0
#5

[r7, #4]
#17

[r7]

#0

r3

r7, #12
r7

=PF

L &3

Comprendre [’exécution et
6%56 [’implication pour la pile

Gestion des variables locales:

int main ()

{

int a = 5;
unsigned int b = 17;

return 0;

main:

ﬁ push

sub
add
movs
str
movs
str
movs
mov
adds
mov
@ sp
pop

{r7}

sp, sp, #12

r7, sp, #0

r3, #5

r3, [r7, #4]

r3, #17

r3, [r7]

r3, #0

r0, r3

r7, rl, #12

sp, r7
needed

{r7}

0x??
0x??
0x??

0x??

r3

0x??
0x??
0x??

0x??

r7

Content of r7

stack

Address
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

51

=PF

L &3

Comprendre [’exécution et
6%36 [’implication pour la pile

Gestion des variables locales:

int main ()

{

int a = 5;
unsigned int b = 17;

return 0;

main:
push

d sub

add
movs
str
movs
str
movs
mov
adds
mov
@ sp
pop

{r7}

sp, sp, #12

r7, sp, #0

r3, #5

r3, [r7, #4]

r3, #17

r3, [r7]

r3, #0

r0, r3

r7, rl, #12

sp, r7
needed

{r7}

0x??
0x??
0x??

0x??

r3

0x??
0x??
0x??

0x??

r7

SP

stack

Address
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

52

=PFL 5

Comprendre [’exécution et
6%56 [’implication pour la pile

Gestion des variables locales:

int main ()

{

int a = 5;
unsigned int b = 17;

return 0;

main:

push
sub
add
movs
str
movs
str
movs
mov
adds
mov
@ sp
pop

{r7}

sp, sp, #12

r7, sp, #0

r3, #5

r3, [r7, #4]

r3, #17

r3, [r7]

r3, #0

r0, r3

r7, rl, #12

sp, r7
needed

{r7}

0x??
0x??
0x??

0x??

r3

0x00
0x00
0x00

0x01

r7

stack

Address
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

53

int main ()

{

=PFL 5

Gestion des variables locales:

Comprendre [’exécution et
6%56 [’implication pour la pile

int a = 5;

unsigned int b = 17;

return 0;

main:

push
sub
add
movs
str
movs
str
movs
mov
adds
mov
@ sp
pop

{r7}

sp, sp, #12

r7, sp, #0

r3, #5

r3, [r7, #4]

r3, #17

r3, [r7]

r3, #0

r0, r3

r7, rl, #12

sp, r7
needed

{r7}

0x00
0x00
0x00

0x05

r3

0x00
0x00
0x00

0x01

r7

stack

Address
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

54

Comprendre [’exécution et
6%56 [’implication pour la pile

Gestion des variables locales: Data Address
int main () OXOE
{ OXOD
int a = 5;
! 0x0C
unsigned int b = 17; x
0x0B
return 0; 0x00 0x0A
} 0x00 0x09
. 0x00 0x00 0x08
maln:
push {r7) 0x05 0x00 0x07
sub sp, sp, #12
add r7, sp, #0 0x00 0x06
r3
movs r3, #5
—) StT r3, [r7, #4] 0x05 0x05
movs r3, #17 0x00
str r3, [r7] 0x04
0x00
movs r3, #0
mov rO0, r3 0x00 0x03
adds r7, r1, #12 0x0?2
mov sp, r7 0x01 r7 SP
@ sp needed e e 0x01
pop tr7} r7 stack

55

Comprendre [’exécution et
6%56 [’implication pour la pile

=PFL 5

Gestion des variables locales: Data Address
int main () OXOE
{ OXOD
int a = 5;
! 0x0C
unsigned int b = 17; x
0x0B
return 0; 0x00 0x0A
} 0x00 0x09
. 0x00 0x00 0x08
maln:
push {r7} 0x11 0x00 0x07
sub sp, sp, #12
add r7, sp, #0 3 0x00 0x06
movs r3, #5 r
str r3, [r7, #4] 0x00 0x05 0x05
ﬁ movs r3, #17 X
str r3, [r7] 0x04
movs r3, #0 0x00
mov rO0, r3 0x00 0x03
adds r7, r1, #12 0x0?2
mov sp, r7 0x01 r7 SP
@ sp needed e e 0x01
pop tr7} r7 stack

56

Comprendre [’exécution et
6%56 [’implication pour la pile

=PFL 5

Gestion des variables locales:

int main ()

{

int a = 5;
unsigned int b = 17;

r7

return 0; 0x00
0x00
0x00
main:
push {r7} 0x11
sub sp, sp, #12
add r7, sp, #0 r3
movs r3, #5
str r3, [r7, #4]
movs r3, #17 0x00
t 3, 7
ﬁ str r [r7] 000
movs r3, #0
mov rO0, r3
! 0x00
adds r7, t7, #12 X
mov sp, r7 0x01 r7 SP
@ sp needed o e
pop {r7}

0x00
0x00
0x00
0x05
0x00
0x00
0x00

0Ox11

stack

Address
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

57

=PFL 5

Comprendre [’exécution et
6%56 [’implication pour la pile

Gestion des variables locales:

int main ()

{

int a = 5;
unsigned int b = 17;

return 0;

main:

push
sub
add
movs
str
movs
str
movs
mov
adds
mov
@ sp
pop

{r7}

sp, sp, #12

r7, sp, #0

r3, #5

r3, [r7, #4]

r3, #17

r3, [r7]

r3, #0

r0, r3

r7, rl, #12

sp, r7
needed

{r7}

0x00
0x00
0x00

0x00

r3

0x00
0x00

0x00

0x0D

r7

0x00
0x00
0x00
0x05
0x00
0x00
0x00

0x11

stack

Address
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

58

=PFL 5

Comprendre [’exécution et
6%36 [’implication pour la pile

Gestion des variables locales:

int main ()

{

int a = 5;
unsigned int b = 17;

return 0;

main:

push
sub
add
movs
str
movs
str
movs
mov
adds
mov
@ sp
pop

{r7}

sp, sp, #12

r7, sp, #0

r3, #5

r3, [r7, #4]

r3, #17

r3, [r7]

r3, #0

r0, r3

r7, rl, #12

sp, r7
needed

{r7}

0x00
0x00
0x00

0x00

r3

0x00
0x00

0x00

0x0D

r7

0x00
0x00
0x00
0x05
0x00
0x00
0x00

0x11

stack

Address
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01

59

=PFL %

Gestion des variables locales:

S1 on résume;

- Les variables locales d’une fonction sont stockées sur la pile
(qui se trouve dans la mémoire RAM).

- Au début de la fonction, un espace suffisant sur la pile est attribu¢ pour stocker les
variables locales

- Les variables locales sont créées lors de I’appel de la fonction et ensuite supprimees
a la fin de la fonction.

60

=P-L

61

. . passage de
Gestion des variables lors de passages de S
\ \ [o
parametres a des fonctions:. branchements
main: | foo:

push {(r7, 1r} push (r7}
sub sp, sp, #8 : sub sp, sp, #12
add r7, sp, #0 ! add r7, sp, #0
movs r3, #1 : str r0, [r7, #4]
str r3, [r7, #4] | 1dr r3, [r7, #4]
ldr r0, [x7, #41 | adds r3, r3, #1
bl foo ! mov r0, r3
str r0, [r7] : adds r7, r7, #12
movs r3, #0 : mov sp, r7
mowv r0, r3 E @ sp needed
adds r7, r7, #8 ! pop {r7}
mov sp, r7 | bx 1r
@ sp needed :
pop {(r7, pc} E

=PFL %

Gestion des variables lors de passages de parametres a des
fonctions:

- Le registre r0 est utilisé pour passer le parametre d’une fonction s’1l n’y a qu’un
seul parametre 32bits, et pour retourner une valeur.

- S’1l y a plus de parametres passés a la fonction, quelques registres peuvent etre
utilis€s pour peu de parametres, sinon on passe par le stack

- Le retour d’une fonction appelée avec BL est fait avec le registre Ir (link register).
bx Ir fait le branchement pour revenir a la fonction main initiale.

- Si on fait un appel BL dans une fonction, 1l faut sauver Ir

62

=PFL %

Gestion des variables locales:

Comme la quantité de meémoire n’est pas infinie, il y a un toujours un risque
d’overflow. Typiquement, si on génere de gros tableaux déclares en variables
locales, ou si on a une tres grande quantites de fonctions “imbriquées” avec des
variables déclarées en locales, une partie de la mémoire peut €tre corrompue!

data

bss

stack

heap

Tableau Tableau .
de taille de taille variables
correcte incorrecte locales

créées dans la fonction 1

créées dans la fonction 2
appelée par la fonction 1
créées dans la fonction 3
appelée par la fonction 2

63

=PFL %

Gestion des variables locales:

Une solution est de déclarer les gros tableaux en tant que variables globales ou statiques.

Mais attention, les variables globales par exemple peuvent poser des risques pour le
programmeur car elles peuvent étre accessible a plusieurs endroit, donc il ne faut pas en

abuser!

=P-L

Gestion des variables locales: nombres entiers negatifs.:

main:

int main ()

{
int a = =-5;
unsigned int b = 17;
return 0;

}

MVN{S}{cond} Rd, Operand2

push
sub
add
mvn
str
movs
str
movs
mov
adds
mov

@ sp needed

pop

{r7}

Spy
r7,
r3,
r3,
r3,
r3,
r3,
r0,
r7,

Spy

{r7}

sp, #12
sp, #0
#4

[r7, #4]
#17

[r7]

#0

r3

r7, #12
r7

The MVN instruction takes the value of Operand?2. performs a bitwise logical NOT operation on the

value. and places the result into Rd.

From the Cortex-M4 Generic User Guide

65

=P-L

Gestion des variables locales:

cast

3.4.2

int main ()

{
int a
char Db
b
return 0;
}

LDR and STR, immediate offset

Load and Store with immediate offset. pre-indexed immediate offset, or post-indexed
immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

type Is one of:
B unsigned byte. zero extend to 32 bits on loads.

main:

push
sub
add
movs
str
movs
strb
ldr
stq]
movs
mov
adds
mov
@ sp needed

pop

From the Cortex-M4
Generic User Guide

{r7}

sp, sp, #12
r7, sp, #0
r3, #12

r3, [r7, #4]
r3, #17

r3, [r7, #3]
r3, [r7, #4]
r3, [r7, #3]
r3, #0

r0, r3

r7, r7, #12
sp, r’7

{r7}

=Pi-L

Gestion des variables locales:
cast

int main ()

{
int a = 1600;
char b = 17;
return 0;

}

imgflipicom

main:

push
sub
add
mov
str
movs
strb

movs

mov
adds
mov

@ sp needed

pop

{r7}

sp, sp, #12
r7, sp, #0
r3, #1600
r3, [r7, #4]
r3, #17

r3, [r7, #3]

r3, #0
r0, r3
r7, r7, #12
sp, r’7

{r7}

67

=PFL %

Gestion des variables statiques.:

int main ()

{

static int a = 27;
int b = 48;

a = b;

main:

return 0;
} .L4:

.L3:

Les variables statiques ne sont pas stockées sur la pile, mais dans
un autre endroit sur la RAM (bss ou data en fonction de leur
initialisation). Elles sont gérées de manieres différentes que les
variables locales et peuvent étre vues seulement depuis la
fonction ou elles sont déclarées.

a.4100:

push
sub
add
movs
str
ldr
ldr
str
movs
mov
adds
mov
@ sp needed
pop
bx

.align

.word
.size
.data
.align
.Lype
.size

.word

{r7}

SpP,
r7,
r3,
r3,
r2,
r3,
r3,
r3,
rQ,
r7,

SpPr

SpPy
SpPy
#48
(r7,
.L3
(r7,
[r2]
#0
r3
r7,
r

#12
#0

#4]

#4]

#12

{r7}
1r

a.4100
main, .-main

2
a.4100, %object
a.4100, 4

27

68

=PFL %

Gestion des variables globales:

int a = 27;

int main () main:
{

int b = 48;

a = b;

return 0;

Les variables globales ne sont pas non-plus stockées sur la stack,

mais dans un autre endroit sur la RAM (bss ou data en fonction de

leur initialisation). Elles sont gérées d’une maniere similaire aux

variables statiques mais peuvent étre utilisées de manicre globales par - L4:

plusieurs fonctions. 13-

.word
.text
.align
.global

27

1
main

.syntax unified

. thumb
.thumb func
.fpu softvfp
.Lype

push
sub
add
movs
str
ldr
ldr
str
movs
mov
adds
mov
@ sp needed
pop
bx

.align

.word

main, %function

{r7}

sp, sp, #12
r7, sp, #0
r3, #48

r3, [r7, #4]
r2, .L3

r3, [r7, #4]
r3, [r2]

r3, #0

r0, r3

r7, r7, #12
sp, r’7

{r7}
1r

69

=P-L

Gestion des variables globales:

int a = 27;

int main () main:

{

return 0;

}

ATTENTION a ne pas abuser des variables globales, belle source de

® Variable locale statique: aussi hors stack, si ceci est le but
® Variable globale statique (que dans fichier, avec éventuellement des .z.4:

fonction get et put) -

.word
.text
.align
.global

27

1

main

.syntax unified

.thumb
.thumb func

.fpu softvfp

.type

push
sub
add
movs
str
ldr
ldr
str
movs
mov
adds
mov
@ sp needed
pop
bx

.align

.word

main, %function

{r7}

sp, sp, #12
r7, sp, #0
r3, #48

r3, [r7, #4]
r2, .L3

r3, [r7, #4]
r3, [r2]

r3, #0

r0, r3

r7, r7, #12
sp, r’7

{r7}
1r

2

70

=PFL

Allocation dynamique de méemoire

[l existe encore une autre maniere d’allouer dynamiquement de la mémoire

en utilisant le segment meémoire tas (heap) a I’aide par exemple de
I’instruction malloc.

Ce sujet sera abord¢ plus tard dans le cours.

71

=PFL

Résumé: choix d’un type de variable

1. Evaluer la gamme de variation de la variable
Minimum et maximum

2. Evaluer la résolution nécessaire

3. Estimer le type de calcul nécessaire sur la variable

4. Vérifier le temps a disposition pour faire ces calculs

5. Choisir une unité pour la variable

6. Choisir le type de la variable

72

=PFL

TP de cette semaine

Etude de la structure du compilateur C

Programmation d’un PWM pour régler 1’intensit¢ d’une LED
Programmation du controle de moteurs pas a pas en C
Création d’une librairie de controle de moteur pour ce robot

ATTENTION:
Venez a I’introduction a 10h15

73

=P

Probleme de audio dans |I'enregistrement
(et la transmission zoom)

74

=P-L

1/ 6 | Next > | Last Respondent >>
<<< List of responses | # Print this Response

Respondent: - Anonymous -
Evaluation du coursetdu TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 ¥ Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu
Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu

Forme

3 Vos commentaires en détail (si nécessaire):

[N,y N v

75

=P-L

<< First Respondent | < Previous | 2 [6 | Next > | Last Respondent >>
<<< List of responses | # Print this Response

Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 ¥ Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

1 2 3 4 5 6
Contenu o
Forme o
2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)
1 2 3 4 5 6

Contenu
Forme

3 Vos commentaires en détail (si nécessaire):
Le git est un vrai labyrinthe. jvoir une section dédiée par TP (étapes d'installation, instructions, etc.) serai i
étfe méme ajodter le readme de chaque branche dans une de ces sectionsjjLe systéme de demande d'assistant est une superbe
idée ! Ca marche super bien. - - - -

=P-L

<< First Respondent | < Previous | 3 [6 | Next > | Last Respondent >>
<<< List of responses | @ Print this Response

Respondent: - Anonymous -
Evaluation du coursetdu TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 * Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu
Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu
Forme

3 Vos commentaires en détail (si nécessaire):

:
o |

[N,y . v

L] t t

77

=P-L

<< First Respondent | < Previous | 4 [6 | Next > | Last Respondent >>
<<< List of responses | ® Print this Response

Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 ¥ Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

1 2 3 4 5 6
Contenu ‘
Forme
2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)
1 2 3 4 5 6
Contenu ‘
Forme

3 Vos commentaires en détail (si nécessaire):

dommage car il est

super pédagogique.fAu lieu de repondre directement a nos questions, ils nous aident comme un assistant en nous posant des
questions pour qu'on essaie de comprendre par nous-méme. Bref, faites le gratuit svp

=P-L

<< First Respondent | < Previous | 5/ 6 | Next > | Last Respondent >>
<<< List of responses | # Print this Response

Respondent: - Anonymous -
Evaluation du cours etdu TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 ¥ Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

1 2 3 4 5 6
Contenu
Forme
2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)
1 2 3 4 5 6

Contenu
Forme C

3 Vos commentaires en détail (si nécessaire):

Si les tps sont une partie aussi importante du programml je pense que c est necessaire d en faire une video (lau moin par des

assistants). Le cours lui est parfait :)

=P-L

<< First Respondent | < Previous | 6 | 6
<<< List of responses | @ Print this Response

Respondent: - Anonymous -
Evaluationducoursetdu TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 . Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu
Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu
Forme

3 Vos commentaires en détail (si nécessaire):

Le chatbot est trés utile, surfout le fait qu'il nous pose de questions pour nous faire réfléchir et trouver les réponses par nous
memes.

80

