'

Bienvenue au cours

Systémes embarqués et
robotique
Prof. Francesco Mondada

Dr. Frank Bonnet
IEM - STI - EPFL

=Pr-L

But du cours:

Vous voulez développer un
robot innovant?

® Mécanique

Logiciel temps-réel

®* Controle

Traitement de capteurs
Controle de actuateurs
® Navigation ...

www.leobotics.fr

I
:U
i
r

\ \ | /
Systemes embarqués

Soo el
<~ Software .

ARM

e Réglage > Micro-
= Automatique Langage Controleurs FPU
@ 4 _C/ %+g+ (ASM)
= ——
o AN
Signaux et Micro- DSP

Systemes électronique

Robotique

=Pr-L

But du cours:

Programmation de systemes embarqués en C appliqué a la robotique
ce qui implique:
® comprehension contexte / intégration des domaines appris

avec une attention specifique a:
* fonctionnement d’un cross-compilateur
® code geénére par un compilateur en fonction du code C
® optimisation de code / des ressources embarquées / OS
® utilisation de fonctionnalités avancées d’un microcontroleur
® utilisation dans un contexte robotique: capteurs, actuateurs, temps-réel
® aspects de durabilite liés au microcontroleur
® contexte de travail en groupe et utilisation de I’TA

=Pr-L

Application:

Programmation d’un robot mobile

ARM
La/rwg(;;_gli C Micro-
Controleurs
(ASM)
DSP
Signaux et
FPU Systemes

: , Electronique
Git Réglage d

Automatique

=Pi-L

e-puck?: fonctionnalités

Speaker Micro sd

/ 4x digital
/" microphones

“ToF distance
I sensor

DCM |

USB FS

12C
|

%~ STM32F407

Camera

Onboard
programmer,
debugger

7cm

http://www.gctronic.com

=P

e-puck?: fonctionnalités

e-puck 2.0_E
(E—n;o:ia—r; i Mic3
| | ic:
b= 4 MIM
12C

STM32F413
programming
(DFU)

| Camera| [|
STM32F407 | ESP32 serial ™
programming | programming,
and debuging via! serial output via digital DCMI =

STM32F413 | STM32F413 extension 12C
| P =
o scr ctorageSDI0 | STM32F407 [S | connector .
o Main uC |
4 devices A UART :
3 ector
recognized |_2_|) TSR
| [w]
1 Isl]
SWD ESP32 (I)
STM32F407 STM32F407 4 | | | Gumstix)
usB programming m N P ——
(DFU) (} (Range and)
STM32F413 UART WiFi PWM | RGB panel " | Beg?ing :
Progammer/ Nopnn e (Lt Ll RO
debugger

: im Prorgamming (OTA), | 4x RGB
|_BOOTO serial output LEDs
= peripheral number | r

M/S = master/slave

SWD

|
1
|
1
|
l
| STMB32F413

| Pprogramming

| and debugging

|
{ Ext. programmer |
Y SRR S T /

http://www.gctronic.com

=Pr-L

Plan du cours en deux parties :

1. Intégration des connaissances asm, C
But: intégrer les meécanismes C / assembleur sur ARM
Période: premicre moiti¢ du semestre

Controle: test (40% de la note) closed book 6Ji% 7

2. Réalisation
But: intégration de la matiere dans un projet
Période: milieu - deuxieme moiti¢ du semestre
Controle: miniprojet (60% de la note)

=Pr-L

Plan detaillé:

Date
18.Feb.25
20.Feb.25
¥ 25.Feb.25
27.Feb.25
” 04.Mar.25
06.Mar.25
” 11.Mar.25
13.Mar.25
” 18.Mar.25
20.Mar.25
¥ 25.Mar.25
27.Mar.25

Cours 1
TPIntro
Cours 2
TP1
Cours 3
TP2
Cours 4
TP3
Cours 5
TP4
Cour,

5
8:15 test a blanc
miniprojet

08.Apr.25
10.Apr.25

” 15.Apr.25
17.Apr.25

7 22.Apr.25

01.May.25
” 06.May.25
08.May.25
” 13.May.25
15.May.25
7 20.May.25
22.May.25
7 27.May.25
29.May.25

8:15 test valable pour
miniprojet
miniprojet

cances de Paques
Vacances de Paques
miniprojet
miniprojet
miniprojet
miniprojet
présentations miniprojet
présentations miniprojet
présentations miniprojet
présentations miniprojet
présentations miniprojet
ascension

=Pr-L

Date
18.Feb.25 Cours 1 08.Apr.25 8:15 test valable pour 40%
20.Feb.25 TPIntro 10.Apr.25 miniprojet
” 25.Feb.25 Cours 2 ” 15.Apr.25 miniprojet
27.Feb.25 TP1 17.Apr.25 miniprojet
” 04.Mar.25 Cours 3 ¥ 22.Apr.25 Vacances de Paques
06.Mar.25 TP2 24.Apr.25 Vacances de Paques
” 11.Mar.25 Cours 4 ¥ 29.Apr.25 miniprojet
13.Mar.25 TP3 01.May.25 miniprojet
” 18.Mar.25 Cours 5 ” 06.May.25 miniprojet
20.Mar.25 TP4 08.May.25 miniprojet
” 25.Mar.25 Cours 6 ” 13.May.25 miniprojet
27.Mar.25 TP5 15.May.25 miniprojet - deadline 23h
” 01.Apr.25 8:15 test a blanc ” 20.May.25 présentations miniprojet
03.Apr.25 miniprojet 22.May.25 présentations miniprojet

7 27.May.25 présentations miniprojet
29.May.25 ascension

=Pr-L

Fonctionnement du cours:

Ce cours n’a pas de polycopié. Il se base sur:
® Les slides du cours sur moodle.
®* Des documents techniques (data sheets, reference manuals...) d’usage courant.
® Quizz hebdomadaire sur moodle.
®* Les TP indispensables pour la compréhension.
* Github avec les exercices des TP et les corrigés.
®* Un forum / un wiki.
®* Un GPT specifique (feedback bienvenu).
®* Les supports des autres cours.
®* Un feedback anonyme.

=Pr-L

Materiel du cours:

Tout le matériel de reference se trouve sur moodle. Les TP sur Github

Documents techniques conseillés:

®* Cortex-M4 Technical Reference Manual
Référence pour la programmation du processeur

®* Documentation STM32F (datasheet)
Description du microcontréleur, ses périphériques etc.

®* STM32F Programmer’s Reference Manual

Référence pour 1’architecture/périphériques du microcontroleur

=Pr-L

Utilisation de ['[A genérative (chatbots)

N’utilisez pas un chatbot générique pour chercher de
I’information. Il y a des chatbots spécifiques plus intéressants:
graphsearch.epfl.ch

Les chatbots savent bien générer du code, mais attention a la
qualite, surtout s1 dans un domaine spécifique.

L’utilisation des chatbots demande des connaissances de base,
c’est le but de ce cours.

Avec les chatbot on peut accelérer 1’exeécution d’une tache, mais
on va apprendre moins. Dans ce cours le but est d’apprendre.
Exploitez les chatbot pour ¢largir vos réflexions (brainstorming)
ou pour vous aider a vous exercer dans un domaine.

Attention a I’impact écologique de cet usage!

ol = 1
= P r L
Travaux pratiques (1P):

Les TP permettent d’acquérir les connaissances données lors du cours par leur mise
en pratique dans un probléme concret, comme 1l pourrait apparaitre dans un projet

reel.
La donnée du TP est sur GitHub. En salles ME D2 2519 et ME D2 2524.

Les TPs sont réalises par équipes de deux ¢tudiants. Créer les groupes aujourd’hui
sur moodle: merci de les communiquer avant demain (mercredi 21) midi.

Organisation: 5h les jeudi (10h15 -> 15h00)
- 10h15: Introduction au TP (lu a I’avance) ensuite réponse aux questions
précédentes. ATTENTION: venez a I’heure, intro au debut.
- 12h : (optionnel) approfondissement du TP
- 12h30 pause repas...

Dans les salles DLL (Discovery Learning Laboratory)

Robot e-puck?2

oI5

Travaux pratiques (TP): demande d’assistant

Your place number or Zoom link *

Request for an assistant

Small form to request the help of an assistant during the practical sessions

MED 22524 MED 22519

francesco.mondada@epfl.ch Changer de compte () SALLETP SALLETP
Votre adresse e-mail est enregistrée lorsque vous envoyez ce formulaire

*Obligatoire

Small description of your problem/question (helps to choose the assistant :-)) *

Votre réponse

Votre réponse

Effacer le formulaire

m]6

mpre
= P r L
Objectif du miniprojet:

Mettre en pratique ce qui a €t€ vu au cours dans un projet robotique complet et
motivant.

Donnée miniprojet:

Le but du miniprojet est de partir sur la base des ¢léments que vous aurez vu lors des
TPs 1-5 pour créer plusieurs taches plus complexes a résoudre par le robot e-puck?2.

=Pr-L

Donnee:

Vous étes libres de déterminer vous-méme les taches que le robot doit effectuer, et donc la forme de la démonstration
de votre programme. Les contraintes sont les suivantes :

1) Le projet doit étre fait sur la base de la librairie e-puck2 main-processor vue lors des TPs 4-5.
2) Vous devez obligatoirement utiliser les ¢léments suivants du robot e-puck2 dans votre projet :

a. Les deux moteurs pas-a-pas. Par exemple Régulation PID, odométrie précise, forme géométrique, etc.

b. Un des capteurs de distance (Capteurs de proximités infrarouges ou capteur Time-of-Flight). Par exemple
détection d’obstacle petite ou grande distance.

c. Un capteur parmi ceux que vous avez investigués pendant les TPs 3-5, donc un capteur parmi : la caméra,
les micros, I’IMU. Par exemple avec la caméra : détection d’objet, suivi de lignes. Par exemple avec les micros :
détection de sons sur la base de I’amplitude et/ou fréquence. Par exemple avec I’accélérometre, détection d’un
plan incliné, d’un choc. Par exemple avec le gyroscope, détection du mouvement d’un plan incling.

=Pi-L
Donnee:

3) Chaque capteur/actuateur doit étre utilisé/géré dans une Thread, a I'image de leur utilisation dans les TPs 4-5. La
création de threads doit suivre les besoins, mais toujours de maniére a respecter les taux de rafraichissements
des capteurs et en faisant un usage intelligent des outils disponibles dans ChibiOS (messagebus, sémaphores,
etc.).

4) Le code doit étre rendu sous la forme d’une librairie (avec divers .c/.h) qui s’'intégre avec la librairie e-puck2_main-
processor que vous avez utilisé lors des Travaux pratiques.

Voici donc un exemple de projet : Le robot e-puck2 reproduit les mouvements d’une balle sur un plan incliné en
utilisant I'accélérométre comme détecteur de la direction du vecteur gravité. Le robot “rebondit” lorsqu’il détecte un
obstacle avec ses capteurs de proximité infrarouges.

cPr-L

Miniprojet :

Extension d’'un des travaux pratiques
et réalisation d'une librairie avec
diverses fonctionnalités exploitant les
périphériques du robot e-puck2

Gctl'onic

GCtronic Award

to

Student #1
Student #2

Prix décerné au meilleur
miniprojet

= 20

'

Microinformatique

Introduction au STM32F4

Prof. Francesco Mondada / Dr. Frank Bonnet
IEM - STI - EPFL

. 2]

=PFL %

CISC

(Complex Instruction Set
Computer)

* Grand nombre d’instructions

* Instructions complexes, plus de modes
d’adressage

* Exécution en un ou plusieurs cycles

* Hardware complexe: plus de
transistors

* Code plus court, instructions qui
traitent plus, moins besoin de mémoire

e Ax¢ sur hardware, peu de RAM

RISC
(Reduced Instruction Set
Computer)

e Nombre réduit d’instructions

* Instructions simples, modes
d’adressage simples

* Exécution principalement en un cycle
(mieux prévisible > pipeline)

* Hardware plus simple: moins de
transistors

* Code plus long, plus ax¢ sur la
mémoire, besoin de plus de mémoire

* Ax¢ sur software

. 22

mpre
= P ' L
Introduction: the RISC vs CISC

“One 1ndication of complexity is the size of the documentation.

The ISA manual for x86-32 1s 2,198 pages or 2,186,259 words. The RISC-V
equivalents are 236 pages or 76,702 words.

If someone were to read manuals as an (incredibly boring) fulltime job—eight hours a
day for five days a week—it would take a month to read the x86-32 manual but less
than a day to read the RISC-V manual.”

ISA = Instruction Set Architecture

From D. Patterson, "Reduced Instruction Set Computers Then and Now," in Computer, vol. 50, no.
12, pp. 10-12, December 2017.

. 23

=Pr-L

Introduction: le futur est RISC... (une entreporise: ARM)
(Advanced (Acorn) RISC Machine, RISC = reduced instruction set computer)

“The 80x86 ISA (instruction set architecture) dominated sales in the PC era, but
RISC architectures are kings of the post-PC era. Annual 80x86 shipments peaked in
2011 at 365 million and have been declining about 8 percent annually since; Intel
made fewer 80x86 chips in 2016 than 1n 2007. While the 80x86 dominates the cloud
portion of the post-PC era, 1t's estimated that Amazon, Google, and Microsoft clouds
collectively contain only 10 million servers. Although these chips are expensive, their
volume is negligible; in 2017, 10 million RISC chips ship every four hours. RISCs
make up 99 percent of microprocessor volume today.”

From D. Patterson, "Reduced Instruction Set Computers Then and Now," in Computer, vol. 50, no.
12, pp. 10-12, December 2017.
H 24

=PFL &

ARM: un modele particulier de business

/;; Qualcomw
ARM licenses ™ A rVE ﬁm

technology to
partner

partner/ .,

a rm licensee

license fee

Partners
develop chips

royalty

OEM sells consumer
products

https://linexplore.com/arm-the-revolution/

m 25

=P

W Intel (CISC) VS
Apple (RISC)
performances

https://linexplore.com/arm-the-revolution/

Performance (SPECiint2006)

70

60

50

40

30

20

10

2013

4790K,41.4

2014

Intel vs Apple Top Performance

Apple A14,63.3

10900K, 58.6

9900K, 54.3

7700K, 49.2

6700K, 45.6 .
] @

Apple A12,45.3

5775C,41.4

Apple A11, 36.8

Apple A10, 28.7

Apple A9, 21.2

2015 2016 2017 2018 2019 2020

Product Release Date

Apple A13,54.9

1185G7,55.3

2021

m 26

=Pr-L

Introduction: ARM (Advanced RISC Machine, RISC = reduced instruction set computer)

25
W MIPS
Tensilica
5 20 B ARC
> B ARM
[«b]
% 154 W 80x86
=
(7
® 10
S
E
5_
9 peak at 0.365 billion (2011)
W
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

From D. Patterson, "Reduced Instruction Set Computers Then and Now," in Computer, vol.
50, no. 12, pp. 10-12, December 2017.

E P F L es embarqués et robotique

Introduction: ARM (Advanced RISC Machine, RISC = reduced instruction set computer)

Global Total Notebook PC Shipments by Processor Architecture
mArm = x86

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Techinsights

Copyright © 2024 Techinsights Inc. All rights reserved.

Total Notebook PC Shipments (% of Total)

m 28

Figure 1 Global Notebook PC Arm vs x86 Forecast 2015-2029, October 2024. Source Techinsights.png

=Pi-L

Introduction
(from

Cyclone

o o iPhone 5 iPhone 55 iPhone 6 / 6 Plus
5 ARMVE-A ARMV8-A
sirinsoftware.com o) (280m) {200m)

web sit e) Cortex-A15

ARMV7-A
High Performance
32-bit CPU with
enterprise class

A: Smartphones feature set
and other Cortex-A9
portable devices

Cortex-A17 Cortex-A57

ARMV7-A
: ARMvV8-A
High Performance Highest

32-bit CPU with e oimance

lower power and 64/32-bit CPU
smaller area

Cortex-A7 Cortex-A53
ARMvV7-A ARMV8-A
High efficiency High efficiency

32-bit CPU 64/32-bit CPU
big LITTLETM big LITTLETM
compatible compatible

Cortex-AS5
ARMvV7-A
Smallest and
lowest power CPU

R: real-time solutions:
controllers, networking
equipment, media players, R

and other similar devices.

Enhanced system integration features

Cortex-MO

Lowest cost

M: microcontrollers Lowestpower | Cortex-M3 Cortex-M4

Performance Mainstream
Cortex-MO+ efficiency Control & DSP
Highest energy
efficiency

Twister

iPhone 65 / 65 Plus iPhone 7/ 7 Plus
ARMv8-A ARMV8.1-A
(16nm) (16FFC nm)

High
Performance

High
Efficiency

Real-time

Cortex-M7
Maximum
Performance
Control & DSP

iPhone 8 /8 Plus / X
ARMV8.2-A
(10 nm)

29

=Pi-L

Introduction (from arm.com web site)

Performance and scalability for a diverse range of applications

Armv5 Armv6 Armv7-A Armv8-A
Cortex-A17 Cortex-A73 Cortex-A75 g
< Cortex-A15 Cortex-A57 Cortex-A72 perfo
1
Arm11MPCore x
Cortex-A9
Arm1176JZ(F)-S b C° nex vt Cortex-A53 Cortex-AS5
Arm1136J(F)-S o ki
Arm968E-S O
AmoAEE. Cortex-A7 Cortex-A35 Ultra high
Arm926EJ-S Cortex-A5 Cortex-A32 efficiency
o Armv7-R Armv8-R
= Cortex-R8
(0] x
Arm1156T2(F)-S = ggg:: :Z Cortex-R52 Real time
s |
O Cortex-R4
Armv4 Armv6-M Armv7-M Armv8-M
| Cortex-M7 verformance
Arm7TDMI Cortex-M4 Cortex-M33 Performance
Arm920T Cortex-M3 efficiency
Cortex-MO+ Lowest power

© 2017 Arm Limited

arm = 30

'
N
"1
—

Armv9

+ Digital Signal Processing LS .
= 300 billion chips
= - ;
| b

6 ©2021 Arm arm VISION DAY

m 3]

=PFL &

Introduction: cortex M family (from arm.com web site)

ARM Cortex MO

Lowest Cost
Low Power

Nested Vectored
S s conror e WICIateriace

CPU
Data
WatchPoint
. BreakPoint Access
Port
MicroTrace
Buffer

ARM Cortex M3

Nested Vectored

ARM Cortex M4

Nested Vectored

DSP extension)

Performance Efficiency

Feature Rich

Data
Cods @ | WatchPoint | Debus
) Port
MPU
§ ITM Trace 5;‘:‘
SRAM g
& i Trace
perprd | © ETM Trace |

DSP + SIMD + Floating Point

. 32

I_ @ Savoir extraire
| ‘5d:i:b"’ des informations

Figure 5. STM32F40xxx block diagram

™ Extemal memary
7, SO0 contraler (FSMC) A
el X [JTAG & SW MPU @: SRAM, PSRAM, NOR Flash, | Y
T2 ETM NVIC PC Cast (ATA), NAND Flash
ous
ARM Cartex-M4

3

FIFO |[FiFo
c
@

=) -
[___SRAM KB |
% oroms . e SRAM 16 KB

Microcontoleur de e = —

R

STMicroelectronics o =

qui utilise ARM :% == =
<I>

168 MHz prs N
FPU H 3, Flash
seus K Vi < : gg = T P e
Mo o mx A BremetMAC | oww =Dl = 1MB 5

VOO axAY 10100 o - Camera FESTRe

| § Kp_—_Sramiizke] intertace mazax,oyan
o
-

y
A et 05TV

11

GPIO PORTF

Cortex M4 =

GPIO PORTG

oLy 4
4
oL 4

GPIO PORT H

GPI0 PORT |

“trois ténors européens (des semi-
conducteurs) Infineon Technologies
(12,7 milliards de dollars en 2022), T
STMicroelectronics (12,6 milliards de “
dollars) et NXP (10,8 milliards de

dollars)” usinenouvelle.com

STM32F 104 datasheet

A 83 === | o "
8 g v b 3 C§.=. {1; @ = 33

MS 19920V3

https://www.usine-digitale.fr/infineon-technologies/
https://www.usine-digitale.fr/nxp/

cPr-L

Structure

Coeur du

microcontroleur:
le CPU

STM32F 104
datasheet

Figure 5. STM32F40xxx block diagram

RS, JTOL
STosswWaLK
STOEW, JTOD
TAZCK
mAcEoRg

Mior o AT
MO ax AT

oe oM
LLPIOK O, O, ST KT

10, veus, e

oAy

nﬂ
.

4 comp. chrrae (TN O
4 Chuema (TM1_ G LETR
N A

4 cormpd crrres (TINE_ {4,
& chum et (TAT_CHI[ETR,
N

2 churm A7

opn g, o

CCM dats RAM 64 KB NS Externa
contraler (FSMC)
pTAGasw] wpu K&} sram, PSRAM, NOR Fiasn,
ETM NVIC PC Cast (ATA), NAND Plash
oaus
ARM Cartex-Md
168 MHz =
FPU = A Flash
—— Eg = T
BremetMAC | owa | = E 1MB
10/100 wo g E Camera
uss raand g (ql__SRamiks | | nertace
— SRAM 16 KB
Z OTG HS o H o] vs
DMAZ & Tws | otaFs |&
DMA1
/
e
GPIO PORT A [
o
GPIO PORT B | ==
GPIO PORT C
GPIO PORT D
GPIO PORT E R &
. —
GPIO PORT F —_—
e owar
A 7

A2 4 Mt

WD WE (e

ax N DG

NORD, IOWR, INTT2)
TN NI B AT

e

m 34

MS19820V3

=PFL %
Cortex M-4

Coeur du
microcontroleur

avec “DSP extensions’!

https://community.arm.com/processors/b/blog/posts/armv6-m-vs-armv?7-

Cortex™-M4

Nested Vectored
Interrupt Controller

CPU (with DSP Extensions)

Code
Interface

Memory
Protection
Unit
SRAM &
Peripheral
Interface

Bus
Matrix

m---unpacking-the-microcontrollers

Wake Up Interrupt
Controller Interface

FPU

Data
Watchpoint

Flash Patch
& Breakpoint

ITM Trace

ETM Trace

Debug
Access
Port

Serial
Wire
Viewer,
Trace

Port

o 35

=PFL &

Cortex M-4

Coeur du
microcontroleur

Cortex-M4
Technical Reference
Manual

A

Cortex-M4 processor
Interrupts and VNeIStedd L} Baiinid n
wer control ‘ectore ortex-M4 or
= » Interrupt |«—» Cortex-M4F » Embedded
Controller processor core > Trace
(NVlC) Macrocell
A > (ETM)
— ! 1§
Wake-up Y
Interrupt I 1
Controller Flash Patch Memory Wag:itaoint
(wic) Breakpoint [«—» Protection [« o T:)ace
(FPB) Unit (MPU) (DWT)
[I L) L)
[2R R 7
¥ Serial-Wire + i +
or JTAG AHB Instrumentation Trace Port
Debug Port |« Access Port [+ Bus Matrix [« Trace Macrocell |« » Interface Unit
(SW-DP or (AHB-AP) (ITM) Ll (TPIU)
SWJ-DP)
! — | I
Serial-Wire or *
JTAG Debug v v [t Coresignt Tlratc‘:f Port
Interface ICode DCode System | ROM table nterface
AHB-Lite AHB-Lite AHB-Lite PPB APB
ir)struction) data 'system debug system
interface interface interface interface

1 For the Cortex-M4F processor, the core includes a Floating Point Unit (FPU)
1 Optional component

=PFL %

STM32F Figure 1. System architecture for STM32F405xx/07xx and STM32F415xx/17xx devices
CCGI\‘}I-KbYt?RAM Ci /:tRMM4 ch\illi1 DS/I';Q Ethr:'AC t USB 019
* data ortex- erne! HS
Bus Matrix T T T T =
3 2 3 Z| = = °<'| tIJI %I
- (=) w s = = zZ |
5l d 4 3B 7]
Interface 3 3 B
4 | rficopg[
Between ! —
) as!
Cortex M4, memory, i] JI [jocony @ | Lmemer
. _ SRAM1
peripherals etc. T] [[T |
T 1 [ZE]
T T I [—iAPB1I
1] -
B [[Statc amet]
Bus matrix-S
ai18490d
I-bus: instruction bus
Cortex-M4 D-bus: Data bus

S-bus: System bus
M.] USB OTG: On-The-Go
anua FSMC: Flexible Static Memory Controller.

Technical Reference

cPr-L

Structure

1 MB Flash +

192 KBytes de
RAM/SRAM

STM32F 104
datasheet

Figure 5. STM32F40xxx block diagram

10, veus, e

oe oM
LLPIOK O, O, ST KT

oAy

nﬂ
.

4 cormpk chmrre (TIMY_ O E4N.
& chum et (TAT_ O HGETR,
BN AT

4 cormpd crrres (TINE_ {4,
& chum et (TAT_CHI[ETR,
N

2 churm A7

CCM dats RAM 64 KB N External
contraer (FSMC)
JTAG & sw] wPu K&} sram, PSRAM, NOR Fiasn,
ETM NVIC PC Cast (ATA), NAND Piash
ARM Cartex-M4
168 MHZ s
FPU Flash
i . d up o
BremetMAC | own]? # KD 1MB
10/100 wo g E Camera
§ o Sramiizke] | interace
E i ot H SRAM 16 KB
OTGHS wo H o] v
DMAZ l“ & prTT F|oters |
DMA1
/
e
GPIO PORT A [
—f we =
GPIO PORT B | ==
GPIO PORT C
GPIO PORT D
GPIO PORT E Py
= =
GPIO PORTF —_—
owe owar
4 7

A2 4 Mt

WD WE (e

ax N DG
Op 0, OEN WeN

NORD, IOWR, INTT2)
TN NI B AT

o 38

MS19820V3

cPr-L

Structure

Deux bus de
communications
avec les
périphériques

+ DMA

STM32F 104
datasheet

Figure 5. STM32F40xxx block diagram

RS, JTOL
STosswWaLK
STOEW, JTOD
TAZCK
mAcEoRg

Mior o AT
MO ax AT

oe oM
LLPIOK O, O, ST KT

10, veus, e

oAy

nﬂ
.

4 comp. chrrae (TN O
4 Chuema (TM1_ G LETR
N A

4 cormpd crrres (TINE_ {4,
& chum et (TAT_CHI[ETR,
N

2 churm A7

CCM data RAM 64 KB

JTAG & SW MPU

N Externdl

ax N DG

Op 0, OEN WeN

contrailer (FSMC) A
KEE} sram, PsrAM, NOR Fias, [V
PC Cast (ATA), NAND Plash

S =

— SRAM 16 KB

A et 05TV

->
g <EE> GPIO PORT B
rquag GPIO PORT C
Foyag GPIO PORT D
= GPIO PORT E
b GPIO PORT F
g

NORD, IOWR, INTT2)
TN NI B AT

ET™M NVIC
ARM Cartex-Md
168 MHz s N
FPU 4
ssus
Bhemet MAC ow | % N
10/100 wo
uss o
E OTGHS rro >
)1 1 14
DMA2
DMA1 ¥

GPIO PORT A

»

A2 4 Mt

MS19820V3

= 39

=Pi-L

Structure

Une multitude de
périphériques

STM32F 104
datasheet

Figure 5. STM32F40xxx block diagram

CCM dats RAM 64 KB NS Externd
Ty contrailer (FSMC)
JroRwLK JTAG & SW MPU @ SRAM, PSRAM, NOR Flash,
srovsw, oo &) NVIC PC Cast (ATA), NAND Fiash
maczax
wven pr—
R ARM Cartex-M4
168 MHZ s 5 .
FPU lelis Flash
) v E S cj up o
Micr A BhemetMAC | oww|® N = ¥ 1MB
0 ax A7 10100 o : 0| camera
Ke_sramiizks] E| tertace
uss owar s
st N I K)[__SrRAM6KB |
o orr om, 5 & orans reo é S — S
popainpesd H o vss
a | otars
DMA2 l g T
DMA1 l kI ET
L~
oo
g GPIO PORT A _1 —
e =
ragy GPIO PORT B | ==
g GPIOPORTC | g
e GPIOPORTD |
e GPIOPORTE || |4 Rt s
s =
. GPIOPORTF |4 e
S GPIOFORTG | g g g
e GPIOPORTH || i
ey GPIOPORT | |#=
=y
o EXT IT. WKUP e o
4 7
org
o cx-.zl SDIO / MMC AvEFE2 | AvEeEY
4 compl. chu e (TIMT O E4N,
4 churnn (TM1_ O 1E TR, TM1/PWM =
iyl 4 |
< >
i e e P med| | K
iy
2cmerinmar T e
[Po— LI = B
H
omam T3 [T
T USART1 ¥
ey USARTS e ok
0, M AP St ™7 D)
T —
e
VEOR® DS Tomparans senace_| (KD T
proeyeed ADC 1 [DACT |E|
a
e r—rr] acz_ || iF (KD DAC2
[, ooz L T 1 L
vV
OACTOUT pacz our
-ar AT

ax N DG
Op 0, OEN WeN
V| vpo e v
NWATIORDY, CO
NORD, IOWR, INTT2)
TN NI B AT

= 40

MS19820V3

Structure

Pinning: partage
des fonctions

STM32F104
Reference manual

Table 7. STM32F40xxx pin and ball definitions (continued)

Pin number

LQFP64
WLCSP90

LQFP100

LQFP144

UFBGA176

LQFP176

Pin name

(function after
reset)(!)

Pin type
1/ O structure

Notes

Alternate functions

Additional
functions

33

J3

51

73

P12

92

PB12

| o]

FT

SPI2_NSS / 1252_WS /
12C2_SMBA/
USART3_CK/ TIM1_BKIN /
CAN2_RX /
OTG_HS_ULPI_DS/
ETH_RMIL_TXDO /
ETH_MII_TXDO/
OTG_HS_ID/ EVENTOUT

J1

52

74

P13

93

PB13

o

FT

SPI2_SCK /1252_CK /
USART3_CTS/
TIM1_CH1N /CAN2_TX /
OTG_HS_ULPI_D6 /
ETH_RMIL_TXD1/
ETH_MI_TXD1/
EVENTOUT

OTG_HS_VBUS

35

J2

53

75

R14

PB14

| o]

SPI2_MISOf TIM1_CH2N /
TIM12_CH1 /
OTG_HS_DM/

USART3_RTS /

TIM8_CH2N/1252ext_SD/

EVENTOUT

36

H1

76

R15

95

PB15

| o]

SPI2_MOSI / 1252_SD/
TIM1_CH3N / TIM8_CH3N
1 TIM12_CH2 /
OTG_HS_DP/ EVENTOUT

RTC_REFIN

m 4]

Zl &2

e :
=l 1 &b

Figure 25. Basic structure of a five-volt tolerant I/O port bit

Structure L ;
To on-chip Analog | |
peripheral P o mal |
‘Alternate function input
b — | I
1 : . - on/off
Pinning: partage 5| |
a Read g i 1 (1)
. 4 — 8 | “_]]
des fonctions i | stean |
g 2 trigger on/off Pr(_)lection
° — | 2 |] diode
o [=4
z o x - Input driver 1 ;
Write I E % L 1/0 pin
o | 00 e T T T T e e 1
§ —L § Voo °n/°"| Protection
s = —d[P-Mos diode
’g Output |
Read/write 3 SR _{ N-MOS |
] |
From on-chi Vss
Alelid P Alternate function outpuf 5;:2:3;22}1 or |
' L — — — _— _ _ __ _Gsabled __ - Analog
ai15939b

1. Vpp_fris a potential specific to five-volt tolerant I/Os and different from Vpp.

STM32F104
Reference manual

-

'

Structure

Pinning:
Configuration

4 registres de
configuration

Table 35. Port bit configuration table

Mcﬁ’j?“) OTYPER(i) °5F[':iD]R“) PU[':!%';“) /O configuration
0 0 0 GP output PP
0 0 1 GP output PP + PU
0 1 0 GP output PP + PD|
0 SPEED 1 1 Reserved
o 1 [B:A] 0 0 GP output oD
1 0 1 GP output oD + PU
1 1 0 GP output OD + PD
1 1 1 Reserved (GP output OD)
0 0 0 AF PP
0 0 1 AF PP+ PU
0 1 0 AF PP +PD
0 SPEED 1 1 Reserved
10 1 [B:A] 0 0 |AF oD
1 0 1 AF oD + PU
1 1 0 AF oD + PD
1 1 1 Reserved
X X X 0 0 Input Floating
X X 4 0 1 Input PU
00
X X X 1 0 Input PD
X X 1 1 Reserved (input floating)
X x X 0 0 Input/output Analog
X X X 0 1
i X X X 1 0 Reserved
X X X 1 1

1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate

function.

W 43

=Pi-L
Structure

Pinning:
Configuration

1) Mode (MODER)

La pin sera configurce en :

Entrée (Input)

Sortie (Output)

Fonctions alternées (Alternate function)
(I2C, UART, PWM, etc.)

Analogique (Analog)

m 44

: F Prmczpe
| . 84 Lbb (modes pages suivantes)

Structure

Pinning:
Configuration

1) Mode (MODER)
2) Type d’”output” (OTYPER)

Voo

Qutput
control

[P-MOS

——|| N-Mos

1
Vss Push-puill,
open-drain or
disabled

o 45

=Pi-L
Structure

Pinning:
Configuration push-pull

1)Mode (MODER)
2) Type d’output (OTYPER)

Input

Voo

—d[P-MOS

—| N-MOS

Vss Push-pull,

W 46

=Pi-L
Structure

Pinning:
Configuration push-pull
—[jp-mMos
1) Mode (MODER) Input = low Output = VDD = 3.0 V
2) Type d’output (OTYPER) |

U99B

1 VBKU 6 ., |21 VREF+
1! I TS VBAT | VREF IC46 IC4S V "
6x 100nF 11 VDD)
I 1uF 19 VDD 100nF| 1uF u‘S - DU .
53 T C54C58 Je60 oot foe2 | 28 - o 10 | | "
i_l_i_][_ _F_ - =~ VDD VSS =1 b b

TIITTT el s
~— VDD VSS (==
190 } ypp vss 22

QU@ 1UVIVITT. I 2 -

30VA<—{__} VDDA T Tcea] VDDA VSsA 20
F1 A STM32F407VET6

83 .
7 100nF| 1uF GND

GND GND

Alimentation du processeur (VDD, VSS) 41

Cf Dossier électronique de I’e-puck2

w47

=Pi-L
Structure

Pinning:
Configuration push-pull

P-MOS

Output = VSS = GND

—[IN-Mos

Vss Push-pull,

1) Mode (MODER) input = high
2) Type d’output (OTYPER)

W 48

=Pi-L
Structure

Pinning:
Configuration push-pull

P-MOS

Output = VSS = GND

—[IN-Mos

1) Mode (MODER) input = high
2) Type d’output (OTYPER)

U99B

1 I(-\A‘?M S | VBAT VREF+ [= V :
6x 100nF 1 SS
T (22 ush-pull,
—t =ttt T - - b
fsTcsE s et 6(.3_1__]) ;g e vss |10
TITTI] Hw | =R
—— VDD VSS p—
190 } ypp VSsS
60@100MHz s 5
sova<—{1 VDDA I oF I T VDDA | VSSA ==
o 83 STM32F407VET6
7 100nF| 1uF

GND GND

Alimentation du processeur (VDD, VSS) 42

Cf Dossier électronique de I’e-puck2

m 49

=Pi-L
Structure

Pinning:
Configuration open-drain

1)Mode (MODER)
2) Type d’output (OTYPER)

Output = VSS = GND

Input = high
| IN-MOS

Vss
open-drain

= 50

=Pi-L
Structure

Pinning:
Configuration open-drain

1)Mode (MODER)
2) Type d’output (OTYPER)

Output = floating

Input = Iow_‘ I:TN_MOS

Vgs

open-drain

m 5]

=Pr-L

Structure
Voo Voo rr'
Pinning: |
: | A Protection
Configuration on/off S 2\ giode
I)Mode (MODER) — e o— |I/O pin
2) Type d’output (OTYPER) — ,
3) Type de “pull” (PUPDR) onoft 2 2\ Protection
oW1 diode
_l. Vss

PUPDR = PullUpPullDownRegister

m 52

=Pr-L

Structure
Pinning:
Configuration
VDD
1) Mode (MODER)
2) Type d’output (OTYPER) Pull-up

resistor

3) Type de “pull” (PUPDR)

Output = VDD
Input = low

open-drain + pull-up

o 53

=Pi-L
Structure

Pinning:
Configuration

1)Mode (MODER)

2) Type d’output (OTYPER)
Type de “pull” (PUPDR)

4) Vitesse de sortie (OSPEEDR)

FORMAT

HMO2024 (HW 0x10130001; SW 04.522) 2018-02-091529 I FARAMEL=S®
Norm-Trig. / Run Instruments
TB:20ns T:195ns CHL: 149V /\DC 2Gsa
SAVE/RECALL
SCREENSHOTS
STORAGE
. LW
‘ sty
\ (\/J FILE NAME

o
&
[

COLOR MODE
I
SAVE
\ CF|
- CHLN BRiNT

CH1: S00mV &

High-speed, higher consumption

HMO2024 (HW 0x10130001; SW 04.522) 2018-02-091529 I FARAMEL=S®

Norm-Trig. / Run Instruments

TB:20ns T:19.5ns CH1: 1.49V /A\DC 2GSa

SAVE/RECALL
SCREENSHOTS

STORAGE

/ FILE NAME

FORMAT

|

Py
[

COLOR MODE

\ en
- CH1

o
>
<
m
L .

CH1: S00mV &

Low_speed, lower consumption

m 54

Savoir extraire

E I F L 84 J,b"’ des informations

Figure 86. Advanced-control timer block diagram

CK_TIM18 from RCC Internal clock (CK_INT)
l’ E Trigger
w
Structure | vt
£
L TRGO w Toother timers
7" To DAC and ADC
TGl
ITR1T ——» AN
ITR2 —— | TRGI Slave mode
. Re | controller
Timer Vs
» Reset, ul
Enable,
+ * t t Up/Down, - A
input capture, SO | - e
TI2FP2. » interface \G' 5
tput i
H
output compare) M
z
~(z
19
x
Repemnncoum E
CK_PSC PSC CK_CNT oNT
(prescaler) (counter) DTG[7:0] registers ;
o
z cc4l ’ ‘ ‘ ceal 1.4
b THFP1 AN A é
H Inpulm—t e e aer [C1PS Capture/Compare |OC1REF
F Edge detedtor [sscaler; 1 Register zZ
o~ cc3l @ | | | ccal A] 5.
g AN AN H 2
1 Input filter & »| |ic IC2Ps Capture/Compare [OC2REF, H
L Edge detedor f—rm H Prescaler 2 Register =
£ > ~(OC2N
TRC cc2l {} I I cc2l 2
2 TI3FP3 AN AN oc3 9
S, a TI3 Input filter & 1C3 [orescater O3PS Capture/Compare [OC3REF, 13
F) Edge detector —— » - 3 Register £
% P e ccl v ceil g F
AN Q =
3 TI4FP3| AN o L5
S T4 Input fiter & IC4 [orescaier |'4PS Capture/Compare |OCAREF 15
él Edge detector [zsr rosceer \{J\‘ 4 Register =
= _’ -
F TRC
z 4
: B e :
: x
=
£ Clock failure event from clock controller L/ F
= CSS (Clock Security System)
STM Legend AAlnterrupt & DMA output ~/ Event DTG [Output control
Preload registers transferred to active registers on U event according to control bit
Reference Manual pre—

o 55

cPr-L

Structure

Clock

STM
Reference Manual

Figure 21. Clock tree

Watchdog
IWDGCLK
s emte PR toindependent
watchdog
RTCSEL10]
RTC
sl Lem RTCCLK ,, u RTC
Peripheral
_, Ethemet
> PTP clock
DTS 120 ALD:(B bu
S, Core.
16 MHz tock | % memory and DMA
SRC | FS to Cortex System
timer
| [usi \{ FCLK Cortex
WEE free-running clock
PLLCLK
patoreral
npheral
Soks
APBxtimer|
clocks
oscout P HSE
e HSE 08C
i Peripheral
= PLL4SCK Clock enable ¥ 48 MHz
XN o
PLL I R|

S5 Sriie) ik
2S_CKIN
PHY Bthemet MACTXCLK
25 1o 50 MHz |
MIl_RMII_SEL in SYSCFG_PMC to Ethernet MAC
Peripheral
clock enable MACRXCLK
ETH_MILRX_
CLK_Mi
MACRMICLK pgri
ot
clock enable USBHS
OTG Hs scL _1>_bm| lock
#16088d

b &

For full details about the internal and external clock source characteristics, refer to the Electrical characteristics section in

the device datasheet.

o 56

cPr-L

Figure 21. Clock tree

Watchdog
M'_, WOGCLK , 1oindependent
watchdog
Sﬂ ucture iy
RTC
sl Lem RTCCK , wRTC
HSE_RTC
Peripheral
2t031 B Ethemet
Clock [S,
oA bu
. D> N8 tus, o,
SRC [FS 1o Cortex System
timer
FCLK Cortex
e e one
PLLCLK
Peripheral
APBx clock enable | Yy APBX

Peripheral ﬁg%’}ﬂ?"a'

0SCouT P HSE 124816 clock enabl)
OSCIN E;]E (APBx presc = 1x1 |)_’\ APBx tlmerl

else x2 clocks

e i - j2s clocks

12S_CKIN

PHY Ethemet MACTXCLK

2510 50 MHz|

MACRXCLK

ETH_MILRX_
g
CLK_min Peripheral
4WD—>MACRMIICLK Porphora
enabie USBHS
OTG_HS _SCL _'D—b._p.dm
STM -

Re erence Manual 1. For full details about the internal and external clock source characteristics, refer to the Electrical characteristics section in
the device datasheet.

Savoir extraire
> des informations

b

cPrL 4

Exemples d’autres structures

INTERNAL PROCESSOR
CLOCK

68HC12

68HCO5

=]
=]

ICF

ol
ot

11 |8

| IWMER CONTROL REGISTER | |

TIMER SIATUS REGISTER

I

{

)

)
G 15 87]
B scer | wion = FIKED
PIN AND F 16 BIT INPUTCAPTURE REGISTER |—)\ DIVIDE BY
DETECT 4
15 { } 87 { } 0 |
16:8IT TIMER COUNTER
2 LSB BUFFER N
=
g { } PIN
=
ot | 16 BIT COMPARATOR | o CONTROL fx?‘ P
I =7 LOGIC IN
Gls %
I 16 BIT OUTPUT COMPARE REGISTER |q_>\
1% 87 0

AN
PRESCALER
<,:> DIVIDE CONTROL REGISTERS —
cT o
TIMER TCRE
COUNT (COUNTER RESET) FUNCTION,
Ll DIRECTION
TCNT *—CI: AND
TONT POLARITY
”ggéf 16-8IT RESET cTL
25| PRESCALER COUNTER .
PRO, PRI, PR2 oc? \
Yy o
INPUT
BUFFER
- LATCH - TIOC ::>wr
INPUT CAPTURE/ ——
OUTPUT COMPARE Pa:)
Q REGISTER Loaid —
5 16-BIT s
§ COMPARATOR i
PUT
g OUTPU
o
2

http://www.seattlerobotics.org/encode

PAD

TIMER
INTERRUPT
REQUEST
h
Y
INTERNAL
DATA BUS

http://rab.ict.pwr.wroc.pl/~mw/mcu/o
verview/images/hc05/timer05.jpg

r/nov97/tim_block.gif

o 58

P
cPrL
Exemple d’autre structures

Timer (2 x 32bit)

Data Bus<15:0>

N
TMR3HLD
16

\\
16
Write TMR2 {}
Read TMR2 Kv7_l
16
Resel ! TMR3 ' TMR2 Sync
MSB {} LSB
ADC Event Trigger
-€ Equal Comparator x 32

i

’ PR3 | PR2
T3IF 0 q
Event Flag 1 Q D|-®-TGATE (T2CON<6>)
Q_rck
TGATE
(T2CON<6>)
=
n <
oo
= TCKPS<1:0>
TON 2
T2CcK @ {} , 1x %
L Gate Prescaler

dsPIC datasheet

Sync 01 1,8,64,256|
Tey 00

= 59

cPrL
Programmation

Les processeurs ARM ont un set d’instructions assez important pour un RISC, dont la
grande majorité est exécuteée en un cycle

Les instructions sont optimisées pour effectuer du calcul rapide

m 60

=PFL &

Instructions Powerful & Scalable Instruction Set

. sEL SMADOW

| SMLAST SMLATE

. SMALD SMAWE

COSMUAWT SMLSD SMLID SMMLA SMAMLS SMMUL SMUAD SMULMS
CIABSETD CETABBITD CETABETTD CUTAMDTTD CETABMETID
IR CINETD EENSTED CETSPITD

Advanced data processing
Bit field manipulations

16 Bit Thumb & 16/32 Bit Thumb2

General data processing
/O control tasks

AU
ALECLTALTALAAL

https://community.arm.com/processors/b/blog/posts/armv6-m-vs-armv7-
m---unpacking-the-microcontrollers

o 61

=PFL &

Programmation

Processor core register summary

\
MOdGlC The processor has the following 32-bit registers:
. 13 general-purpose registers, 10-r12
de . Stack Pointer (SP) alias of banked registers, SP_process and SP_main

. Link Register (LR), r14

pI'O grammathIl . Program Counter (PC), 115

. Special-purpose Prbgmm Status Registers, (xPSR).

Figure 3-3 shows the processor register set.

Py

r0
al
r2
r3
r4
r5
(5]
7
8
r9
high registers < r10
r11
r12

low registers <

r13 (SP) I SP_process | |

SP_main

r14 (LR)

. 15 (PC)
Cortex_M4 TeChnlcal Program Status Register xPSR
Reference Manual

m 62

=PFL &

Programmation

Modéele
de

programmation

Cortex-M4 Technical
Reference Manual

Special
purpose ==
registers

Low registers

High registers

Stack Pointer
Link Register

Program Counter

The processor core registers are:

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

General-purpose registers

SP (R13)

Psp* “ MSP* | *Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register

Exception mask registers > Special registers

CONTROL register

/

Table 2-2 Core register set summary

o 63

=PFL %

Programmation

Modele
de

programmation

Cortex-M4 Technical
Reference Manual

Program Status Register

The Program Status Register (PSR) combines:

. Application Program Status Register (APSR)
. Interrupt Program Status Register (IPSR)

. Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

3130 29 28127 26 25 2423 1615 109 8| 0
APSR IN|Z|C|V]|Q Reserved
current Interrupt Service
IPSR Reserved ISR_NUMBER
Routine (ISR)
EPSR Reserved [ICUIT|T Reserved ICINT Reserved

o 64

=P

Programmation

Memory map

Cortex M4
Technical Reference Manual (p. 39)

0xE010000 ROM Table
0xEOOFF000 External PPB
0xE004200 ETM
0xE004100 TPIU
0xE004000
0xE004000 Reserved
0OxEOOO0F000 SCS
0xEO0OE000 Reserved
0xE000300 FPB
0xE000200 DWT
0xE000100 1™
0xE000000
0x4400000

32MB Bit band alias
0x4200000

31MB
0x4010000 i i
0x4000000 1MB Bit band region
0x2400000

32MB Bit band alias
0x2200000

31MB
0x2010000 P i
0x2000000 L R

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral 0.5GB

SRAM 0.5GB

Code 0.5GB

Figure 3-1 System address map

OXFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

o 65

F Connaltre les types
6%56 d’instructions

Programmation

Table 3-1 Cortex-M4 instruction set summary

(%3 »
Operation Description Assembler Cycles < Un “cycle
: d’horloge du
Instructions: Move Register MOV R, <op2> 1
prOC@SSeMI" = un
MOVC, Add 16-bit immediate MOVW Rd, #<imm> 1 ﬂanc montant et
Immediate into top MOVT Rd, #<imm> 1 descendant de la
To PC MOV PC, Rm 1+P clock g
Add Add ADD Rd, Rn, <op2> 1 6%56
Add to PC ADD PC, PC, Rm 1+P
Add with carry ADC Rd, Rn, <op2> 1
Form address ADR Rd, <label> 1

3.3.3 Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown as
Operand? in the descriptions of the syntax of each instruction.

Operand? can be a:

Constant
CO rtex —M 4 . Register with optional shift on page 3-13
Technical Reference
Manual

o 66

=Pr-L

Instructions:
Math...

Cortex-M4
Technical Reference
Manual

Operation Description Assembler Cycles
Subtract Subtract SUB Rd, Rn, <op2> 1
Subtract with borrow SBC Rd, Rn, <op2> 1
Reverse RSB Rd, Rn, <op2> 1
Multiply Multiply MUL Rd, Rn, Rm 1
Multiply accumulate MLA Rd, Rn, Rm 2
Multiply subtract MLS Rd, Rn, Rm 2
Long signed SMULL RdLo, RdHi, Rn, Rm 1
Long unsigned UMULL RdLo, RdHi, Rn, Rm |
Long signed accumulate SMLAL RdLo, RdHi, Rn, Rm 1
Long unsigned accumulate UMLAL RdLo, RdHi, Rn, Rm |
Divide Signed SDIV Rd, Rn, Rm 2to 12a < @
Unsigned UDIV Rd, Rn, Rm 2 to 12a 6dLbb
Saturate Signed SSAT Rd, #<imm>, <op2> 1
Unsigned USAT Rd, #<imm>, <op2> | | 67

=P

Compare Compare CMP Rn, <op2>
. Negative CMN Rn, <op2>
Instructions: .
Logical AND AND Rd, Rn, <op2>
Ma'th' °c (2) Exclusive OR EOR Rd, Rn, <op2>
OR ORR Rd, Rn, <op2>
OR NOT ORN Rd, Rn, <op2>
Bit clear BIC Rd, Rn, <op2>
Move NOT MVN Rd, <op2>
AND test TST Rn, <op2>
Exclusive OR test TEQ Rn, <opl>
Shift Logical shift left LSL Rd, Rn, #<imm>
Logical shift left LSL Rd, Rn, Rs
Logical shift right LSR Rd, Rn, #<imm>
Logical shift right LSR Rd, Rn, Rs
Arithmetic shift right ASR Rd, Rn, #<imm>
Cortex-M4 Arithmetic shift right ASR Rd, Rn, Rs
T echnical Ref erence Rotate Rotate right ROR Rd, Rn, #<imm>
Manual Rotate right ROR Rd, Rn, Rs

With extension RRX Rd, Rn

=P

Instructions:

Cortex-M4

Technical Reference

Manual

Operation Description Assembler Cycles

Count Leading zeroes CLZ Rd, Rn 1

Load Word LDR Rd, [Rn, <op2>] 20
To PC LDR PC, [Rn, <op2>] 2b+ P
Halfword LDRH Rd, [Rn, <op2>] 20
Byte LDRB Rd, [Rn, <op2>] 20
Signed haltword LDRSH Rd, [Rn, <op2>] 20b
Signed byte LDRSB Rd, [Rn, <op2>] 2b
User word LDRT Rd, [Rn, #<imm>] 2b
User halfword LDRHT Rd, [Rn, #<imm>] 2b
User byte LDRBT Rd, [Rn, #<imm>] 20
User signed halfword LDRSHT Rd, [Rn, #<imm>] 2b
User signed byte LDRSBT Rd, [Rn, #<imm>] 20
PC relative LDR Rd, [PC, #<imm>] 20
Doubleword LDRD Rd, Rd, [Rn, #<imm>] 1+N
Multiple LDM Rn, {<reglist>} 1+N
Multiple including PC LDM Rn, {<reglist>, PC} 1+N+P

o 69

=Pr-L

Instructions:
Store, push,
pull

Cortex-M4
Technical Reference
Manual

Store Word STR Rd, [Rn, <op2>] 2b
Halfword STRH Rd, [Rn, <op2>] 20
Byte STRB Rd, [Rn, <op2>] 20
Signed halfword STRSH Rd, [Rn, <op2>] 2b
Signed byte STRSB Rd, [Rn, <op2>] 2b
User word STRT Rd, [Rn, #<imm>] 2b
User halfword STRHT Rd, [Rn, #<imm>] 2b
User byte STRBT Rd, [Rn, #<imm>] 2b
User signed halfword STRSHT Rd, [Rn, #<imm>] 20
User signed byte STRSBT Rd, [Rn, #<imm>] 2b
Doubleword STRD Rd, Rd, [Rn, #<imm>] 1+N
Multiple STM Rn, {<reglist>} 1+N

Push Push PUSH {<reglist>} 1+N
Push with link register PUSH {<reglist>, LR} 1+N

Pop Pop POP {<reglist>} I +N
Pop and return POP {<reglist>, PC} 1+N+P W70

=Pr-L

Instructions:
Semaphore,
branch

Cortex-M4
Technical Reference
Manual

Operation Description Assembler Cycles
Semaphore Load exclusive LDREX Rd, [Rn, #<imm>] 2 < @
Load exclusive half LDREXH Rd 6d$bb
oad exclusive ha , [Rn] 2
Load exclusive byte LDREXB Rd, [Rn] g Intéressant pour faire
Store exclusive STREX Rd, Rt, [Rn, #<imm>] 2 du multi-tache
Store exclusive half STREXH Rd, Rt, [Rn] 2
Store exclusive byte STREXB Rd, Rt, [Rn] 2
Clear exclusive monitor CLREX 1
Branch Conditional B<cc> <label> lorl+Pe
Unconditional B <label> 1 =P
With link BL <Tabel> 1+P
With exchange BX Rm 1+P
With link and exchange BLX Rm 155 P
Branch if zero CBZ Rn, <label> lorl+Pe
Branch if non-zero CBNZ Rn, <label> lorl+Pe
Byte table branch TBB [Rn, Rm] 2+P
Halfword table branch TBH [Rn, Rm, LSL#1] 2+P w71

=Pr-L

Instructions:

Cortex-M4
Technical Reference
Manual

State change Supervisor call SVC #<imm> -
If-then-else IT... <cond> 1d
Disable interrupts CPSID <flags> lor2
Enable mterrupts CPSIE <flags> lor2
Read special register MRS Rd, <specreg> lor2
Write special register MSR <specreg>, Rn lor2
Breakpoint BKPT #<imm> -

Extend Signed halfword to word SXTH Rd, <op2> |
Signed byte to word SXTB Rd, <op2> 1
Unsigned halfword UXTH Rd, <op2> |
Unsigned byte UXTB Rd, <op2> 1

Bit field Extract unsigned UBFX Rd, Rn, #<imm>, #<imm> 1
Extract signed SBFX Rd, Rn, #<imm>, #<imm> 1
Clear BFC Rd, Rn, #<imm>, #<imm> 1
Insert BFI Rd, Rn, #<imm>, #<imm> 1

. 72

=Pr-L

Instructions:

Cortex-M4
Technical Reference
Manual

Operation Description Assembler Cycles
Reverse Bytes in word REV Rd, Rm 1
Bytes in both halfwords REV16 Rd, Rm 1
Signed bottom halfword REVSH Rd, Rm 1
Bits in word RBIT Rd, Rm 1
Hint Send event SEV 1
Wait for event WFE 1+W
Wait for interrupt WFI 1+W
No operation NOP 1
Barriers Instruction synchronization ISB 1+B
Data memory DMB 1+B
Data synchronization DSB <flags> 1+B

. 73

: : @ Connaljtre les
| . | 6,_.;1:56 caracteristiques

Instructions:
DSP

Table 3-2 Cortex-M4 DSP instruction set summary

Operation Description Assembler Cycles
Multiply 32-bit multiply with 32-most-significant-bit accumulate SMMLA 1
32-bit multiply with 32-most-significant-bit subtract SMMLS 1
32-bit multiply returning 32-most-significant-bits SMMUL 1
32-bit multiply with rounded 32-most-significant-bit accumulate SMMLAR 1
32-bit multiply with rounded 32-most-significant-bit subtract SMMLSR 1
32-bit multiply returning rounded 32-most-significant-bits SMMULR 1
Cortex-M4 A
Technical Reference
Manual \

=P

Instructions DSP

Cortex-M4
Generic User

Guide

3.6.7 SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word
Multiply Subtract.

Syntax

op{R}{cond} Rd, Rn, Rm, Ra <

where:

op Is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
R Is a rounding error flag. If R is specified, the result is rounded instead of being

truncated. In this case the constant 0x80000000 is added to the product before the
high word is extracted.

cond Is an optional condition code, see Conditional execution on page 3-18.
Rd Specifies the destination register.

Rn, Rm Are registers holding the first and second multiply operands.

Ra Specifies the register holding the accumulate value.

w75

=Pr-L

Instructions DSP

Syntax

op{R}{cond} Rd, Rn, Rm, Ra

Cortex-M4
Generic User

Guide

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

Multiplies the values in Rn and Rm.

Optionally rounds the result by adding 0x80000000.
Extracts the most significant 32 bits of the result.
Adds the value of Ra to the signed extracted value.
Writes the result of the addition in Rd.

The SMMLS instruction:

Multiplies the values in Rn and Rm.

Optionally rounds the result by adding 0x80000000.

Extracts the most significant 32 bits of the result.

Subtracts the extracted value of the result from the value in Ra.
Writes the result of the subtraction in Rd.

o 76

=Pr-L

Instructions DSP

Cortex-M4
Generic User

Guide

Examples

SMMLA
SMMLAR
SMMLSR

SMMLS

RO,
R6,
R3,

R4,

R4, RS, R6
R2, R1, R4
R6, R2, R7

R5, R3, R8

; Multiplies R4 and RS, extracts top 32 bits,
; R6, truncates and writes to RO

; Multiplies R2 and R1, extracts top 32 bits,
; R4, rounds and writes to R6

; Multiplies R6 and R2, extracts top 32 bits,
; subtracts R7, rounds and writes to R3

; Multiplies RS and R3, extracts top 32 bits,
; subtracts R8, truncates and writes to R4.

adds

adds

w77

'

Outil de gestion de versions

Prof. Francesco Mondada, Daniel Burnier, Antoine Martin
IEM - STI - EPFL

m 78

=PFL %

Outils logiciel: Gestion de versions

La gestion de versions consiste a maintenir I'ensemble des
versions des codes source. Chaque ¢tape d'avancement
des logiciel est appelée version (ou revision). Les
différentes versions sont nécessairement liées a travers
des modifications : des fichier modifiés, ajoutés ou
supprimes

Les fichiers versionnés sont mis a dispositions sur un dépot
géré par un logiciel de gestion de versions.

® QGestion de versions centralisée : il n'existe qu'un seul
dépdt des versions (Subversion (SVN)).

* Gestion de versions décentralisée : il existe plusieurs
dépdts pour un méme logiciel (Git et Mercurial).

https://fr.wikipedia.org/wiki/Gestion_de_versions

Tags

i

Y

4

9

Discontinued

development

Merges

~N O

branch

= 79

P
=PrL
Gestion de versions: Git et Github

Git, et le repository online GitHub sont trés répandus.

Pour étre rapidement efficaces il est conseillé d’utiliser un
client avec une interface utilisateur (au lieu de la ligne
de commande) comme par exemple GitKraken

De plus en plus d’outils de développement (comme celui

qu’on va utiliser, Visual Studio Code) integrent la
gestion de version.

https://fr.wikipedia.org/wiki/Gestion_de_versions

Trunks
2
Y
&)
Y
Merges
Tags 5
6
v
7
Yy ¥ 8

ontinued
‘ié' 'PI opment
branch

= 80

'

PFL

Git

- gestion des versions
- possibilité de sauvegarde des versions et de roll back a une version de code antérieure
- commit: "snapshot” d’'une version précise de mon code, qui est sauvée
- checkout: prendre une version dans le repository comme version de travail

- collaboration
- facilite le travail en groupe
- copie locale sur I'ordinateur, fonctionne en offline
- échange par un repository online partagé (e.g Github, GitLab)
- 1 branch par personne en général
- merging: fusionner 2 branch

- un standard dans l'industrie

o 81

Local
repository

|
|
Les fichiers Endroit temporaire Sur votre ordinateur I Sur un serveur (Github,
directement visibles oU sont ajoutées les répertoire caché | Gitlab, etc)
sur votre ordi modifications avant (.git) | Pour travail de groupe
d’'étre commit | . 82

E P F L embarqués et robotique

Alice Alice Alice Alice Alice

Branch Alice

Branch Bob

| | Bob Bob | |

I | I I » Timeline
Branching Merging

. 83

=Pi-L

Repository student Repository template

github.com/EPFL-MICRO- github.com/EPFL-MICRO-315/TPs-

315/tps-2023-alice-bob Student

Repository student - modifiable
- code du groupe
- remote name: origin

Possibilité de push/pull/etc vers
différents remote repositories

Repository template - non modifiable
- code de la donnée des
exercices
- code des solutions
- remote name: reference

origin: github.com/EPFL-MICRO-315/tps-2023-alice-bob
Host reference: github.com/EPFL-MICRO-315/TPs-Student

(Alice)

Avantages

Exercices, solutions et code du groupe
accessibles depuis le méme dossier sur
un ordinateur

m 34

=PrL
Github Classroom

Pour accéder aux TPs, il est nécessaire d’utiliser Github :)
.il est n’'est pas possible d’accéder aux TPs autrement

.Le repository de chaque groupe est stocké sous I'organisation EPFL-MICRO-315
»=> un assistant peut directement accéder au code facilitant donc le debugging

How to access the first TP

The installation of the software for TPs, as well as the necessary configurations are explained at the beginning of TPIntro.
To access TPIntro, please follow the instructions on this page.

o 85

Il
:U
i
r

CheatSheet

.git clone <url>: Clone (download) a repository that already exists on a server (Github), including all of
the files, branches, and commits

.git status: Always good to use, this command shows you what branch you're on, what files are in the
working or staging directory, and any other important information

:git branch: This shows the existing branches in your local repository

.git branch <branch-name=>: Create a branch from your current location

.git branch -all: See all branches, both the local ones on your machine, and the remote tracked branches
.git checkout <branch-name=>: Switches to the specified branch and updates the working directory
:0rigin: name given by default to the remote from which the repo was cloned

o 86

Il
:U
i
r

CheatSheet

:git add/rm <file>: Snapshots the file in preparation for versioning, adding/removing it to the staging
area

:git commit -m "<descriptive message>": Records file snapshots permanently in version history

.git fetch: Updates your current local repository branch with all new commits from the corresponding
remote branch on GitHub

.git pull: Updates your current local working branch with all new commits from the corresponding remote
branch on GitHub

.git pull is a combination of git fetch and git merge

.git push: Uploads all local branch commits to the remote

:git log: Browse and inspect the evolution of project files

.git remote -v: Show the associated remote repositories and their stored name, like origin

m g7

Il
:U
i
r

CheatSheet

.git reset <file>: Unstage a file while retaining the changes in working directory

.git diff: diff of what is changed but not staged

.git diff --staged: diff of what is staged but not yet committed

:git merge <branch>: merge the specified branch’s history into the current one

.git reset --hard <commit>: clear staging area, rewrite working tree from specified commit

:git config -global user.name “<username=>": set a name that is identifiable for credit when review
version history

:git config -global user.email “<email>": set an email that will be associated with each history marker
.gitignore: a file specifying any file/folder to be ignored when staging modifications

o 88

=P

Introduction au dossier électronique

Jeudi 20.02.2025 10:15
en CM 11

Prenez votre ordinateur, installez I’IDE

Formation des groupes: merci de les définir avant mercredi midi
le matériel (robot) et la configuration github en dépends

o 89

=Pr-L

1P de ce Jeudi (essentiel, a ne pas rater!)

Installation et prise en main des outils utilis€s en TP:
® Visual Studio Code

®* Pyenv
®* E-puck?2 (distribution)
* Git

Utilisation de Visual Studio Code pour
® Programmer

* Debugger

sur cible e-puck?.

Ces outils seront utilisés durant tous les TPs, donc 1l est essentiel de les maitriser !!

= 90

mpre
= P N L
IP de ce Jeudi (essentiel, a ne pas rater!)

Avant le TP:

® C(Créez votre groupe et inscrivez-le d’ici mercredi (lien sur Moodle)

Installez I’IDE en suivant le tout début du TPIntro (Partie 1, le reste sera realiseée
en TP)

S1 vous avez des problemes d’installation, demandez de 1’aide aux assistants
durant le TP ou créez une 1ssue GitHub

N’oubliez pas de prendre votre ordinateur aux TPs !

m 9]

'

Introduction to the e-puck?2
robot

Francesco Mondada
IEM - STI - EPFL

@) e-puck

m 92

=Pi-L
Introduction

The goal of this intro is to provide you with some elements of the e-puck2 mobile
robot and prepare you for the TP1

m 93

=Pi-L

The e-puck2 mobile robot

Main features:
* Cylindrical, @ 70mm
* STM32£407 processor
* Two stepper motors
® Multiple LEDs
®* Many sensors:
Camera
v/ Sound
VIR proximity sensors
v IMU (Acc., Gyro., Mag:)
v Distance sensor (ToF)
® Li-ion accumulator
* Bluetooth/Wifi wireless
* USB communication
® Onboard Debug Server (GDB)

® Open hardware

m 9%

'

L

The e-puck2 open hardware license

The specifications of the e-puck2 mobile robot are "open source hardware".

Y ou can redistribute them and/or modify them under the terms of the e-puck2
Robot Open Source Hardware License as published by EPFL. You should
have received a copy of the EPFL e-puck2 Robot Open Source Hardware
License along with these specifications; if not, write to the Ecole
Polytechnique Fédérale de Lausanne (EPFL), Industrial Relations Office,
Station 10, 1015 Lausanne, Switzerland.

These specifications are distributed in the hope that they will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For

more details, see the EPFL e-puck2 Robot Open Source Hardware License.

m 95

=Pi-L

e-puck2 mobile robot mechanical structure

f\\

T |
\1\

l,_

(\‘\ | LQ\J;\J ‘V“\'\\
iy

\‘

=iy

m 96

=Pi-L

e-puck2 mobile robot mechanical structure

=Pi-L

e-puck2 mobile robot mechanical structure

=Pi-L

e-puck2 mobile robot mechanical structure

=Pi-L

e-puck2 mobile robot mechanical structure

m100

=Pi-L

e-puck2 mobile robot mechanical structure

mi01

=Pi-L

e-puck2 mobile robot mechanical structure

i
> 3;\71*'-—1%3\\\3}; ;ﬂi .,;i_"‘;'t\f"l;?ik
S = i e

=
(==
Sl

m102

Do not extract the battery pack from the e-puck
and do not charge it yourself'!!!! =103

=Pi-L

e-puck2 mobile robot mechanical structure

m104

=P

e-puck2 mobile robot mechanical structure

m105

=
[

-
=

Dossier Electronique

e

sot mouated

E—I
-

SIS
[y

(407 U Dabeg T U0 T+

e
b |
NRST PE6 oy B O
L s —
Boom o o —
= e
pucsc ot B oo RS
fns s e
B
e orapa|| .2 &
Bl TOSTRATRRAS B
B
B H
i i SR
B
4
4
s
B

CAUD X,

-

1

[
)
(Cmmna
- pacu
Ve
.nc
« HSymc , =2
it BSVDAT2
Mcx e on — -
W e DIaD
B T s LY

107 DATO
A T N7

V]
o—
3
@

main microcontroller
s

07VGT6 1024KB flach

GCTronic
[EPFL-Mobots

Common

m

Project e-puck?
Part STM32F 407 Main yController
E

ra

m106

™ : @ Savoir extraire
]

‘5d:i:b"’ des informations

Savozr extraire
84 J,b"’ des informations

Fabrlcatlon (cuwre ettrous de passage)

'

-
I

Savoir extraire
S des informations

Numéro du chip (Uxx)

3.0BT

3.0BT

<+«— |nform

30BT 3.0BT e e
WiFi + BTZ + BT4
Nom du chi
100nF| 1uF K p
&b D u23 ESSI;’-SZS
GND_PAD GND
—_— GND—4— GND GND SiIGND o
3.0BT<—— 3V3 GPIO23 (e
EN GPI022 t—re R R39 470
Q.‘Z gﬁigﬁ%ﬁ ;gg 34 (UARTO-RX) _mIXD Eggg to Programmer
[Up X (UARIZ-RX) GPIO34 GPIO21 3 [LEDCG
T 53 PIl MISO
UD TX GPIO35 NC T ﬁ;
2 GPI032 GPIO19 (<t
RGBJ GPIO33 GPIOIS (a3
R GPIO25 GPIOS [l]
(LEDZ > G GPIO26 GPIO17 i —(UARIZTY) PAL SCI
B GPI027 GPIOI6 a3 —EDES
GPIO14 GPIO4 5
B GPIO12 GPIOO i
.
GPIOO ESP32 ~ . ; ;
SETT Extension connector
ZEARSSRaEAE
5382508850 , , s 'k]
TN same as e-puc
| eeecte e
LI A B A A)
ROB__ LEDGR 1]
CTEDE e & —LEDSG AN [Pins 0 at startup with internal PD
d Camera
s internally to EOn B y B+ B3
RGB flash = . USYS ON a JE2 A USYS ON
Frpie e |
(/LEDS » & /SD_DETECT 34 enl0 1
B L '
/RESET_F407 > 7 8 < REMOTE
2 A 135 1y | senwmiso
120 e 20 u SPIL_MOST
—— 15 16—l
£r et o RSB
. MClk 19 20
Signaux 1 e
VSync 23 24 oM ——5
) Ry SPIT_SCK. el CMI D4/
1150-420 mA !! vreg 500mA @3V PixClk 29 30 ((: g/
USsYS U9 3.0BT 3.0VA 2; ;i %" [D7 3.0VA
F Lin out = 2 35 36
R 2 R UD_RX: 3 UD TX
T S I S e - ST
: | g Uart from F407
AP7365-30WG GND BSE-020 GND !same to ESP32, F413, extension !!
GND GND

USYS ON

du composant

u composant

ations locale (commentaire)

<— Informations globales

GND . . .
Project e-puck2 Variant e-puck2 EPFL |P¥ .
— — 2/14/2019 GCtronic
P Part WiFi & Extension 8:36:10AM EPFL-Mobots GC.,

Revision: F4 H

- erion Common development

File : Wi-Fi.SchDoc Page 5/ 12 £COLE POLYTECHNIQUH
: FEOFAAL? T ALY

traire

lr ex

Savo
S des informations

=P

Routage et placement des composants

°e
>0
°

°
0% 5z

© 000

,o€31PNd9) 0Z0-3s8 wo/

°
6,° o

q

00005 000

L ¥

Boo

o [Bm “

on

mil0

0o XJeX[p ©°° ‘ON -
- ox1g” e Wm_OO_oE)
= oooxwwov%%oco aﬂo
oo o ® oo o® [z
. O
o

=Pr-L

Couches de connexion électrique (pistes, pastilles, etc.)

Top Solder Top Layer Layer 2 Layer 3

Wil

