Systémes embarqués et robotique : résumé cours 6

Maxime Nourry, Microtechnique BA6 2024

1.Introduction

Il n’est pas rare pour un systéme embarqué de recevoir et de devoir traiter des signaux.
On peut par exemple citer les aides auditives qui se doivent de corriger précisément une
entrée audio dans un délai acceptable pour un usage quotidien (Moins de 10 ms).

Afin de répondre a ces exigences, du hardware spécialisé a été développé.

On peut le séparer en deux catégories:
1. Le digital signal processor (DSP), un processeur dédié aux traitements de signaux
2. Une extension au processeur classique (c’est le cas dans notre Cortex™-M4).

Mais comment ces derniers se distinguent-t-ils d’'un processeur classique?

2.L’opération de base MAC et ses utilisations

MAC (Multiplicate and accumulate) se décrit comme une suite de produits et leur somme.
n

a-b =) a * bi
i

Cette opération se retrouve dans:
e |e filtrage numérique (FIR Finite Impulse Response).

T >0
REC
IO
=0
L,%T

Figura?: Exemple da FIR & 5
eéchaniillons

Dans le cas d’'une moyenne, on multiplie N échantillons par 1/N avant de les
additionner entre eux.

e La convolution

Entrée du systéme

Signal g ? ! T 4 Fonction de transfert

I

Figerre 2 représentation o'une opdration de convalelion, g 5 oblient en observant fa réponse du systéme & un
impuision de Dirse

e |esréseaux de Neurones

Wop

X)7 Wi Vv
W»>

A2

Figure 3: Représentation d'un réseau neurones. On peut y imaginer un MAC
sous la forme de somme des différents poids (w0 w1,w2)

Cette opération prendrait dans un assembleur classique un nombre important d’instructions

multiplier -> additionner -> multiplier -> additionner ->.....

C’est en combinant ces instructions répétés que les assembleurs spécialisés offrent un
avantage par rapport a 'assembleur classique.

Nous pouvons par exemple citer le SIMD (single instruction multiple data) qui peut aller
jusqu’a réaliser la somme de deux produits en une seule et méme instruction

Somme en 64 bits

A,B,C,D en 16 bits

Somme = Somme + (A*C) + (B*D)

On opére alors 4 fois plus vite que sur un processeur non spécialisé.

Dacked J3la Dacked dala
32-bit [A | B cTol 32-bit
64-bit I 64-bit
Sum + n—l-\b—ln- sSum

Figure 4: Représentation du fonctionnement du SIMD. A,C
ainsi que B,D y sont multipliés et sommés a Sum

Notes: Cette opération est aussi faisable avec A,B,C,D en 32 bits mais au risque d’avoir
une somme qui dépasse les 64 bits prévus.

Attention: Pour que le compilateur utilise les instructions SIMD on ne peut pas simplement
espérer qu'il reconnaisse cela dans des additions et multiplications. Il faut lui indiquer
précisément qu'il faut utiliser les instructions SIMD.

Soit par la forme:
(int32_t)(((int64_t)x*y((int65_t)acc<<32))>>32);

Soit a I'aide d’'un define (voir le fichier arm_math.c).

Soit, en utilisant “_asm” qui permet d’écrire de I'assembleur dans du C (méthode
considérée comme moins propre)

3.Buffer circulaire:

Comme vu précédemment avec I'exemple FIR. Le traitement de signal nécessite souvent

plusieurs échantillons récupérés en continu.

Ceci nécessite alors un buffer optimisé afin de ne pas perdre du temps inutile.
En effet, lorsqu’un buffer normal est rempli, rajouter des informations nécessite un décalage

de toutes les informations précédentes, voir figure 5.

iffer “normal”

MNarmal Buffer
oot [HHHENEEREER
& rampessage
verma eutfer [EEEEE

v o EEEEEEEEEEEE

caa 3 [IEN

t £ 3 3
e | [

— o
HEEREEN

Figure & Comparferment dun Buffar normal

Ceci est chronophage et non désirable.

C’estici qu’entre en jeu le buffer circulaire.

Comme son nom l'indique, a la maniére d’un cercle, le data injecté revient au début quand il

n’y a plus de place a la fin, voir figure 6.

On le réalise a I'aide d’un pointeur sur la derniére case de libre.

?H_'ﬁ—?r Poirter
arculaire ll- I
Circular Buffer
oo [HHEHEHNEEERER
Posnter BT UL

ST T

v v A EEEEEEEEEE

F'I:lll'lh!-l'l _

oata 3 [N

Poanter

Circular Buffer _I*_I-I

Figure 6: Comportement dun buffer circulaine

Un tel buffer nécessite I'ajout d’'une condition, afin de remettre le pointeur au début, une fois
ce dernier arrivé a la fin.

Ceci n’est cependant pas toujours nécessaire a programmer, certains processeurs ayant du
hardware fait pour éviter cette condition.

4.La transformée de Fourier

N’importe quel signal cyclique peut étre recréé comme une somme de sinus et de cosinus.
C’est |a le coeur de la transformée de fourier.

Dans le cadre du cours on parle de DFT (Discrete Fourier Transform).

Elle permet d’isoler pour traitement les différentes fréquences qui constituent un signal
d’entrée.

Exemple d'utilisation: (filtrer le bruit et ne garder que la fréquence principale entendue pour
un accordeur de guitare)

Cette transformée, bien que trés utile, a malheureusement une complexité en O(Nz).

(voir notation de Landau et P=NP pour les plus téméraires)

Il existe cependant des méthodes pour la simplifier.

C’est le cas de la FFT (fast fourier transform)

Son principe consiste en la décomposition de notre DFT en sous DFT de plus petites tailles
jusqu’a obtenir une taille de 1.

On passe alors de O(NZ) a O(NlogN)
n=0

4 Powm Dk 1

B Paint DFT ’ —- W,
W, -
| Pownt DFT W, rl
W, a
DFT : ~N? opérations DFT décomposée en deux FFT: Nlog(N) opérations

sous DFT : <N opérations

Figure 7: Décomposition de la DFT en FFT

-
I""'1
1|'|| ¥ A . & ¥ L1
. Wy
| Wy Wy i
i Wi wji
W P
By i b - W, W,
1 a
W, W
A A+ W, B ' - : *
, W W, W,
] A_=-W_H
———

Figure & Uine opération “Buiterly” Figure 9; Représentation d'un FFT

Comme l'indique la figure 9, cette décomposition nécessite la permutation de certains bits
voir ainsi que des opérations dites “butterfly”.

Toujours dans un but d’optimisation, il n’est pas rare de trouver du hardware possédant des
modes d’adressages qui suivent cette configuration.
Nous pouvons aussi la définir a I'aide de tables comme l'indique la figure 10.

t wintlé t armBitRevTable[1824) = §

BrdBd, 8x2P8, Gwedd, Bxldd, Sx%8d, Bwlsd (788, SuB@, Exdd@, SwIge
BxGEE, @xlA@, @x5EE8, Bxi88, BuTRE, @=48, 448, @El48 TR r] Fuldd
Bahdd, duhad, wTdd, dwcd, dwdcd, Buicd,

i
a4,
o
18
ai
L
i
Af§
BEGBR, Bal0E, 8x58

Figure 10: Table d'adressage pour FFT

Notes: arm fournit des librairies permettant une utilisation simple de la FFT

Enfin, la transformée de fourier se base sur une somme de sinus et de cosinus.
On peut utiliser cette méme idée de table afin d' accélérer les calculs trigonométriques.

5.Conclusion:

Le traitement de signal nécessite des opérations complexes et chronophage. C’est de ce
postulat qu’émergea des méthodes spécialisées, visant a réduire le temps demandé. Que
cela soit par 'usage d’algorithmes optimisés (FFT, buffer circulaire) soit par le design
d’hardware spécialisé.

