
Systèmes embarqués et robotique

DSP et calcul
pour traitement de signal

Francesco Mondada, Frank Bonnet
IEM - STI - EPFL

1

Systèmes embarqués et robotique

Introduction

Les systèmes embarqués doivent effectuer des tâches de plus en plus diverses, par
exemple liées aux multimédias avec les smartphones, et donc aussi des calculs de plus
en plus complexes. Le traitement de signal est un élément clé de ces systèmes depuis
longtemps.

Pour traiter cette question, les ingénieurs ont dû trouver des moyens pour effectuer des
opérations complexes en minimisant le temps de calculs des microcontrôleurs. Le DSP
(Digital Signal Processing) est un cas typique que l’on va aborder dans ce cours.

2

Systèmes embarqués et robotique

Introduction

Sujets de ce cours sur le DSP:

• Exemple de traitement de signal embarqué

• Les instructions ARM liées au DSP

• FFT pour effectuer de l’analyse spectrale temps-réel sur le STM32F4

3

Systèmes embarqués et robotique

Motivation
Earing aids

Signal Processing for Hearing Aids and Cochlear Implants, Alain Dufaux, EPFL course HIM, 2014
4

U
ni

tro
n.

co
m

Systèmes embarqués et robotique

Motivation
Earing aids

Signal Processing for Hearing Aids and Cochlear Implants, Alain Dufaux, EPFL course HIM, 2014

• Analyse du signal requis
- Correction de la réponse en fréquence
- Modification d’amplitude
- Filtrage de certaines fréquences
- Annulation du feedback
- Création de signaux d’interférences

Processing compatible avec du son

5

Systèmes embarqués et robotique

Motivation
Earing aids

Signal Processing for Hearing Aids and Cochlear Implants, Alain Dufaux, EPFL course HIM, 2014

Contraintes pour le design :

• Petite tailles (Parfois implanté dans le patient)

• Très faible consommation

• Très peu de délais!!

ØDélai acceptable -> moins que 10ms, sinon le patient
est dérangé et l’appareil est inutilisable

6

Systèmes embarqués et robotique

Introduction

Divers constructeurs de processeurs DSP faits spécifiquement
pour ces tâches:

• Analog Devices
• Par exemple TigerSHARC

• Texas Instruments
• Par exemple TMS320C64xx

7

Systèmes embarqués et robotique

Introduction
Nous avons pu voir dès le premier cours que le processeur ARM Cortex-M4
dispose d’une extension DSP (Digital Signal Processing). Le DSP est une
partie très commune des microcontrôleurs qui fournit des ressources de calcul
très optimisées au calcul temps réel de signaux digitaux.

https://community.arm.com/processors/b/
blog/posts/armv6-m-vs-armv7-m---
unpacking-the-microcontrollers

Coeur du processeur

8

Systèmes embarqués et robotique

Introduction
L’opération de base du DSP est l’opération “MAC” (Multiply and ACcumulate) qui permet
d’effectuer une suite de produits et leur somme, en les combinant en une seule opération.
On trouve ce type d’opérations, par ex., dans le produit scalaire:

Mais attention: ces instructions, très particulières, ne sont pas forcément exploitées
directement pas le compilateur!

Dans ce cadre il est important de comprendre:
• Quelles instructions permettent un gain de temps/mémoire
• Dans quel cadre de calcul elles sont utilisées
• Comment les intégrer avec du code “généraliste” en C.

9

Systèmes embarqués et robotique

Motivation
Filtrage numérique (FIR Finite Impulse Response):

Z-1

+b1

+b2

Z-1

+b3

Z-1

+b4

Z-1

b5
10

Systèmes embarqués et robotique

signal

x x x x x x x x

+

Motivation
Filtrage numérique:

11

Systèmes embarqués et robotique

signal

x x x x x x x x

+

Motivation
Filtrage numérique:

12

Systèmes embarqués et robotique

signal

x x x x x x x x

+

Signal filtré

Motivation
Filtrage numérique:

13

Systèmes embarqués et robotique

Motivation
Filtrage numérique (Moyenne mobile, filtre FIR simple):

Z-1

+1/5

+1/5

Z-1

+1/5

Z-1

+1/5

Z-1

1/5
14

Systèmes embarqués et robotique

signal

1/8

x x x x x x x x

+

Motivation
Filtrage numérique (Moyenne mobile):

15

Systèmes embarqués et robotique

Motivation
Filtrage numérique (Moyenne mobile):

Ce type de calcul implique une série d’additions et de multiplications. Si le code n’est
pas optimisé, cela engendre de gros codes assembleur à la compilation, et donc un
temps d’exécution très lent.

16

Systèmes embarqués et robotique

Signal f

x x x x x x x x

+

Motivation
Autre exemple, la convolution:

Signal g

Entrée du système

Fonction de transfert
(réponse impulsionnelle inverse)

17

Systèmes embarqués et robotique

Excitation

x x x x x x x x

+

Réponse
impulsionnelle

Motivation
Réponse impulsionnelle d’un système linéaire:

Dirac

18

Systèmes embarqués et robotique

Motivation
Plus proche et lié à la robotique et l’intelligence artificielle: les réseaux de
neurones impliquent aussi ce types d’opération à répétition

19

Systèmes embarqués et robotique

Solution, les instructions SIMD sur ARM

Pour réaliser de façon efficace ces types d’opérations, les processeurs ARM cortex-M4 (et
plus, exemple M7) contiennent des sets d’instruction dites SIMD (Single Instruction
Multiple Data) exploitant l’extension DSP du processeur.

Cela va permettre par exemple d’effectuer une multiplication de deux entiers suivie d’une
addition de manière “hardware” = en 1 seul cycle.

L’instruction de multiplication suivie d’une addition est communément appelée instruction
MAC (Multiply and Accumulate), qui est donc l’instruction “de base” des coeurs DSP.

20

Systèmes embarqués et robotique

Les instructions SIMD

Sur le Cortex-M4, il est même possible d’effectuer 2 séries de multiplications suivies
d’additions en 1 seul cycle (c’est le maximum):

A,B,C,D = entiers 16 bits Somme = entier de 64 bits

Somme = Somme + (A x C) + (B x D)

An introduction to the Cortex-M4 processor architecture, Shyam Sadasivan 21

Systèmes embarqués et robotique

Les instructions SIMD
C

haque
instruction prend

1 cycle

±
±

±

±

±

22An introduction to the Cortex-M4 processor architecture, Shyam Sadasivan

Systèmes embarqués et robotique

Les instructions SIMD

23An introduction to the Cortex-M4 processor architecture, Shyam Sadasivan

Systèmes embarqués et robotique

Les instructions DSP vs FPU

Si on compare avec les instructions FPU du Cortex-M4, une “MAC” en utilisant des nombres
flottants 32 bits prend 3 cycles. L’équivalent “entier” 32 bits prend 1 cycle avec le DSP.

http://infocenter.arm.com 24

Systèmes embarqués et robotique

Gestion des instructions SIMD à la compilation

Par défaut, un code écrit en C avec des multiplications suivies d’additions ne générera pas du
code assembleur exploitant les instructions SIMD.

sub sp, sp, #20
add r7, sp, #0
movs r3, #5
str r3, [r7, #12]
movs r3, #6
str r3, [r7, #8]
movs r3, #7
str r3, [r7, #4]
ldr r3, [r7, #12]
ldr r2, [r7, #8]
mul r3, r2, r3
ldr r2, [r7, #4]
add r3, r3, r2
str r3, [r7, #4]
movs r3, #0
mov r0, r3
adds r7, r7, #20

int main() {

int a = 5;
int b = 6;
int somme = 7;

somme = somme + (a * b);

return 0;
}

Test.c
Test.s

Compilation

25

Systèmes embarqués et robotique

Gestion des instructions SIMD à la compilation

Il faut utiliser la bonne écriture du code pour que le compilateur exploite les instructions
SIMD. Exemple, l’instruction SMMLA

26

Systèmes embarqués et robotique

Gestion des instructions SIMD à la compilation

Dans le cas des TPs, ces instructions sont déjà écrites dans des define qu’il suffit d’utiliser
lorsqu’on veut effectuer des opérations utilisant les instructions SIMD

arm_math.c

27

Systèmes embarqués et robotique

Gestion des instructions SIMD à la compilation

Il est aussi possible d’appeler l’instruction assembleur à l’aide d’une fonction en C
(ex: __SMMLA() dans CMSIS DSP Software Library)

28

Systèmes embarqués et robotique

Gestion des instructions SIMD à la compilation

L’appel d’instructions
en assembleur peut
aussi être fait depuis
le langage C avec
le mot-clé __asm :

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100748_0606_00_en/ddx1471430827125.html 29

Systèmes embarqués et robotique

Gestion des instructions SIMD à la compilation

Il est donc possible d’écrire du code optimisé en exploitant les instructions SIMD liées à
l’extension DSP du processeur pour gagner des cycles, avec des gains allant de ~4x pour
des codes simples et pouvant aller beaucoup plus pour des codes compliqués avec des filtres
appliqués à des signaux.

D’autres “astuces” peuvent limiter le nombres d’opération lors du traitement de signal. Par
exemple lors d’opération de filtrage sur un signal, on peut utiliser un buffer circulaire pour
appliquer un filtre.

30

Systèmes embarqués et robotique

Buffer circulaire
Exemple avec le calcul de la moyenne

On utilise un buffer circulaire
pour ne pas remplacer toutes
les termes de la fenêtre du
signal.

31

Systèmes embarqués et robotique

Normal Buffer

Data 1

Buffer Length

Data 2

Data 3

NOT FULL

NOT FULL

NOT FULL

FULL

Normal Buffer

Normal Buffer

Normal Buffer

Buffer “normal”

remplissage

32

Systèmes embarqués et robotique

Circular Buffer

Data 1

Buffer Length

Data 2

Pointer

Pointer

Data 3

Pointer

Pointer

NOT FULL

NOT FULL

NOT FULL

FULL

Circular Buffer

Circular Buffer

Circular Buffer

Buffer
circulaire

33

Systèmes embarqués et robotique

Buffer circulaire

Implémentation en C

The definitive Guide to ARM
Cortex M3 and Cortex M4
Processors, Joseph Yiu, 3rd
Edition, 2013

34

Systèmes embarqués et robotique

Adressage modulo hardware
Sur microcontrôleur dsPIC

0x1110

REPEAT #0x31

Les adresses
restent toujours
dans la même
zone, malgré
l’incrémentation
(un ++ à la fin du
buffer ramène au
début)

35

Systèmes embarqués et robotique

Analyse spectrale à l’aide
de la transformée de

Fourier

36

Systèmes embarqués et robotique

La transformée de Fourier

Dans le cas du traitement du son, une opération classique effectuée est la transformée de
Fourier, pour passer du domaine temporel au domaine fréquentiel.

Une application typique est la détection de pics de fréquence dans le domaine fréquentiel
pour déterminer la/les fréquences contenues dans un son (TP5).

temps

Amplitude

fréquence

Amplitude

Transformée
de Fourier

44
0

H
z

“Laaaaaaaaaa”

37

Systèmes embarqués et robotique

Transformée de Fourier discrète (DFT)

Dans le cadre d’un système embarqué, on travaille avec des signaux discrétisés, et donc on
va appliquer une transformée de Fourier discrète.

101110011101

fréquence

Amplitude

44
0

H
z

DFT

38

Systèmes embarqués et robotique

Application de la DFT (Discrete Fourier Transform)
Time Domain Frequency Domain

Fi
lte

ri
ng

 in
 t

im
e

do
m

ai
n

DF
T

Fi
lte

ri
ng

 in
 f

re
qu

en
cy

 d
om

ai
n

http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch9.pdf

39

Systèmes embarqués et robotique

DFT (Discrete Fourier Transform)

La DFT est définie par:

(x0…xN-1 nombres complexes en entrée
X0…XN-1 nombres complexes en sortie)

Principe: n’importe quel signal peut être re-créé par une somme de sinus et de cosinus

40

Systèmes embarqués et robotique

DFT (Discrete Fourier Transform)

La DFT est définie par:

(x0…xN-1 nombres complexes en entrée
X0…XN-1 nombres complexes en sortie)

Principe: n’importe quel signal peut être re-créé par une somme de sinus et de cosinus

N opérations2

41

Systèmes embarqués et robotique

FFT (Fast Fourier Transform)

La Fast Fourier Transform est un algorithme de calcul rapide et efficace de la Discrete Fourier Transform

DFT:

Principe de la FFT -> Modifier les opérations pour diminuer le nombre total d’opérations

42

Systèmes embarqués et robotique

FFT (Fast Fourier Transform)

DFT : ~N2 opérations DFT décomposée en deux
sous DFT : <N2 opérations

FFT: Nlog(N) opérations

FAST FOURIER TRANSFORMS ON A DISTRIBUTED DIGITAL SIGNAL PROCESSOR, Omar Sattari, University of California, 2002

L’idée est de casser l’algorithme DFT en des sous-algorithmes DFT, et, avec une permutation de certains
coefficients, cela réduira le nombre total d’opérations

43

Systèmes embarqués et robotique

DFT : ~N2 opérations DFT décomposée en deux
sous DFT : <N2 opérations

FFT: Nlog(N) opérations

FAST FOURIER TRANSFORMS ON A DISTRIBUTED DIGITAL SIGNAL PROCESSOR, Omar Sattari, University of California, 2002

Notez l’inversion
des bits d’index!

44

FFT (Fast Fourier Transform)
L’idée est de casser l’algorithme DFT en des sous-algorithmes DFT, et, avec une permutation de certains
coefficients, cela réduira le nombre total d’opérations

Systèmes embarqués et robotique

FFT: principe
Passage de N2 à N log N nombre d’opérations par la décomposition en FFT de taille plus
petite et de façon itérative, jusqu’à atteindre la taille de 1. Cette décomposition requiert de
permuter les entrées ou les sorties, selon l’usage.
L’ordre des nombres est changé suivant le schéma suivant, qui équivaut à une inversion
des bits d’adressage:

Notez l’inversion
des bits
d’adressage!

45

Systèmes embarqués et robotique

FFT: “butterfly” (existe en mode d’adressage)
La FFT consiste à effectuer un reverse des bits et des opérations papillons “butterfly”:

1 opération “butterfly”

L’algorithme FFT en trois étapes avec chacunes 4
opérations “butterfly” 46

Systèmes embarqués et robotique

FFT: implémentation
Découpage “butterfly”
aussi réalisées par des
Tables.

Ici pour aller jusqu’à 0x800
on commence par 0x400,
puis on coupe en moitié
(0x200, 0x600), puis en
Moitié (0x100, 0x500,
0x300, 0x700) etc.

https://github.com/ARM-software/CMSIS/
blob/master/CMSIS/DSP_Lib/Source/
CommonTables/arm_common_tables.c 47

Systèmes embarqués et robotique

FFT: implémentation
Programmation en C: ARM fournit de nombreuses librairies permettant d’effectuer des
FFT sur des entiers (en utilisant la DSP) et des flottants (en utilisant la FPU)

Dans le TP5, utilisation de la FFT, mais en utilisant la FPU (choix d’implémentation):

Effectue la FFT

48

Systèmes embarqués et robotique

FFT: implémentation
Fonctions trigonométriques
réalisées par des tables

https://github.com/ARM-software/CMSIS/
blob/master/CMSIS/DSP_Lib/Source/
CommonTables/arm_common_tables.c

49

Systèmes embarqués et robotique

Récapitulation

50

Systèmes embarqués et robotique

Utilisation de ASM, C et C++/python
En général:

• Assembleur pour les microcontrôleurs avec des tâches peu complexes et visant faible
taille / consommation. Code de startup. Aussi dans le cas d’optimisation de code sur
architectures spéciales (DSP, FPU).

• C++ ou python pour des PC avec interface graphique, pour des projets complexes
purement informatiques. (suite du cours)

• C pour ce qui se trouve entre deux…

Les frontières sont flexibles et dictées par le bon sens et l’expérience des personnes
impliquées.

51

Systèmes embarqués et robotique

Utilisation de ASM, C et C++/python

Assembleur

C

C++ / python

52

Systèmes embarqués et robotique

Utilisation de ASM, C et C++/python
Exemple 1:

Projet: Code de startup pour le microcontrôleur STM32F4

Language: Assembleur

Motivation: Code proche de la machine car configure l’initialisation de la table
des vecteurs des interruptions, Stack Pointer, Program Pointer etc. Code n’ayant pas
besoin d’être recompilé et loin de l’utilisateur de la plateforme.

53

Systèmes embarqués et robotique

Utilisation de ASM, C et C++/python
Exemple 2:

Projet: Calcul de la FFT pour un traitement de son

Language: C / Assembleur

Motivation: Assembleur pour exploiter les mécanismes DSP ou FPU du
processeur ARM Cortex-M4, C pour que ce soit multi-platforme.

54

Systèmes embarqués et robotique

Utilisation de ASM, C et C++/python
Exemple 3:

Projet: Régulateur PID pour un robot e-puck2

Language: C

Motivation: Doit être rapide d’exécution, mais aussi intéressant d’être multi-
platforme, avec des paramètres pouvant facilement être modifiés par l’utilisateur.

55

Systèmes embarqués et robotique

Utilisation de ASM, C et C++/python
Exemple 4:

Projet: Monitor pour visualisation de données e-puck2

Language: C++ ou python

Motivation: Pour les parties graphiques il existe beaucoup de code, librairies, etc, et
l’avantage de travailler avec du code orienté objet (suite du cours)

56

Systèmes embarqués et robotique

Consigne pour les
miniprojets

57

Systèmes embarqués et robotique

Programme (rappel)
Faire encore un TP pour se roder et passer en revue les différents capteurs, puis test et miniprojet

58

Systèmes embarqués et robotique

Miniprojets

Rendu du rapport + code: jeudi 15 mai, 23h00

Présentations: vendredi 16 mai -> mercredi 28 mai

Choix de l’heure de passage: Google Sheet sur moodle, publié le 1 mai.
Inscrivez vous par groupe (G01, G56, etc.).

Présentations par zoom.

59

Systèmes embarqués et robotique

Méthode de travail :

La programmation à deux améliore l’apprentissage

Répartissez-vous le travail

Utilisez les outils de gestion du code (versions) partagé (git).
Ceci est un critère de l’évaluation

60

Systèmes embarqués et robotique

Donnée:

Le but du miniprojet est de partir sur la base des éléments que vous avez vu lors des TPs
1-5 pour créer plusieurs tâches plus complexes à résoudre par le robot e-puck2.

La donnée complète est sur moodle

61

Systèmes embarqués et robotique

Donnée:
Vous êtes libres de déterminer vous-même les tâches que le robot doit effectuer, et donc la forme de la
démonstration de votre programme. Les contraintes sont les suivantes :

1) Le projet doit être fait sur la base de la librairie e-puck2_main-processor vue lors des TPs 4-5.

2) Vous devez obligatoirement utiliser les éléments suivants du robot e-puck2 dans votre projet :

a. Les deux moteurs pas-à-pas. Par exemple Régulation PID, odométrie précise, forme géométrique, etc.
b. Un des capteurs de distance (Capteurs de proximités infrarouges ou capteur Time-of-Flight). Par exemple

détection d’obstacle petite ou grande distance.
c. Un capteur parmi ceux que vous avez investigué durant les TPs 3-5, donc un capteur parmi : la

caméra, les micros, l’IMU. Par exemple avec la caméra : détection d’objet, suivi de lignes. Par exemple
avec les micros : détection de sons sur la base de l’amplitude et/ou fréquence. Par exemple avec
l’accéléromètre, détection d’un plan incliné, d’un choc. Par exemple avec le gyroscope, détection du
mouvement d’un plan incliné.

62

Systèmes embarqués et robotique

Donnée:
3) Chaque capteur/actuateur doit être utilisé/géré dans une Thread, à l’image de leur utilisation dans

les TPs 4-5. La création de threads doit suivre les besoins, mais toujours de manière à respecter
les taux de rafraichissements des capteurs et en faisant un usage intelligent des outils disponibles
dans ChibiOS (messagebus, sémaphores, etc.).

4) Le code doit être rendu sous la forme d’une librairie (avec divers .c/.h) qui s’intègre avec la librairie
e-puck2_main-processor que vous avez utilisé lors des Travaux pratiques.

Voici un exemple de projet : Le robot e-puck2 reproduit les mouvements d’une balle sur un plan
incliné en utilisant l’accéléromètre comme détecteur de la direction du vecteur gravité. Le robot
“rebondit” lorsqu’il détecte un obstacle avec ses capteurs de proximité infrarouges.

63

Systèmes embarqués et robotique

Miniprojets: travailler en groupe

On va vous demander un suivi de votre travail de groupe:

64

Systèmes embarqués et robotique

Forme du rendu:

Le rendu du miniprojet sera composé de:

• Une presentation (avec slides de preference, pas obligatoire) de 3 minutes

• Une démonstration live (pas de vidéos) du programme final, d’une durée de 2 minutes

• Un rapport de 3-4 pages (longueur indicative) qui donne un aperçu de la méthode de travail, des analyses,
la conception du logiciel et des résultats obtenus. Une section doit donner un retour sur votre méthode de
travail de groupe.

• Le code structuré et commenté

• Une discussion sur le projet lors du rendu/presentation

+ demo + présentation = durée totale de passage ~25 minutes
65

Systèmes embarqués et robotique

Critères d’évaluation:
Les critères d’évaluations seront :

- Clarté et propreté du code source (respect de certaines conventions du C, des commentaires utiles, des
valeurs définies, des fonctions et variables avec des noms clairs, etc.)

- Clarté et propreté du rapport (Numéros de sections, légendes numérotées aux figures, numéros de page,
axes aux graphiques, citations et références)
Un point enlevé sur la note finale du projet (note entière) pour des erreurs de ce type!

- Efficacité du code en termes d’utilisation des ressources (temps, mémoire, tâches).
- Pratique d’utilization de GitHub.
- Pratique de travail de groupe.
- Originalité de la démonstration.

66

Systèmes embarqués et robotique

Miniprojets

Commencez par comprendre et structurer!!!

Code: attention aux warnings, temps d’exécution, ressources utilisées, etc.

Rapport:
• seulement ce qui n’est pas dans le code, comme structure générale, tests

initiaux, graphes de capteurs, etc
• Respectez le format (sections numérotées, figures et tables

numérotées avec légendes, axes sur les graphes, références)

67

Systèmes embarqués et robotique

GCtronic award:

Un prix sera décerné au miniprojet ayant obtenu la meilleure note sur la base de
ces critères d’évaluation

GCtronic Award

to

Student #1
Student #2

68

Systèmes embarqués et robotique

Examen valable pour 40% de la note du cours

Examen à blanc: mardi 1 avril
CM 1 2, CM 1 4, CM 1 5 et CO5-6 à 8:15

Examen : mardi 8 avril
CM 1 2, CM 1 4, CM 1 5 et CO5-6 à 8:15

69

Systèmes embarqués et robotique

70

125 étudiants inscrits au cours

45 n’ont pas répondu!

Systèmes embarqués et robotique

Examen
Format:

Questions sur moodle, similaires que dans les quiz de chaque semaine

Support:
Aucune documentation autorisée

Règles générales:
Absences justifiées (certificat médical) rattrapées par une interrogation orale, pas de visite

des toilettes possible. Apportez votre carte d’étudiant.

71

Systèmes embarqués et robotique

Notation de l’examen
A chaque question est associé un nombre de points qui est affiché avec la question.
• Questions vrai-faux: si juste, on obtient le nombre de point, si c’est faux on a 0

points.
• Questions avec réponse numérique: si juste, on obtient le nombre de point, si c’est

faux on a 0 points.
• Questions avec plusieurs réponses possibles: Les réponses justes se partagent à part

égale les points de la question, les réponses fausses se partagent à part égale le même
nombre de points, mais négatifs. Le total est saturé vers le bas à 0.

A la fin les points sont sommés et la note est définie par le nombre de point obtenus, divisé
par le nombre de points maximaux, multiplié par 6. La note est saturée vers le bas à 1.0.

72

Systèmes embarqués et robotique

TP de cette semaine

Application et compréhension de la FFT sur un signal sonore.

Exploitation de la sortie en amplitude de la FFT pour détection de
fréquences.

Programmation sur l’e-puck d’un contrôle par son.

73

Systèmes embarqués et robotiqueFeedback hebdomadaire

74

Systèmes embarqués et robotique

75

Systèmes embarqués et robotique

76

Systèmes embarqués et robotique

77

Systèmes embarqués et robotique

Feedback
(retours
indicatifs)

78

88% OK

Participation : 35%

Systèmes embarqués et robotique

✅ Points forts du cours:

• Implication pédagogique :
• Enseignant et assistants très investis, disponibles, ouverts aux critiques et aux feedbacks

réguliers.
• Atmosphère agréable durant les cours et TP, malgré la difficulté du contenu.

• Bonne organisation générale :
• Cours bien structurés, slides clairs et outils bien pensés (chatbot, formulaire pour appeler les

assistants, enregistrements des cours).
• TP bien guidés et intéressants.

• Outils pédagogiques appréciés :
• Utilisation de quiz hebdomadaires utiles pour se préparer à l’examen.
• Accès à un chatbot personnalisé, très apprécié pour la théorie.

• Motivation suscitée :
• Cours qui donne envie d’approfondir la robotique.
• Approche durable évoquée dans les cours saluée par certains.

79

Systèmes embarqués et robotique

❌ Points faibles du cours:

• Difficulté globale élevée :
• Charge cognitive importante (robotique, datasheets, programmation à apprendre en

parallèle).
• Matière perçue comme difficile à digérer.

• TP trop longs et parfois confus :
• Durée des TP sous-estimée, certains groupes avancent peu malgré leurs efforts.
• Manque de guidance claire dans certains TP (besoin de plus d’instructions, de

commentaires dans les solutions, etc.).
• Informations parfois trop dispersées (multiples PDF).

• Problèmes d’introduction aux outils :
• Introduction à Git jugée trop abrupte et source de décrochage.
• Installation des outils difficile et frustrante pour certains.

• Lien cours-TP perfectible :
• Certains ressentent un décalage entre les cours théoriques et leur utilité directe pour les TP.
• Difficulté à savoir ce qui sera attendu à l’examen malgré les quiz.

80

