=Pr-L

‘Systéme embarqués et robotique’
Printemps 2024

Semaine 5

RTOS (Suite) et étude de cas de systemes embarqués

AKEDDAR Hamza, KACK KACK Nathan, PETTINI Chiara

Contents

IL Architecture du ChibiOS, suite]
L1 Meécanismes du scheduler] L

2 Cycle de vie des sytemes embarqués|

13 Capteurs et contraintes|
8.1 Calcul embarqué complexe|.
3.2 Reéseau de capteurs : Exemple : Station meteo EPFL|.o 00000
[3.3 Monitoring accélération : Détection de chute pour appareils sensibles|.
[3:4 Détection de provenance duson|.
[3-5 Vision pour détection automatique] v . v v v vt e

N SR R W W W W W

BN I e N>R I |

1 Architecture du ChibiOS, suite

1.1 Meécanismes du scheduler

Gérer a la main l'exécution de plusieurs fonctions concurrentes est possible, mais difficile. Ala place,
divers outils sont disponibles pour ’organisation des taches du scheduler d’'un RTOS. La suspension d’une
tache lui donne la liberté de restituer le controle au scheduler & un moment propice. A inverse, ce dernier
peut ordonner 'arrét d’une tache pour en reprendre une autre, c’est la préemption.

A
Threads, A
Priorities REampA .
j suspension
NOEMALPRIO main 1> 3 7 9 13
idle ‘ 4 | ‘ 6 ! ’ 10 | ‘ 12 ‘ ! ‘

Time

Figure 1: Tlustration du scheduler (Cours 5 Slide 6)

Dans le cas ol un certain thread a besoin d’accéder a une ressource critique en cours d’utilisation par
un autre, nous pouvons utiliser les sémaphores ou les mutexes.

1.2 Sémaphores

Les sémaphores permettent d’assurer 'unité de ’acces a une ressource critique. Il en existe 2 types sur
ChibiOS :

e Un sémaphore binaire est dans 1’état “bloqué” tant qu’un Thread utilise une ressource. Lorsque
cette ressource est libérée, le sémaphore passe en état “libre”. Ce type de sémaphore permet de
connaitre le nombre de processus en attente.

e Un sémaphore avec compteur est utilisé lorsque de multiples ressources sont mises a disposition en
parallele. La valeur du compteur indique s’il y a des demandeurs en attentes, ou des ressources en
surplus.

Le principal inconvénient des sémaphores est qu’ils ne permettent pas de connaitre le propriétaire
d’utilisation des ressources.

1.3 Mutexes

Les mutexes sont similaires aux sémaphores, mais permettent en plus de gérer I’héritage de priorité en
intégrant la notion de prioritaire. Lorsque des taches a haute priorité attendent une ressource, I’'utilisation
d’un mutex permet de faire hériter la haute priorité & une tache qui utilise la ressource pour qu’elle se
libere plus vite.

1.4 Mailboxes

Les mailboxes sont un moyen de communication entre threads. Chaque mailbox est associée a une file
d’attente ou les threads peuvent déposer et récupérer des messages. Lorsqu’un thread souhaite envoyer un
message, il le place dans la mailbox correspondante qui fonctionne comme un buffer FIFO - First In First
Out. Ce mécanisme permet le transfert asynchrone d’informations. Sans RTOS, pour communiquer
des données entre routines, il faudrait utiliser des variables globales. Cette technique est largement
déconseillée en raison de sa nature potentiellement dangereuse et prone aux bugs.

1.5 Condvar : Conditional variables / monitors

Les Condvar, ou variables conditionnelles, dans ChibiOS, sont des mécanismes additionnels pour gérer
des conditions supplémentaires. Associées & un mutex, les condvar bloquent le thread jusqu’a ce qu’ une
condition spécifique ne soit satisfaite, libérant ainsi temporairement le mutex.

1.6 Events

Les Events offrent un moyen organisé de gérer différentes sources d’interruption. Ils peuvent répartir
ses sources d’interruption parmi les taches tout en controlant la facon d’attendre leur apparition et leur
vérification.

1.7 Messages

Les messages, similaires au mailbox, sont une autre facon de gérer la communication entre threads. Il y a
une hiérarchie entre les taches: des clients et des serveurs. Les clients envoient un message et lancent une
requéte d’information. Les serveurs attendent qu'une demande arrive, la traitent et envoient la réponse.

2 Cycle de vie des sytemes embarqués

Les systemes embarqués comme les RTOS sont congus afin d’optimiser I'utilisation de certaines ressources
dans le but de répondre & des contraintes temporelles strictes. Avant d’incorporer un systeéme embarqué
dans un projet, il est essentiel de définir précisément les ressources nécessaires en fonction des exigences
du projet. La premiere ressource cruciale pour n’importe quelle application est notre planete.

Chaque produit suit un cycle de vie généralement composé en 5 étapes bien distinctes: l'extraction
des matériaux bruts, la production du produit, sa distribution, I'utilisation et enfin son recyclage.

== N

= =

Disposal/recyding Raw material extraction

['s.

/
“ Manufacturing

Distribution

Figure 2: Cycle de vie (presustainability.com)

L’empreinte d’un microcontroleur peut étre définie par différents indicateurs environnementaux tels
que: le réchauffement climatique, la consommation d’eau, I’eutrophisation des milieux aquatiques et la
formation d’Oxydants Photochimiques. Chaque étape du cycle de vie influence I’empreinte d’un systeme.

Select the environmental indicator

0 @ o
y ol Freshwater Protochenmical
Riais shengs Water:chemand eutrophication axidant formation

Results

. Total impact 390 g CO2-eq. @@ or 1.6 km by car

(. Clickon the square to discover the foolprint of each life cydle stage

5 life cycle stages
*, Rawmaterisis \‘
e
h ST production site
Transport

g o
4

R oo

Figure 3: Empreinte carbone d’un microcontréleur (Cours 5 Slide 30)

Vue que ces graphique montrent I'impact prioritaire de la fabrication, pour réduire 'impact environ-
nemental, il est souvent plus judicieux de privilégier I’achat de biens d’occasion plutdt que de se concentrer
uniquement sur des produits neufs classés A++. Cette approche permet de réduire la pression sur les
ressources naturelles et de prolonger la durée de vie utile des produits.

En effet, chaque produit posséde une proportion différente pour leur impact environnemental. Donc
il est plus judicieux de se concentrer sur leurs étapes de vie ayant une influence plus importante.

3 Capteurs et contraintes

3.1 Calcul embarqué complexe

Nous prenons I’exemple d’une voiture haut de gamme, qui contient entre 100 et 150 processeurs effectuant
de tres différentes taches ; controle moteur, gestion de frein, interface utilisateur... Il y aura donc une
différence de niveaux de processeurs allant du microcontroleur simple au processeur plus complexe que
nous pouvons comparer, comme illustré dans la figure

1.MX31 ‘ dsPIC33

Processeur Microcontréleur
Consommation 1w 300mW
MIPS 600 40
FPU Oui Non
Programming Complex, OS Simple
Packaging BGA, 400 pins TQFP, 100 pins
Prix 30$ + mémoire etc| 5$ tout compris

Figure 4: Comparaison entre microcontroleur et processeur (Cours 5 Slide 37)

En somme, il s’agit de bien choisir le bon processeur en fonction de 'application visée suivant ses
caractéristiques.

3.2 Réseau de capteurs : Exemple : Station météo EPFL

En général, ils ont comme caractéristiques :
e Fréquence d’échantillonnage faible : < 1 Hz (par exemple chaque minute)
e Consommation tres faible : 25 mW
e Alimentation solaire
e Transmission radio

Pour ces caractéristiques-ci, nous utilisons un processeur avec Cortex M0 qui consomme trés faiblement
dans ses différents modes (par exemple : 0.27 A en Standby mode). Ces modes ne différent que par leur
spécificité de faible consommation ; avec ou sans Real Time Clock, toujours pour optimiser la consom-
mation.

Afin de toujours moins consommer, il existe des méthodes mise en oeuvre pour entrer dans le Sleep
mode, comme le WFI (Wait for interrupt) qui permet de rentrer immédiatement en sleep mode, ou le
WFE (Wait for event) qui vérifie la valeur d’une registre avant de passer en sleep mode.

3.3 Monitoring accélération : Détection de chute pour appareils sensibles

En général, ces capteurs d’accélération 3 axes ont les caractéristiques suivantes :
e Fréquence d’échantillonnage basse : 1 kHz
e Acquisition A/D dans composant
e Consommation pas cruciale
e Embarqué dans un appareil

Nous prenons 'exemple de la chute d’un appareil de 56 cm, ce qui laisse 228 ms de possible activité afin
de préserver les données avant I'impact avec le sol.

Le capteur d’accélération va opérer entre 500 et 4000 Hz en sortie et dispose de convertisseurs analogiques/numériques
qui transmettent directement I'information au processeur.

3.4 Détection de provenance du son

Un capteur sonore possede des contraintes bien différentes que les autres. Une application de ce type de
capteur est un robot qui se tourne dans la direction du son. L’e-puck2 posseéde 4 micros et permet de
trianguler la direction du son en fonction du déphasage de celui-ci entre les microphones. Afin d’accomplir
cette objectif il est nécessaire de répondre & des caractéristique précises:

e Fréquence d’échantillonnage : 44 kHz pour une bonne qualité audio
e Digitaliser le son sur le chip micro
e Décoder ce signal sur le microcontrolleur STM32F4

La reconstruction du signal prend 15% du CPU au total pour les 4 microphones, c¢’est une application
qui demande beaucoup de capacité du microcontroleur.

3.5 Vision pour détection automatique

Une autre ressource utilisable sont les caméras, celles-ci peuvent étre utilisées dans divers applications
comme dans la détection automatique pour les systemes de surveillance. L’utilisation de ce type de
ressource est caractérisée par:

e Flux de donnée tres important de I'ordre du MHz

e Traitement de donnée conséquent

e Besoin considérable de mémoire RAM pour le stockage
e Vaste consommation selon les applications

L’acquisition totale d’une image est difficile voir impossible dans certains cas. Avec un simple calcul on
peut voir qu’une image en couleur RGB (8,8,8 bits) de 640px x 480px prend 922 KBytes en comparaison
I’e-puck2 ne possede que 192 KBytes de RAM.

La caméra de l’e-puck2 suit le schéma de la figure

Analog Control signal

[€— STDBY
f€&——— RSTB

l

\1/ Digiral Control signal L

- P

"_:?J_ : Ls— Timing control < é

3 Pixel array N &

i 648 X 488 E

: RREE

o v v L)

= 2 E 3 =
[T < I ' Sbis YUV o B Bayer
- CDs<0:647> | & 2 LK
Z 3 2 " HSYNC
z L[] 2 > VSYNC
= 9 £ :
> R ADC<0:647> g

/ A L & ;

< S % 5—> spa
) Column decoder [— = .:_f‘ SCL

Digital Control signal

Figure 5: Schéma bloc de la caméra e-puck?2

La pixel clock en sortie fournit I'image pixel par pixel, HSYNC permet de récolter ces pixels sur des
lignes de dimension fixe et VSYNC permet de stacker ces lignes jusqu’a I'obtention de I'image entiere.
Le STM32 posséde un digital camera interface (DCMI) qui est chargé de la réception et acquisition des
images.

	Architecture du ChibiOS, suite
	Mécanismes du scheduler
	Sémaphores
	Mutexes
	Mailboxes
	Condvar : Conditional variables / monitors
	Events
	Messages

	Cycle de vie des sytèmes embarqués
	Capteurs et contraintes
	Calcul embarqué complexe
	Réseau de capteurs : Exemple : Station météo EPFL
	Monitoring accélération : Détection de chute pour appareils sensibles
	Détection de provenance du son
	Vision pour détection automatique

