=PFL

DSP et calcul
pour traitement de signal

Francesco Mondada, Frank Bonnet
IEM - STI - EPFL

=PFL

Introduction

Les systemes embarques doivent effectuer des taches de plus en plus diverses, par
exemple liées aux multimédias avec les smartphones, et donc aussi des calculs de plus
en plus complexes. Le traitement de signal est un ¢lément clé de ces systemes depuis
longtemps.

Pour traiter cette question, les ingénieurs ont di trouver des moyens pour effectuer des
opé€rations complexes en minimisant le temps de calculs des microcontroleurs. Le DSP
(Digital Signal Processing) est un cas typique que 1’on va aborder dans ce cours.

=PFL
Introduction

Sujets de ce cours sur le DSP:

®* Exemple de traitement de signal embarqué
® Les instructions ARM lié¢es au DSP

®* FFT pour effectuer de I’analyse spectrale temps-réel sur le STM32F4

=Pi-L

Motivation
Earing aids
£
O
3]
(e
O
."é'
-
m 4

Signal Processing for Hearing Aids and Cochlear Implants, Alain Dufaux, EPFL course HIM, 2014

=PFL

Motivation

Earing aids

® Analyse du signal requis
- Correction de la réponse en fréquence
- Modification d’amplitude
- Filtrage de certaines fréquences
- Annulation du feedback
- Creation de signaux d’interférences

mmmmm) Processing compatible avec du son

Signal Processing for Hearing Aids and Cochlear Implants, Alain Dufaux, EPFL course HIM, 2014

=PFL

Motivation

Earing aids Contraintes pour le design :

® Petite tailles (Parfois implanté dans le patient)
® Tres faible consommation
® Tres peu de délais!!

» Délai acceptable -> moins que 10ms, sinon le patient
est dérangé et I’appareil est inutilisable

Signal Processing for Hearing Aids and Cochlear Implants, Alain Dufaux, EPFL course HIM, 2014

=P-L

Introduction

Divers constructeurs de processeurs DSP faits spécifiquement
pour ces taches:

® Analog Devices
® Par exemple TigerSHARC

® Texas Instruments
® Par exemple TMS320C64xx

=PFL %

Introduction

Nous avons pu voir des le premier cours que le processeur ARM Cortex-M4
dispose d’une extension DSP (Digital Signal Processing). Le DSP est une
partie tres commune des microcontréleurs qui fournit des ressources de calcul
tres optimisées au calcul temps réel de signaux digitaux.

™
Cortex -M4
Nested Vectored Wake Up Interrupt
Interrupt Controller Controller Interface
CPUJwith DSP Extenslons)' FPU
Code Data
. Debu
Interface Watchpoint Accesgs
Flash Patch
Port
PMemory Bus & Breakpoint
rotection ¢
i Matrix Serial
Unit TMTrace %
Coeur du processeur SRAM & Vil
Peripheral ETM Trace Trace
Interface Port

https://community.arm.com/processors/b/
blog/posts/armv6-m-vs-armv7-m---
unpacking-the-microcontrollers

=PFL %

Introduction

L’opération de base du DSP est I’opération “MAC” (Multiply and ACcumulate) qui permet
d’effectuer une suite de produits et leur somme, en les combinant en une seule opération.
On trouve ce type d’operations, par ex., dans le produit scalaire:

n
a-b= Za,’bi =a1by +asby +---+ a,b,
i=1

4

Mais attention: ces instructions, tres particulieres, ne sont pas forcément exploitees
directement pas le compilateur!

Dans ce cadre 1l est important de comprendre:
® Quelles instructions permettent un gain de temps/mémoire
® Dans quel cadre de calcul elles sont utilisées
®* Comment les intégrer avec du code “généraliste” en C.

=PFL

Motivation

Filtrage numérique (FIR Finite Impulse Response):

i W b

FE T Ped

l—ﬁléwé
Y
O

il
Y
7

=P-L

Motivation

Filtrage numérique:

e Tty o1

=PFL
Motivation

Filtrage numérique:

:

=P-L

Motivation

Filtrage numérique:

signal T

- [T

Signal filtré

—)

13

=PFL

Motivation

Filtrage numérique (Moyenne mobile, filtre FIR simple):

SRR

1

[(o

T
Ps—)
T
()
T
()
T
[N 1/5

14

=PFL

Motivation

Filtrage numérique (Moyenne mobile):

signa

]

3

§ MTHT TIHHH

:

1/8

i
aAAaaaan
rrereT?

=

=PFL %

Motivation

Filtrage numérique (Moyenne mobile):

o 1l et

IR [T

ERREEEE
BITTIIrIInt
114

!

Ce type de calcul implique une série d’additions et de multiplications. Si le code n’est
pas optimis¢€, cela engendre de gros codes assembleur a la compilation, et donc un
temps d’exécution tres lent.

=PFL %

Motivation

Autre exemple, la convolution:

(f*a)(t)= [F(r)g(t—7)dr

Signal f T

:

Signal g

MJTTHTUTHHW

Entrée du systeme

Fonction de transfert
(réponse impulsionnelle inverse)

17

=PFL

Motivation

Réponse impulsionnelle d’un systeme linéaire:

Excitation —e—e-e-e-oo-oo oo

—)

w_.ﬁ_._._._.J Dirac
I

i . Reponse

T impulsionnelle
Teo ole I

18

=PFL
Motivation

Plus proche et 1i¢ a la robotique et ’intelligence artificielle: les réseaux de
neurones impliquent aussi ce types d’opération a répétition

N

X1>—W1 b

wo

w2

oy

19

| 5
=PFL &
Solution, les instructions SIMD sur ARM

Pour réaliser de fagon efficace ces types d’opérations, les processeurs ARM cortex-M4 (et
plus, exemple M7) contiennent des sets d’instruction dites SIMD (Single Instruction
Multiple Data) exploitant I’extension DSP du processeur.

Cela va permettre par exemple d’effectuer une multiplication de deux entiers suivie d’une
addition de manicre “hardware” = en 1 seul cycle.

L’1instruction de multiplication suivie d’une addition est communément appelée instruction
MAC (Multiply and Accumulate), qui est donc I’instruction “de base des coeurs DSP.

=PFL %

Les instructions SIMD

Sur le Cortex-M4, 1l est méme possible d’effectuer 2 séries de multiplications suivies
d’additions en 1 seul cycle (c’est le maximum):

A,B,C,D = entiers 16 bits Somme = entier de 64 bits

Somme = Somme + (A x C) + (B x D)

packed data packed data
32-bit | A | B C | D | 32-bit
64-bit 64-bit
Sum + Sum

An introduction to the Cortex-M4 processor architecture, Shyam Sadasivan

=P-L

Les instructions SIMD

OPERATION INSTRUCTIONS
16 x 16 = 32 SMULBB, SMULBT, SMULTB, SMULTT
16 x 16 + 32 = 32 SMLABB, SMLABT, SMLATB, SMLATT
16 x 16 + 64 = 64 SMLALBB, SMLALBT, SMLALTB, SMLALTT
16 x 32 = 32 SMULWB, SMULWT

(16 x 32) + 32 = 32
(16 x 16) + (16 x 16)

(16 x 16) + (16 x 16) +
(16 x 16) * (16 x 16) +
32 x 32 = 32

32 * (32 x 32) = 32

32 X 32 = 64

(32 x 32) + 64 = 64

(32 x 32) + 32 + 32 = 64

32 £ (32 x 32)
(32 x 32) = 32 (upper)

32
32
64

32 (upper)

&
64

SMLAWB, SMLAWT

SMUAD, SMUADX, SMUSD, SMUSDX
SMLAD, SMLADX, SMLSD, SMLSDX
SMLALD, SMLALDX, SMLSLD, SMLSLDX

MUL

MLA, MLS
SMULL, UMULL
SMLAL, UMLAL
UMAAL

SMMLA, SMMLAR, SMMLS, SMMLSR
SMMUL, SMMULR

An introduction to the Cortex-M4 processor architecture, Shyam Sadasivan

Y

9|9/A2 | puaid uononisul anbeyn

22

=P-L

Les instructions SIMD

Cycle counts

CLASS INSTRUCTION ARMOE-S CORTEX-M3 Cortex-M4
Arithmetic ALU operation (not PC) 1-2 il il
ALU operation to PC 3 -4 3 3
CLZ al 1 1
QADD, QDADD, QSuB, QDSUB 1-2 n/a 1
QADDS, QADD16, QSUBS, QSUB16 n/a n/a 1
QDADD, QDSUB n/a n/a 1
QASX, QSAX, SASX, SSAX n/a n/a 1
SHASX, SHSAX, UHASX, UHSAX n/a n/a 1
SADD8, SADD16, SSUB8, SSUB16 n/a n/a al
SHADD8, SHADD16, SHSUB8, SHSUB16 n/a n/a x |
UQADD8, UQADD16, UQSUB8, UQSUB16 n/a n/a 1
UHADD8, UHADD16, UHSUB8, UHSUB16 n/a n/a 1
UADD8, UADD16, USUB8, USUB16 n/a n/a a |
UQASX, UQSAX, USAX, UASX n/a n/a 1
UXTAB, UXTAB16, UXTAH n/a n/a il
USAD8, USADAS n/a n/a 1
Multiplication MUL, MLA 29=03 1-2 il
MULS, MLAS 4 1-2 1
SMULL, UMULL, SMLAL, UMLAL 3 -4 5-7 i |
SMULBB, SMULBT, SMULTB, SMULTT 1-2 n/a 1
SMLABB, SMLBT, SMLATB, SMLATT 1-2 n/a 1
SMULWB, SMULWT, SMLAWB, SMLAWT 1-2 n/a 1
SMLALBB, SMLALBT, SMLALTB, SMLALTT 2 -3 n/a 1
SMLAD, SMLADX, SMLALD, SMLALDX n/a n/a 1
SMLSD, SMLSDX n/a n/a 1
SMLSLD, SMLSLD n/a n/a 1
SMMLA, SMMLAR, SMMLS, SMMLSR n/a n/a 1
SMMUL, SMMULR n/a n/a 1
SMUAD, SMUADX, SMUSD, SMUSDX n/a n/a 1
UMAAL n/a n/a 1
Division SDIV, UDIV n/a 2 - 12 2 - 12

An introduction to the Cortex-M4 processor architecture, Shyam Sadasivan

Single
cycle
MAC

23

=P-L

Les instructions DSP vs FPU

S1 on compare avec les instructions FPU du Cortex-M4, une “MAC” en utilisant des nombres
flottants 32 bits prend 3 cycles. L’équivalent “entier” 32 bits prend 1 cycle avec le DSP.

Multiply float VMUL.F32 i i
then accumulate float VMLA.F32 3
then subtract float VMLS.F32 3
then accumulate then negate float VNMLA.F32 3
then subtract then negate float VNMLS.F32 3
Multiply then accumulate float VFMA.F32 3
(fused)
then subtract float VFMS.F32 3
then accumulate then negate float VFNMA. F32
then subtract then negate float VFNMS . F32 3

http.//infocenter.arm.com m 24

=PFL %

Gestion des instructions SIMD a la compilation

Par défaut, un code écrit en C avec des multiplications suivies d’additions ne générera pas du

code assembleur exploitant les instructions SIMD.
sub sp, sp, #20

add r7, sp, #0
movs r3, #5
str r3, [r7, #12]
int main() { movs r3, #6
str r3, [r7, #8]
inta =5; movs r3, #7
intb =6; > str r3, [r7, #4]
int somme =7, L ldr r3, [r7, #12]
Compilation Idr r2, [17, #8]
somme = somme + (a * b); — mul r3,r2, r3
ldr r2, [r7, #4]
return O; ——» add r3, r3, r2
} str r3, [r7, #4]
movs r3, #0
mov ro, r3
adds r7, r7, #20

Test.c
Test.s - 25

=PFL &

Gestion des instructions SIMD a la compilation

Il faut utiliser la bonne écriture du code pour que le compilateur exploite les instructions
SIMD. Exemple, I’instruction SMMLA

SMMLA — 32-bit multiply with 32-most-significant-bit accumulate
Fractional q31_t multiply accumulate. Multiplies two 32-bit integers, generates a
64-bit result, and adds the high bits of the result to a 32-bit accumulator.
Processor support: M4 only [1 cycle]
The instruction is available in C code via the idiom:

(int32_t) (((int6d_t) x * y + ((int6d_t) acc <K 32)) >> 32);
C code example:
// Performs a true fractional MAC

TESZ § % ¥ B0€S

acc = (int32_t) (((inted_t) x * y + ((int6d_t) acc <K 32)) >> 32);
acc <<= 1; =

26

=PFL %

Gestion des instructions SIMD a la compilation

Dans le cas des TPs, ces instructions sont dé¢ja écrites dans des define qu’il suffit d’utiliser
lorsqu’on veut effectuer des opérations utilisant les instructions SIMD

/* SMMLAR */
#define multAcc_32x32_keep32_R(a, x, y) \
a = (g31_t) (((((g63_t) a) << 32) + ((g63_t) x * y) + 0x80000000LL) >> 32)

/* SMMLSR */
#define multSub_32x32_keep32_R(a, x, y) \
a = (g31_t) (((((g63_t) a) << 32) - ((g63_t) x * y) + 0x80000000LL) >> 32)

/* SMMULR */
#define mult_32x32_keep32 R(a, x, y) \
a = (g31_t) (((g63_t) x * y + Ox80000000LL) >> 32)

/* SMMLA */
#define multAcc_32x32_keep32(a, x, y) \
a += (q31_t) (((gb3_t) x * y) >> 32)

/* SMMLS */
#define multSub_32x32_keep32(a, x, y) \ arm_math.c
a -= (q31_t) (((g63_t) x * y) >> 32)

=PFL %

Gestion des instructions SIMD a la compilation

Il est aussi possible d’appeler I’instruction assembleur a 1’aide d’une fonction en C
(ex: SMMLA() dans CMSIS DSP Software Library)

uint32_t __SMMLA (int32_t vall,
int32_t val2,
int32_t val3

)

This function enables you to perform a signed 32-bit multiplications, adding the most significant 32 bits of the 64-bit result to a 32-bit accumulate operand.

Parameters
vall first operand for multiplication.
val2 second operand for multiplication.
val3 accumulate value.

Returns
the product of multiplication (most significant 32 bits) is added to the accumulate value, as a 32-bit integer.
Operation:

p = vall * val2
res[31:0] = p[61:32] + val3[31:0]

28

=PFL &

Gestion des instructions SIMD a la compilation

#include <stdio.h>

L’appel d’instructions
int add(int i, int j)
en assembleur peut {

. A . . int res = 0;
aussi etre fait depuls __asm ("ADD %[result], %[input_il, %[input_j1"

: [result] "=r" (res)
le langage C avec : [input_il "r" (i), [input_jl "r" (3

le mot-clé asm J;

- ° return res;

}

int main(void)
{ -
int a
int b
int ¢

1h
25

0 .
c = add(a,b);

printf("Result of %d + %d = %d\n", a, b, c);
Jy

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100748 0606 00 en/ddx1471430827125.html

=PFL %

Gestion des instructions SIMD a la compilation

Il est donc possible d’écrire du code optimisé en exploitant les instructions SIMD li¢es a
I’extension DSP du processeur pour gagner des cycles, avec des gains allant de ~4x pour
des codes simples et pouvant aller beaucoup plus pour des codes compliqués avec des filtres
appliqués a des signaux.

D’autres “astuces” peuvent limiter le nombres d’opération lors du traitement de signal. Par
exemple lors d’opération de filtrage sur un signal, on peut utiliser un buffer circulaire pour
appliquer un filtre.

=P-L

Buffer circulaire

Exemple avec le calcul de la moyenne

signal I

/

1/8

On utilise un buffer circulaire
pour ne pas remplacer toutes
les termes de la fenétre du
signal.

lﬂi‘ll

31

=PFL G

Buffer “normal” . Buffer Length NOT FULL |
Normal Buffer
SCEE
» remplissage
Normal Buffer
NOTFULL.

Normal Buffer

vat= 3 [

' & 2 B
Normal Buffer

—— TR
HEEEEN

32

=PFL G

Buffer Pointer Buffer Length NOTFULL
circulaire :1 e
Circular Buffer
JUESE | | | | []
Pointer _
Circular Buffer
NOTFuLL

Circular Buffer

Pointer1

rata 3 [N

Pointer

Circular Buffer

33

=PFL &

Buffer circulaire

Implementatlon cn C Block-based FIR filter.

N equals the length of the filter (number of taps)

blockSize equals the number of samples to process

state[] is the state variable buffer and contains the previous N
samples of the input

stateIndex points to the oldest sample in the state buffer. It

will be overwritten with the most recent input sample.

coeffs[] holds the N coefficients

inPtr and outPtr point to the input and output buffers, respectively

eV oy e ~on i “Son Nop, g)
e e e e e e e T

for (sample=0;sample<blockSize; sample++)

{

// Copy the new sample into the state buffer and then
circularly wrap statelIndex
state[stateIndex++] = inPtr[sample]

EEm) if (stateIndex >= N)

stateIndex = 0;

sum = 0.0f;
for (i=0;1<N;i++)

sum += state[stateIndex++] * coeffs[N-i];

mmmm) if (stateIndex >= N)

stateIndex = 0;
The definitive Guide to ARM }
Cortex M3 and Cortex M4 outPtr [sample] = sum;

Processors, Joseph Yiu, 3rd }
Edition, 2013

34

=PFL

Adressage modulo hardware
Sur microcontroleur dsPIC

Byte

Address = MOV #0x1100,W0
MOV W0, XMODSRT ;set modulo start address
LCS adreSSGS / MOV #OX1163,W0
/ MOV W0, MODEND ;set modulo end address
0x1100 MOV #0x8001, WO

restent touj Ours MOV WO, MODCON ;enable W1, X AGU for modulo
A OX1110 Ay MOV #0x0000,W0 ;WO holds buffer fill value
dans la méme vor worito . ssoine me o parrr
zone, malgré o o ez e e ket
- , . 0x1163

I’incrémentation
(un ++ a la fin du
buffer rameéne au

Start Addr = 0x1100

d 4 b t End Addr = 0x1163
cOou Length = 0x0032 words

— /

=PFL

Analyse spectrale a [’aide
de la transformee de
Fourier

=PFL %

La transformée de Fourier

Dans le cas du traitement du son, une opé€ration classique effectuée est la transformee de
Fourier, pour passer du domaine temporel au domaine fréquentiel.

Une application typique est la détection de pics de fréquence dans le domaine fréquentiel
pour déterminer la/les fréquences contenues dans un son (TP5).

Amplitude
“laaaaaaaaaa’

AWiviviviy
VYV

Transformée

Amplitude

?

de Fourier

440 Hz

fréquence

37

=P-L

Transformee de Fourier discrete (DFT)

Dans le cadre d’un systeme embarqué, on travaille avec des signaux discrétises, et donc on
va appliquer une transformée de Fourier discrete.

3 ST
Amplitude

|-

fréquence

440 HZ |

=PFL &

Application de la DFT (Discrete Fourier Transform)

Filtering in frequency domain

Time Domain Frequency Domain
1.0 .
|a ll\/leaSlered s; nal II E 2 A L
: L i 9-L-[d. Single spectrum |
; 8
1
) [74 Li
3 L
= K ;
- : 2 5 n
g o
c E =L
O < 7
g j i
I}
Y o - } K 1)
£ 0 32 64 96 128 160 192 224 255 0 r = t i
S Sample number 0 0.1 Olfrequenc(;;g‘ 0.4
=
(o))
£ i | \IN dl 1 L]' 10 . . :
E e ARGl 9—__| e. Averaged spectrum |
_— 0.5 8
i i
L
g S6 I
=00 2 g '
g a.
= £, L4
<L
0.5 3
Dol e]
1 =
i
0 32 64 9 128 160 192 224 255 0 } t t
0 0.1 0.2 0.3 0.4

Sample number Frequency

http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch9.pdf

| J
=PFL &
DFT (Discrete Fourier Transform)

N-—-1
La DFT est définie par: Xp= Y zpe” Nk k=0,.,N—1
n=0

(Xg...XN.; Nombres complexes en entrée
Xp...XN.; nombres complexes en sortie)

Principe: n’importe quel signal peut €tre re-créé par une somme de sinus et de cosinus

e’ = cos(x) + isin(x)

40

=PFL

DFT (Discrete Fourier Transform)

T

La DFT est définie par: Xy — 2ink

= L€

3
Il
o

\
(Xg...XN.; Nombres complexes en entrée \ N2 opérations
Xp...XN.; nombres complexes en sortie)

Principe: n’importe quel signal peut €tre re-créé par une somme de sinus et de cosinus

e’ = cos(x) + isin(x)

41

=P-L

FFT (Fast Fourier Transform)

La Fast Fourier Transform est un algorithme de calcul rapide et efficace de la Discrete Fourier Transform

71_1
21(‘ -
lJ C

DFT: fi=)_ zpe 7=0,...,n—1.
k=0

ou en notation matricielle :

(;0\ (1 1 1 - 1 \(a:(,\

2 T —
1 w w* N 1

Y — 2mi
f2 — |1 w w R A 1)) W = @_%

o) 1wt vy e) g,

Principe de la FFT -> Modifier les opérations pour diminuer le nombre total d’opérations

[N
[

42

=P-L

FFT (Fast Fourier Transform)

L’idee est de casser 1’algorithme DFT en des sous-algorithmes DFT, et, avec une permutation de certains
coefficients, cela réduira le nombre total d’opérations

N-1
—i2mnk/N
X(k) =Y z(n)e N k=0,1,..,N—1
n=>0
x[0] X[0] X[0] X[0]
x[1] X[1] x[2] / X[1] X[0] X[0]
4 Point DFT / Wy /
x[2] X[2] x[4] X[2] X4l —— X[l
B3] Xi3] 6] \><></ X(3] et il el
§ Point DT — WY XXX Hl B X
X |, X4 X1 X[4] 0
. e o m g WO
- 8 < 0 1
om 0 2
x[6] X[6] x[5] W8 X[6] xX[3] W8 W8 \ X[6]
3 0 2 3
x[7] L xm A7) Ws \ X(7] (7] W W W \ X7
DFT : ~N2 opérations DFT decomposée en deux FFT: Nlog(N) opérations

sous DFT : <NZ2 opérations

FAST FOURIER TRANSFORMS ON A DISTRIBUTED DIGITAL SIGNAL PROCESSOR, Omar Sattari, University of California, 2002

=P-L

FFT (Fast Fourier Transform)

L’idee est de casser 1’algorithme DFT en des sous-algorithmes DFT, et, avec une permutation de certains
coefficients, cela réduira le nombre total d’opérations

N-1
X(k) — E x(n)e—ﬂwnk/N, k = | X N -1 Notez I'inversion
des bits d’index!
n=0
—— ‘——
x[0] X[0] x[0] . X[0]
x[1] X[1] x[2] | / X[1] X[0] X[0]
4 Point DFT / W /
x[2] X[2] x[4] —] X[2] x[4] X[1]
Voml § D E/a
x[3] X[3] x[6] — | X[3] x[2] ; : \><></ X[2]
8 Point DFT W;>Q<><>< w_f W Wy .
X s X[1] — X[4] 0
. o e m & WK
8 - 0 1
x[5] X[5] X[3] — PR) \ X[5] <051 W WSW\ XI[5]
(6] T 5] —! i Xi6]) Wi Ws \ i
3 0 2 3
x[7] X[7] S pu—— Ws \ X(7] 2y Y W W \ X7
DFT : ~N2 opérations DFT decomposée en deux FFT: Nlog(N) opérations

sous DFT : <NZ2 opérations

FAST FOURIER TRANSFORMS ON A DISTRIBUTED DIGITAL SIGNAL PROCESSOR, Omar Sattari, University of California, 2002

=PFL

FFT: principe

Passage de N? a N log N nombre d’opérations par la décomposition en FFT de taille plus
petite et de facon itérative, jusqu’a atteindre la taille de 1. Cette décomposition requiert de
permuter les entrées ou les sorties, selon 1’usage.

L’ordre des nombres est changé suivant le schéma suivant, qui équivaut a une inversion
des bits d’adressage:

000 > 000
001 01| t— Notez I'inversion
\ / des bits

010 >1010 d’adressage!

011 011

100 100

101 / \i 101

110 110

111 > 111

=P-L

FFT: “butterfly” (existe en mode d’adressage)

La FFT consiste a effectuer un reverse des bits et des opé€rations papillons “butterfly”:

X[0]

Am Am’l X(0] >< v \
0
x[4] Ws / X[1]
, w XX A\\//

X[3]

m

x[6]

Aps1=Apt \'vr\' B,

- 3

Bmﬂ = Am - W x[1] X[4]

N Bm
w > N\ w/ AN
1 opération “butterfly” x[5] 4 8 X[5)
0 2
x[3] We >O< W8/ /\\ X[6]
0 2 3
x[7] We >< Ws /\ W8/ \ X[7]

L’algorithme FFT en trois étapes avec chacunes 4
opérations “butterfly”

=PFL &

FFT: implémentation

/*

* @brief Table for bit reversal process

Découpage “butterfly” &
aussi réalis¢es par des
Tables.

Ic1 pour aller jusqu’a 0x800
on commence par 0x400,
puis on coupe en moitié
(0x200, 0x600), puis en
Moitie (0x100, 0x500,
0x300, 0x700) etc.

https://github.com/ARM-software/CMSIS/
blob/master/CMSIS/DSP_Lib/Source/
CommonTables/arm_common_tables.c

0x400,
0x680,
ox540,
0x7co,
0x420,
0x660,
ox5e0,
ox710,
ox450,
0x6d0,
0x530,
ox7be,
oxafo,
0x608,
0x588,
0x748,
0x428,
ox6a8,
0x568,
ox7e8,

const uintl6_t armBitRevTable[1024] = {

0x200, 0x600, 0x100, Ox500, 0x300, Ox700, Ox80, Ox480, 0x280,
0x180, 0x580, 0x380, 0x780, 0x40, 0x440, 0x240, 0x640, 0x149,
0x340, 0x740, OxcO, Ox4c@, Ox2cO, Ox6cO, Ox1cO, Ox5cO, Ox3CO,
0x20, 0x420, 0x220, 0x620, 0x120, 0x520, Ox320, 0x720, Oxao0,
0x2a0, Ox6a0, Ox1ad, 0x5a0, Ox3a0, Ox7a0, Ox60, O0x460, 0Ox260,
0x160, 0x560, Ox360, Ox760, Oxed, Ox4ed, Ox2e0, Ox6ed, Oxleo,
Ox3e0, 0x7e0, 0x10, 0x410, ©6x210, 0x610, ©x110, 0x510, Ox310,
0x90, 0x490, 0x290, O0x690, 0x190, 0x590, ©Ox390, 0x790, Ox50,
0x250, Ox650, 0x150, 0x550, 0x350, 0x750, 0xde, 0x4de, ©0x2do,
0x1do, 0x5d0, 0x3de, 0x7do, 0x30, 0x430, 0x230, 0x630, 0x130,
0x330, 0x730, 0xbod, 0x4bo, 0x2bo, Ox6bo, ©0x1bo, ©x5bo, ©x3bo,
0x70, 0x470, Ox270, Ox670, Ox170, Ox570, Ox370, Ox770, Oxf0,
ox2f0, ox6f0, 0x1f0, Ox5f0, 0x3f0, 0x7f0, 0x8, 0x408, 0x208,
0x108, 0x508, Ox308, Ox708, Ox88, Ox488, Ox288, Ox688, 0x188,
0x388, 0x788, 0Ox48, 0x448, 0x248, 0x648, 0x148, 0x548, 0x348,
oxc8, 0x4c8, Ox2c8, Ox6¢c8, Ox1lc8, Ox5c8, Ox3c8, Ox7c8, 0x28,
0x228, 0x628, 0x128, 0x528, 0x328, 0Ox728, Oxa8, Ox4a8, 0x2a8,
0xla8, ox5a8, 0x3a8, 0x7a8, Ox68, Ox468, Ox268, Ox668, 0x168,
0x368, Ox768, Oxe8, Ox4e8, Ox2e8, Ox6e8, Oxle8, 0x5e8, 0Ox3e8,
0x18, 0x418, 0x218, 0x618, 0x118, Ox518, 0x318, 0x718, 0Ox98,

47

=PFL %

FFT: implémentation

Programmation en C: ARM fournit de nombreuses librairies permettant d’effectuer des
FFT sur des entiers (en utilisant la DSP) et des flottants (en utilisant 1a FPU)

Dans le TP35, utilisation de la FFT, mais en utilisant la FPU (choix d’implémentation):

79
80
81
82

83¢

84
285
86

87

/*
* Wrapper to call a very optimized fft function provided by ARM
* which uses a lot of trick to optimized the computations
*/
void doFFT_optimized(uintl6_t size, float* complex_buffer){

if(size == 1024)

arm_cfft_f32(&arm_cfft_sR_f32 1len1024, complex buffer, 0, 1);

¥ \

Effectue la FFT

48

=PFL &

FFT: implémentation

Fonctions trigonométriques
réalisées par des tables

https://github.com/ARM-software/CMSIS/
blob/master/CMSIS/DSP_Lib/Source/
CommonTables/arm_common_tables.c

/**
* \par

* Example code for Floating-point Twiddle factors Generation:

* \par

* <pre>for(i = 9; i< N/; i++)

|

* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);

A twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>

* \par

* where N = 32 and PI = 3.14159265358979

* \par

* Cos and Sin values are in interleaved fashion

.
const float32_t twiddleCoef 32[64] = {

1.000000000f, ©.000000000f,
0.980785280f, ©0.195090322f,
0.923879533f, ©.382683432f,
0.831469612f, ©.555570233f,
0.707106781f, ©.707106781f,
0.555570233f, 0.831469612f,
0.382683432f, ©0.923879533f,
0.195090322f, ©.980785280f,
0.000000000f, 1.000000000f,
-0.195090322f, ©.980785280f,

49

=PFL

Recapitulation

| J
=PFL &
Utilisation de ASM, C et C++/python

En général:

Assembleur pour les microcontroleurs avec des taches peu complexes et visant faible
taille / consommation. Code de startup. Aussi dans le cas d’optimisation de code sur
architectures spéciales (DSP, FPU).

C++ ou python pour des PC avec interface graphique, pour des projets complexes
purement informatiques. (suite du cours)

C pour ce qui se trouve entre deux...

Les fronticres sont flexibles et dictées par le bon sens et I’experience des personnes
impliquées.

=P

Utilisation de ASM, C et C++/python

C++ / python

Assembleur

52

=PFL %

Utilisation de ASM, C et C++/python

Exemple 1:
Projet: Code de startup pour le microcontroleur STM32F4
Language: Assembleur
Motivation: Code proche de la machine car configure I’initialisation de la table

des vecteurs des interruptions, Stack Pointer, Program Pointer etc. Code n’ayant pas
besoin d’€tre recompilé et loin de I’utilisateur de la plateforme.

53

=PFL %

Utilisation de ASM, C et C++/python

Exemple 2.
Projet: Calcul de la FFT pour un traitement de son
Language: C / Assembleur
Motivation: Assembleur pour exploiter les mécanismes DSP ou FPU du

processeur ARM Cortex-M4, C pour que ce soit multi-platforme.

54

=PFL %

Utilisation de ASM, C et C++/python

Exemple 3.
Projet: Régulateur PID pour un robot e-puck?2
Language: C
Motivation: Doit €tre rapide d’execution, mais aussi intéressant d’etre multi-

platforme, avec des parametres pouvant facilement €tre modifiés par ’utilisateur.

55

=PFL %

Utilisation de ASM, C et C++/python

Exemple 4.
Projet: Monitor pour visualisation de données e-puck?2
Language: C++ ou python
Motivation: Pour les parties graphiques il existe beaucoup de code, librairies, etc, et

I’avantage de travailler avec du code oriente objet (suite du cours)

=PFL

Consigne pour les
miniprojets

=PFL

Programme (rappel)

Faire encore un TP pour se roder et passer en revue les différents capteurs, puis test et miniprojet

Date

| 4

A

b

b

b

b

18.Feb.25
20.Feb.25
25.Feb.25
27.Feb.25
04.Mar.25
06.Mar.25
11.Mar.25
13.Mar.25
18.Mar.25
20.Mar.25
25.Mar.25
27.Mar.25
01.Apr.25
03.Apr.25

Cours 1
TPIntro
Cours 2
TP1

Cours 3
TP2

Cours 4
TP3

Cours 5
TP4
Cours 6
TP5

8:15 test a blanc
miniprojet

08.Apr.25
10.Apr.25
7 15.Apr.25
17.Apr.25
7 22.Apr.25
24.Apr.25
7 29.Apr.25
01.May.25
” 06.May.25
08.May.25
” 13.May.25
15.May.25
7 20.May.25
22.May.25
7 27.May.25
29.May.25

8:15 test valable pour 40%
miniprojet

miniprojet

miniprojet

Vacances de Paques
Vacances de Paques
miniprojet

miniprojet

miniprojet

miniprojet

miniprojet

miniprojet - deadline 23h
présentations miniprojet
présentations miniprojet
présentations miniprojet
ascension m 58

=P-L

Miniprojets
Rendu du rapport + code: jeudi 15 mai, 23h00

Presentations: vendredi 16 mai -> mercredi 28 mai

Choix de ['heure de passage: Google Sheet sur moodle, publié le 1 mai.
Inscrivez vous par groupe (G01, G56, etc.).

Presentations par zoom.

=P-L

Methode de travail :

La programmation a deux ame¢liore 1’apprentissage
Répartissez-vous le travail

Utilisez les outils de gestion du code (versions) partagé (git).
Ceci est un critere de I’évaluation

60

=PFL

Donnee:

Le but du miniprojet est de partir sur la base des ¢léments que vous avez vu lors des TPs
1-5 pour créer plusieurs taches plus complexes a résoudre par le robot e-puck?2.

La donnée complete est sur moodle

=PFL

Donnee:

Vous étes libres de déterminer vous-méme les taches que le robot doit effectuer, et donc la forme de la
démonstration de votre programme. Les contraintes sont les suivantes :

1) Le projet doit étre fait sur la base de la librairie e-puck2_main-processor vue lors des TPs 4-5.
2) Vous devez obligatoirement utiliser les éléments suivants du robot e-puck2 dans votre projet :

a. Les deux moteurs pas-a-pas. Par exemple Régulation PID, odométrie précise, forme géomeétrique, etc.

b. Un des capteurs de distance (Capteurs de proximités infrarouges ou capteur Time-of-Flight). Par exemple
détection d'obstacle petite ou grande distance.

c. Un capteur parmi ceux que vous avez investigué durant les TPs 3-5, donc un capteur parmi : la
caméra, les micros, I'lMU. Par exemple avec la caméra : détection d’objet, suivi de lignes. Par exemple
avec les micros : détection de sons sur la base de I'amplitude et/ou fréquence. Par exemple avec
I'accélérométre, détection d’'un plan incliné, d’'un choc. Par exemple avec le gyroscope, détection du
mouvement d’un plan incliné.

62

=PFL

Donnee:

3) Chaque capteur/actuateur doit étre utilisé/géré dans une Thread, a I'image de leur utilisation dans
les TPs 4-5. La création de threads doit suivre les besoins, mais toujours de maniére a respecter

les taux de rafraichissements des capteurs et en faisant un usage intelligent des outils disponibles
dans ChibiOS (messagebus, sémaphores, etc.).

4) Le code doit étre rendu sous la forme d’une librairie (avec divers .c/.h) qui s’'integre avec la librairie
e-puck2_main-processor que vous avez utilisé lors des Travaux pratiques.

Voici un exemple de projet : Le robot e-puck2 reproduit les mouvements d’une balle sur un plan
incliné en utilisant 'accélérometre comme détecteur de la direction du vecteur gravité. Le robot
“rebondit” lorsqu’il détecte un obstacle avec ses capteurs de proximité infrarouges.

63

=P-L

Miniprojets: travailler en groupe

On va vous demander un suivi de votre travail de groupe:

Weekly group self-assessment

Page 1

& Print Blank

Planning

1 ’ We identified major deadlines to be met

Yes No

2~ We listed tasks to be done

() Yes () No
3 " We identified dependencies between tasks
() Yes (J No

64

=PFL

Forme du rendu:

Le rendu du miniprojet sera compose de:
® Une presentation (avec slides de preference, pas obligatoire) de 3 minutes
® Une démonstration live (pas de vidéos) du programme final, d’une durée de 2 minutes

® Un rapport de 3-4 pages (longueur indicative) qui donne un apercu de la méthode de travail, des analyses,
la conception du logiciel et des résultats obtenus. Une section doit donner un retour sur votre méthode de
travail de groupe.

® e code structuré et commenté

® Une discussion sur le projet lors du rendu/presentation

+ demo + présentation = durée totale de passage ~25 minutes

=PFL

Criteres d’evaluation:

Les critéres d’évaluations seront :

- Clarté et propreté du code source (respect de certaines conventions du C, des commentaires utiles, des
valeurs définies, des fonctions et variables avec des noms clairs, etc.)

- Clarté et propreté du rapport (Numeéros de sections, Iégendes numérotées aux figures, numeéros de page,
axes aux graphiques, citations et références)
Un point enlevé sur la note finale du projet (note entiére) pour des erreurs de ce type!

- Efficacité du code en termes d’utilisation des ressources (temps, mémoire, taches).

- Pratique d’utilization de GitHub.

- Pratique de travail de groupe.

- Originalité de la démonstration.

=PFL
Miniprojets

Commencez par comprendre et structurer!!!

Code: attention aux warnings, temps d’exécution, ressources utilisees, etc.

Rapport:

® seulement ce qui n’est pas dans le code, comme structure génerale, tests
initiaux, graphes de capteurs, etc

Respectez le format (sections numérotées, figures et tables
numérotées avec légendes, axes sur les graphes, références)

67

=PFL

GCtronic award:

Un prix sera décerné au miniprojet ayant obtenu la meilleure note sur la base de

ces criteres d’évaluation

.GCtronic

GCtronic Award

to

Student #1
Student #2

68

=P-L

Examen vaiable pour 40% de la note du cours

Examen a blanc: mardi 1 avril
CM12,CM14,CM15etCO5-6a8:15

Examen : mardi 8 avril
CM12,CM14,CM15etCO5-6a8:15

69

=P-L

MICRO-315 / 17 March - 23 March / Modalité de I'examen mid-term / Responses

ﬁr CHOICE

Modalité de I'examen mid-term) _ _ _
125 étudiants inscrits au cours

Choice Settings Responses More v

Responses 45 n’ont pas réepondu!

Separate groups ‘ All participants

<

Ordinateur personnel apporté par Ordinateur de I'EPFL dans une
I'étudiant.e dans auditoire salle informatique
Choice options U O
Number of 67 13

responses

=PFL

Examen

Format:

Questions sur moodle, similaires que dans les quiz de chaque semaine

Support:

Aucune documentation autorisée

Regles générales:

Absences justifiées (certificat médical) rattrapées par une interrogation orale, pas de visite
des toilettes possible. Apportez votre carte d’étudiant.

71

=PFL
Notation de ’examen

A chaque question est associ¢ un nombre de points qui est affiché avec la question.

* Questions vrai-faux: si juste, on obtient le nombre de point, s1 ¢c’est faux on a 0
points.

* Questions avec réponse numérique: si juste, on obtient le nombre de point, s1 ¢’est
faux on a 0 points.

* Questions avec plusieurs réponses possibles: Les réponses justes se partagent a part
cgale les points de la question, les réponses fausses se partagent a part ¢gale le méme
nombre de points, mais négatifs. Le total est saturé vers le bas a 0.

A la fin les points sont sommes et la note est definie par le nombre de point obtenus, divise

par le nombre de points maximaux, multipli¢ par 6. La note est saturée vers le bas a 1.0.72
|

=PFL

TP de cette semaine

Application et compréhension de la FFT sur un signal sonore.

Exploitation de la sortie en amplitude de la FFT pour détection de
fréquences.

Programmation sur 1’e-puck d’un controle par son.

73

E P F L Feedback hebdomadaire

1/ 4 | Next > | Last Respondent >>
<<< List of responses | @ Print this Response

& Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 . Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu ‘

Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu
Forme

3 Vos commentaires en détail (si nécessaire):

avant chaque TP a faire a la maison serait @ mon avis nécessaire. Le guidage donné par les tasks est insuffisant.

{ Je n'ai pas les ressources nécessaires pour effectuer les TPs. Le cours ne m'aide pas a effectuer les TPs. Une préparation au TP ’
_ B 74

=P-L

<< First Respondent | < Previous | 2 [4 | Next > | Last Respondent >>
<<< List of responses | @ Print this Response

& Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 . Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu)
Forme)
2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu
Forme

3 Vos commentaires en détail (si nécessaire):

malgré toute la bonne volonté possible, il est impossible d'avancer seul pour fes TPs. Il est constamment nécessaire d'appeler
des assistants pour des informations complémentaires et pour nous réexpliquer les concepts utiles, ou trouver les infos dans les
datashe nous expliqguer comment implémenter en C les concepts... 75

=P-L

<< First Respondent | < Previous | 3 / 4 | Next > | Last Respondent >>
<<< List of responses | @ Print this Response

& Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 ’ Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu :
Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

1 2 3 4 5 6
Contenu 3
Forme 3
3 Vos commentaires en détail (si nécessaire):

‘ A mon go(t, TP beaucoup trop long. Mane si I'on sait que la solution est assez simple, c'est trés dur de comprendre ce qu'il faut
faire avec le buffer, comment prendre les éléments, comment les traiter. Donner des exemples d'applications (méme simples)
dans le GitHub pourrait je pense grandement aider. On se retrouve alors a perdre des heures sur des étapes relativement
simples et on est frustrés de ne pas pouvoir avancer et avoir le soutient d'assistants pour les taches suivantes + manque

d'effectif ce jour la. De fagon plus globale je trouve que le systéme d'assistants fonctionne trés bien. Les TPs sont globalement
beaucoup trop longs, c'est dommage.

76

=P-L

<< First Respondent | < Previous |4 [4
<<< List of responses | @ Print this Response

Respondent: - Anonymous -
Evaluation du cours et du TP

Ceci est un questionnaire anonyme, donnez votre avis franchement, merci.
1 - Donnez votre évaluation du cours de la semaine (1 nul, 6=excellent)

Contenu

Forme

2 * Donnez votre évaluation du TP de la semaine (1 nul, 6=excellent)

Contenu

Forme

3 Vos commentaires en détail (si nécessaire):

Les informations pour le TP étaient nécessaires mais non suffisantes :) Le chatbot est trés utile pour combler les trous dans la

compréhension.
— m 77

=P-L

Feedback =

Matiére Systémes embarqués et robotique T

C Embedded Syst: d Roboti
Questionnaire g Retour indicatif des enseignements (dés 2020-2021) ourse I RS Che L

) Questionnaire 9 Indicative feedback of teaching (since 2022-2023)
(re tO urS :: :I:’scrltd 130 Nb Registered 1\37)
R E— |
L] L] L]
indicatifs)

N b Answere

Dans I'ensemble, je pense que ce cours est bon. The running of the course enables my learning and an appropriate class climate

37 13
20
. - ‘
0 : L
2 0 — I:l
0% 4% 20% 49% 27%
4% 0% 9% 30% 57%
s) Pas du tout Pas d' d D' d Tout a fait
ans avis d'accord as daccort gccel d'accord No opinion Strongly disagree Disagree Agree Strongly agree

Année m

R N) Matiére Systémes embarqués et robotique
Matiere Systémes embarqués et robotique
< Questionnaire g Retour indicatif des enseignements (dés 2022-2023)

Questionnaire XZ Retour indicatif des enseignements (dés 2022-2023)
T it 5y Nb Inscrit 125 P L " . 3 (y

nscri

articipation : 35%
Nb Répol
. - " . Le déroulement du cours permet ma formation et un climat de classe approprié
Le déroulement du cours permet ma formation et un climat de classe approprié 0
16 23 88 A) O K
16
11
————— |
6% 3% 9% 33% 48% 2 52 7 Betd 2%
Sans avis Pas du tout d'accord Pas d'accord D'accord Tout a fait d'accord Sans avis Pas du tout d'accord Pas d'accord D'accord Tout a fait d'accord

e

=PFL

Points forts du cours:

Implication pédagogique :
« Enseignant et assistants trés investis, disponibles, ouverts aux critiques et aux feedbacks
réeguliers.
« Atmosphere agréable durant les cours et TP, malgré la difficulté du contenu.
Bonne organisation générale :
« Cours bien structureés, slides clairs et outils bien pensés (chatbot, formulaire pour appeler les
assistants, enregistrements des cours).
« TP bien guidés et intéressants.
Outils pédagogiques appréciés :
« Utilisation de quiz hebdomadaires utiles pour se préparer a I'examen.
« Acceés a un chatbot personnalisé, trés apprécié pour la théorie.
Motivation suscitée :
« Cours qui donne envie d’approfondir la robotique.
« Approche durable évoquée dans les cours saluée par certains.

79

=PFL

X Points faibles du cours:

Difficulté globale élevée :
« Charge cognitive importante (robotique, datasheets, programmation a apprendre en
paralléle).
« Matiére percue comme difficile a digérer.
TP trop longs et parfois confus :
« Durée des TP sous-estimée, certains groupes avancent peu malgré leurs efforts.

« Manque de guidance claire dans certains TP (besoin de plus d’instructions, de
commentaires dans les solutions, etc.).

« Informations parfois trop dispersées (multiples PDF).
Problémes d’introduction aux outils :
« Introduction a Git jugée trop abrupte et source de décrochage.
« Installation des outils difficile et frustrante pour certains.
Lien cours-TP perfectible :
« Certains ressentent un décalage entre les cours théoriques et leur utilité directe pour les TP.
 Difficulté a savoir ce qui sera attendu a I'examen malgreé les quiz.

80

