
Résumé: Cours 4

Tschudin Moritz, Tschammer-Osten Aiden, Luis Rodriguez, Aude-Line Fleury

March 19, 2024

1 Les nombres à virgule

1.1 Gestion des variables

Une bonne habitude à prendre en codant est de se demander si on a vraiment besoin d’utiliser des
nombres à virgule car cela demande en effet plus de ressources. Pourquoi par exemple mettre les
valeurs en “mètre” avec une précision au millième, si on peut tout calculer en “millimètre”, évitant
ainsi la virgule? De plus, il faut aussi prendre en compte qu’avoir des valeurs plus précises que la
résolution de nos capteurs/moteurs ne nous bénéficie en rien.

Si nous voulons convertir un entier en flottant, ou vis-versa, nous pouvons utiliser un cast (change-
ment forcé du type d’une variable). Méfions nous en: en effet, le compilateur le fait parfois implicite-
ment. Ceci arrive par exemple lorsqu’on multiplie un int et un float : la multiplication sera faite en
float à moins qu’on ne précise au compilateur de convertir la variable de type float en int, auquel cas
on a une perte de résolution, comme dans la Figure 1.

Figure 1: Exemple de problématique de cast où le type d’une variable peut être modifié pendant une
opération. Source: [1].

Certains calculs, comme les calculs trigonométriques, ne peuvent pas être faits grâce à l’hardware
et doivent être fait par software: ils requièrent donc plus de temps. Il peut alors être avantageux
et intéressant de générer des Lookup tables. Il s’agit de tableaux contenant les valeurs pré-calculés
dont on a besoin et qui nous éviterons de devoir refaire ces calculs, par exemple lors des calculs
trigonométriques tels que sin ou cos (voir Fig. 2).

Figure 2: Déclaration pour le pré-calcul d’une lookup table pour la fonction sinus. Source: [2].

1



1.2 Représentation des nombres à virgule

Les nombres à virgule peuvent aussi être stockés dans la mémoire, mais avec une représentation
différente par rapport aux entiers. Il existe deux options, les virgules fixes qui rendent les opérations
de multiplication plus simples car compatibles avec les entiers, et les nombres à virgule flottante qui
eux sont plus utilisés car permettent une plus grande flexibilité.
Pour notre microcontrôleur STM32F4 avec un processeur ARM Cortex M4 les nombres à virgule
flottante sont représentés avec la norme IEEE 754. Un float sera stocké sur 32 bits tandis qu’un double
prendra 64 bits (voir Fig. 3).

Figure 3: Structure pour un chiffre 32-bits et 64-bits. Source: [3].

Le chiffre dans le code source en assembleur sera donné en décimal. Pour l’interpréter il est
pratique de le passer en hexadécimal puis en binaire. Ensuite, il faut transformer le chiffre binaire
en représentation flottante, ce qui nous donnera les trois composants de la représentation à virgule
flottante: signe, exposant et mantisse (voir Fig. 4). Il ne faut pas oublier que l’exposant est stocké
avec un offset de 127 et que le zéro a sa représentation propre.

Figure 4: Etapes montrant comment convertir un chiffre (ici 13) en float. Source: [4].

1.3 Gestion des nombres à virgule

Notre processeur (ARM Cortex-M4) est équipé d’une FPU (floating point unit) qui permet de faire
des opérations sur les nombres à virgule flottante grâce à l’hardware. Cette unité doit être activée en
utilisant, lors de la compilation, les options -mfloat-abi=hard -mfpu=vfpv2. Si on ne l’active pas, les
calculs en float et en double vont être fait de manière software et prendre beaucoup de cycles, on les
reconnâıtra grâce à la fonction décrite en Fig. 5.

2



Figure 5: Exemple d’appel à une fonction software pour le calcul de la multiplication en float. Source:
[5].

La FPU contient ses propres registres pour stocker des variables de type float ou double et pour
effectuer des opérations avec en utilisant des mécanismes hardware. Il est essentiel de se rappeler que
ces registres ont leurs propres fonctions en assembleur et doivent être sauvegardés si on utilise des float
dans les interrupts. Il faut aussi garder en tête que les calculs en double précision (double) ne sont pas
supportés par le compilateur, dans le cas écheant il vaut mieux opter pour l’utilisation de floats.

2 RTOS Real-Time Operating System

Les RTOS (Real-Time Operating System) sont des logiciels dont le but est d’efficacement gérer les
ressources d’un système embarqué par exemple. Contrairement à un OS générique, le RTOS gère les
tâches selon leurs priorités dans le temps tout en assurant la stabilité du système. Pour comprendre
son utilité il est important de comprendre les notions de scheduling de tâches, le multi-tâches/multi-
threading et plus généralement la programmation concurrente.

2.1 Programmation concurrente et temps réel

Contrairement à la programmation séquentielle qui exécute les tâches “l’une après l’autre”, la pro-
grammation concurrente est caractérisée par l’exécution en (pseudo-)parallèle de tâches qui peuvent
interagir, partager des ressources, etc. Il est évident que de tels processus nécessitent une excellente
mâıtrise des timings et exécution des tâches: il faut rester en “temps réel”. C’est pourquoi le RTOS
met la priorité sur la fiabilité du timing. Un tel OS doit être:

• Déterministe: Pour un input et des conditions données l’output sera toujours le même. Le com-
portement d’un tel système, son exécution des tâches, son timing et son allocation de ressources
est consistant et répétable.

• Prédictible: Plus que déterministe, la prédictibilité implique que le programmeur a une idée/peut
prévoir le comportement du système sous différentes conditions et différentes charges de travail.

Dans notre cas de systèmes embarqués, les RTOS se basent surtout sur le système Timer/Interrupt
qui nous permettent d’allouer des temps précis à certaines tâches et les mettre à “dormir” pendant que
nous n’en avons pas besoin. De plus, les interrupts ne disposent pas tous de la même priorité (Fig. 6).
C’est ce qui nous permet d’assurer que les tâches les plus critiques sont exécutées à temps.

Figure 6: Illustration de la priorité des tâches. Source: [6].

2.2 Multi-tâches et multi-threading

Un thread est une séquence indépendante d’exécutions au sein d’un processus. Par exemple, une
séquence dédiée à faire tourner le moteur d’un robot. En plus d’une séquence d’exécutions, chaque
thread est caractérisé par une certaine priorité et d’un temps alloué. Il est possible de faire “dormir”
un thread pendant que d’autres threads sont actifs et le réveiller quand il est nécessaire (Fig. 7).

3



Figure 7: Forme générale d’un thread. Source: [7].

Ces caractéristiques nous permettent de faire du multi-tâche, de l’exécution en parallèle de nos
différentes tâches. Pour faire du multi-tâches, on inclut le fichier d’initialisation “crt0v7m.s” à
l’initialisation. C’est lui qui initialise le process stack (et stack pointer) spécifique au contrôle des
threads. Le process stack est un stack spécifiques au thread actuel. C’est aussi ce fichier qui lance le
main et qui définit ce qui se passe une fois le main terminé.

2.3 ChibiOS

ChibiOS est un RTOS qui est Open Source qui permet la gestion des multi-tâches en temps réel avec
une implémentation disponible pour le STM32F4. C’est une librairie qui facilite la gestion de tâches
multiples simultanément tout en respectant le bon timing, grâce à son kernel (seulement un noyau
et pas plusieurs comme un ordinateur classique) et son scheduler efficace (Voir Fig. 8). Un système
robotique embarqué comme le e-puck2 avec ses périphériques nécessite une gestion précise du temps
et des ressources d’une manière concurrente qui peut être bien implementée en utilisant ChibiOS.

Figure 8: L’architecture globale du ChibiOS avec l’élément clé: le Scheduler qui permet des multi-
tâches en pseudo parallèle. Source: [8].

2.4 Scheduling

Le scheduling décrit le processus de décision sur l’ordre et du timing lors d’une exécution des multi-
tâches dans un RTOS. Toutes les tâches ont une priorité par rapport aux autres et possèdent des
timings exact dans leur tâches. Le Scheduler est responsable pour l’ordre de l’exécution des tâches
en respectant leur propriétés de priorités et timings. Le but est d’exécuter une couche d’une priorité
plus bas pendant un sleep d’une priorité plus haute qui permet de laisser tourner les tâches en pseudo
parallel. Cela permet d’avoir une efficacité et une réactivité sur le système où les ressources sont
limitées et les spécifications en temps réel sont strictes.

Il est important de respecter et libérer des ressources car il existe le risque du phénomène de
l’inversion de priorité illustrée dans la Fig. 9. Ce phénomène de l’inversion de priorité peut se produire
lorsque une tâche de haute priorité, comme le main, doit attendre une ressource qui est bloquée

4



par une tâche de priorité inférieure par exemple par Thread03. Mais si Thread03 devient bloquée
et interrompu par des tâches de haute priorités (i.e. Thread01 et Thread02), le main doit d’abord
attendre que Thread03 se termine et libère la ressource. Ce cas oblige main à attendre Thread03
pendant la durée du blocage de la ressource. Cette inversion de priorité est à éviter car il y a un risque
d’avoir des retards significatifs pour les tâches de haute priorité.

Figure 9: Diagramm du timing d’un “mauvais” planning avec problème du inversion de priorité.
Source: [9].

References

[1] Prof. Francesco Mondada. Micro-315, systèmes embarqués et robotique, 2024. Cours 4, slides p.
28.

[2] Prof. Francesco Mondada. Micro-315, systèmes embarqués et robotique, 2024. Cours 4, slides p.
22.

[3] Prof. Francesco Mondada. Micro-315, systèmes embarqués et robotique, 2024. Cours 4, slides p. 6.

[4] Prof. Francesco Mondada. Micro-315, systèmes embarqués et robotique, 2024. Cours 4, slides p. 7.

[5] Prof. Francesco Mondada. Micro-315, systèmes embarqués et robotique, 2024. Cours 4, slides p.
12.

[6] Posted by: LTP. Stm32f0 tutorial 3: External interrupts. https://letanphuc.net/2015/03/

stm32f0-tutorial-3-external-interrupts/, 2015/03/21. Accessed: 2024-03-15.

[7] Prof. Francesco Mondada. Micro-315, systèmes embarqués et robotique, 2024. Cours 4, slides p.
51.

[8] chibios.org. chibios.org/dokuwiki. http://www.chibios.org/dokuwiki/lib/exe/detail.

php?id=chibios%3Adocumentation%3Abooks%3Art%3Akernel&media=chibios:documentation:

books:rt:kernel:rt_arch.png, 2020/05/12. Accessed: 2024-03-12.

[9] Posted by: Rocco Marco Guglielmi. The complete reference for
multithreading in chibios/rt. https://www.playembedded.org/blog/

the-complete-reference-for-multithreading-in-chibios-rt/, 2024/01/03. Accessed:
2024-03-12.

5

https://letanphuc.net/2015/03/stm32f0-tutorial-3-external-interrupts/
https://letanphuc.net/2015/03/stm32f0-tutorial-3-external-interrupts/
http://www.chibios.org/dokuwiki/lib/exe/detail.php?id=chibios%3Adocumentation%3Abooks%3Art%3Akernel&media=chibios:documentation:books:rt:kernel:rt_arch.png
http://www.chibios.org/dokuwiki/lib/exe/detail.php?id=chibios%3Adocumentation%3Abooks%3Art%3Akernel&media=chibios:documentation:books:rt:kernel:rt_arch.png
http://www.chibios.org/dokuwiki/lib/exe/detail.php?id=chibios%3Adocumentation%3Abooks%3Art%3Akernel&media=chibios:documentation:books:rt:kernel:rt_arch.png
https://www.playembedded.org/blog/the-complete-reference-for-multithreading-in-chibios-rt/
https://www.playembedded.org/blog/the-complete-reference-for-multithreading-in-chibios-rt/

	Les nombres à virgule
	Gestion des variables
	Représentation des nombres à virgule
	Gestion des nombres à virgule

	RTOS Real-Time Operating System
	Programmation concurrente et temps réel
	Multi-tâches et multi-threading
	ChibiOS
	Scheduling


