Résumé: Cours 4

Tschudin Moritz, Tschammer-Osten Aiden, Luis Rodriguez, Aude-Line Fleury
March 19, 2024

1 Les nombres a virgule

1.1 Gestion des variables

Une bonne habitude & prendre en codant est de se demander si on a vraiment besoin d’utiliser des
nombres a virgule car cela demande en effet plus de ressources. Pourquoi par exemple mettre les
valeurs en “metre” avec une précision au millieme, si on peut tout calculer en “millimetre”, évitant
ainsi la virgule? De plus, il faut aussi prendre en compte qu’avoir des valeurs plus précises que la
résolution de nos capteurs/moteurs ne nous bénéficie en rien.

Si nous voulons convertir un entier en flottant, ou vis-versa, nous pouvons utiliser un cast (change-
ment forcé du type d’une variable). Méfions nous en: en effet, le compilateur le fait parfois implicite-
ment. Ceci arrive par exemple lorsqu’on multiplie un int et un float: la multiplication sera faite en
float & moins qu’on ne précise au compilateur de convertir la variable de type float en int, auquel cas
on a une perte de résolution, comme dans la Figure 1.

int main () {

float PI = 3.1415;
int mul = 2;

int result = mul * (int)PI;

return 0;

Figure 1: Exemple de problématique de cast ou le type d’une variable peut étre modifié pendant une
opération. Source: [1].

Certains calculs, comme les calculs trigonométriques, ne peuvent pas étre faits grace a 'hardware
et doivent étre fait par software: ils requiérent donc plus de temps. Il peut alors étre avantageux
et intéressant de générer des Lookup tables. Il s’agit de tableaux contenant les valeurs pré-calculés
dont on a besoin et qui nous éviterons de devoir refaire ces calculs, par exemple lors des calculs
trigonométriques tels que sin ou cos (voir Fig. 2).

int i, sinus([360];

for(i=0;1<360;1i++)
{
sinus[i] = 10*sin(i/180%3.1415);
printf("sin %d =
$d\n",i,sinus[i]):

}

Figure 2: Déclaration pour le pré-calcul d’une lookup table pour la fonction sinus. Source: [2].

1.2 Représentation des nombres a virgule

Les nombres a virgule peuvent aussi étre stockés dans la mémoire, mais avec une représentation
différente par rapport aux entiers. Il existe deux options, les virgules fixes qui rendent les opérations
de multiplication plus simples car compatibles avec les entiers, et les nombres & virgule flottante qui
eux sont plus utilisés car permettent une plus grande flexibilité.

Pour notre microcontréleur STM32F4 avec un processeur ARM Cortex M4 les nombres a virgule
flottante sont représentés avec la norme IEEE 754. Un float sera stocké sur 32 bits tandis qu’un double
prendra 64 bits (voir Fig. 3).

31 0
s| er.0) | f(1..23)
1-bi-t 8-bit - 23-bit
Single precision format
63 0
S e(10..0) f(1..52)
1-bit 11-bit 52-bit
Double precision format

Figure 3: Structure pour un chiffre 32-bits et 64-bits. Source: [3].

Le chiffre dans le code source en assembleur sera donné en décimal. Pour linterpréter il est
pratique de le passer en hexadécimal puis en binaire. Ensuite, il faut transformer le chiffre binaire
en représentation flottante, ce qui nous donnera les trois composants de la représentation a virgule
flottante: signe, exposant et mantisse (voir Fig. 4). Il ne faut pas oublier que 'exposant est stocké
avec un offset de 127 et que le zéro a sa représentation propre.

Comment

représenter 13 — OXD —) 1 101 —) _|_ 3 binaire

le nombre 13
en ﬂoat? 4//

2éme pas:
encodaae |0| 1000001 0 101 0000 0000 0000 0000 0000
Sign Exponent Fraction
(signe) (exposant) (mantisse)
BIAS = 127 = Ox7F
=0111 1111

(100 00000 ->1, 100 0001 0 -> 3)

Exception: la valeur zéro est codée par des 0 partout

Figure 4: Etapes montrant comment convertir un chiffre (ici 13) en float. Source: [4].

1.3 Gestion des nombres a virgule

Notre processeur (ARM Cortex-M4) est équipé d’'une FPU (floating point unit) qui permet de faire
des opérations sur les nombres a virgule flottante grace a ’hardware. Cette unité doit étre activée en
utilisant, lors de la compilation, les options -mfloat-abi=hard -mfpu=uvfpv2. Si on ne 'active pas, les
calculs en float et en double vont étre fait de maniere software et prendre beaucoup de cycles, on les
reconnaitra grace a la fonction décrite en Fig. 5.

BEGIN_ARM_FUNCTIgN _ aeabi_fmul

Figure 5: Exemple d’appel a une fonction software pour le calcul de la multiplication en float. Source:

[5].

La FPU contient ses propres registres pour stocker des variables de type float ou double et pour
effectuer des opérations avec en utilisant des mécanismes hardware. Il est essentiel de se rappeler que
ces registres ont leurs propres fonctions en assembleur et doivent étre sauvegardés si on utilise des float
dans les interrupts. Il faut aussi garder en téte que les calculs en double précision (double) ne sont pas
supportés par le compilateur, dans le cas écheant il vaut mieux opter pour I'utilisation de floats.

2 RTOS Real-Time Operating System

Les RTOS (Real-Time Operating System) sont des logiciels dont le but est d’efficacement gérer les
ressources d’un systéme embarqué par exemple. Contrairement & un OS générique, le RTOS gere les
taches selon leurs priorités dans le temps tout en assurant la stabilité du systeme. Pour comprendre
son utilité il est important de comprendre les notions de scheduling de téches, le multi-tdches/multi-
threading et plus généralement la programmation concurrente.

2.1 Programmation concurrente et temps réel

Contrairement a la programmation séquentielle qui exécute les taches “l'une apres 'autre”, la pro-
grammation concurrente est caractérisée par I’exécution en (pseudo-)parallele de taches qui peuvent
interagir, partager des ressources, etc. Il est évident que de tels processus nécessitent une excellente
maitrise des timings et exécution des taches: il faut rester en “temps réel”. C’est pourquoi le RTOS
met la priorité sur la fiabilité du timing. Un tel OS doit étre:

e Déterministe: Pour un input et des conditions données I'output sera toujours le méme. Le com-
portement d’un tel systeme, son exécution des taches, son timing et son allocation de ressources
est consistant et répétable.

e Prédictible: Plus que déterministe, la prédictibilité implique que le programmeur a une idée/peut
prévoir le comportement du systeme sous différentes conditions et différentes charges de travail.

Dans notre cas de systémes embarqués, les RTOS se basent surtout sur le systéme Timer/Interrupt
qui nous permettent d’allouer des temps précis a certaines taches et les mettre a “dormir” pendant que
nous n’en avons pas besoin. De plus, les interrupts ne disposent pas tous de la méme priorité (Fig. 6).
C’est ce qui nous permet d’assurer que les taches les plus critiques sont exécutées a temps.

IRQ#2 Higher priority

IRQ#1 (Nested IRQ)
Lower priority IEE
| o N
| main“ } mainii

Time
Figure 6: Illustration de la priorité des taches. Source: [6].

2.2 Multi-taches et multi-threading

Un thread est une séquence indépendante d’exécutions au sein d’un processus. Par exemple, une
séquence dédiée a faire tourner le moteur d’un robot. En plus d’une séquence d’exécutions, chaque
thread est caractérisé par une certaine priorité et d’un temps alloué. Il est possible de faire “dormir”
un thread pendant que d’autres threads sont actifs et le réveiller quand il est nécessaire (Fig. 7).

Thread en C

Type de la Thread
void thread1(){ /

Espace contenant par

inta: / exemple des déclarations

de variables.

(X \ Le bloc de “base” composé

en principe d’une boucle

a = read_sensor(); infinie

sleep(1000); ‘\ La tache a effectuer

} Une indication de la
fréquence d’appel de cette
tache

Figure 7: Forme générale d’un thread. Source: [7].

Ces caractéristiques nous permettent de faire du multi-tache, de I'exécution en parallele de nos
différentes taches. Pour faire du multi-taches, on inclut le fichier d’initialisation “crt0,7m.s” a
Iinitialisation. C’est lui qui initialise le process stack (et stack pointer) spécifique au contrdle des
threads. Le process stack est un stack spécifiques au thread actuel. C’est aussi ce fichier qui lance le
main et qui définit ce qui se passe une fois le main terminé.

2.3 ChibiOS

ChibiOS est un RTOS qui est Open Source qui permet la gestion des multi-taches en temps réel avec
une implémentation disponible pour le STM32F4. C’est une librairie qui facilite la gestion de taches
multiples simultanément tout en respectant le bon timing, grace & son kernel (seulement un noyau
et pas plusieurs comme un ordinateur classique) et son scheduler efficace (Voir Fig. 8). Un systéme
robotique embarqué comme le e-puck2 avec ses périphériques nécessite une gestion précise du temps
et des ressources d’une maniére concurrente qui peut étre bien implementée en utilisant ChibiOS.

Binary Semaphores I | Mailboxes I cCondvars I

I e

Scheduler

Port Layer

Figure 8: L’architecture globale du ChibiOS avec 1’élément clé: le Scheduler qui permet des multi-
taches en pseudo parallele. Source: [8].

2.4 Scheduling

Le scheduling décrit le processus de décision sur 'ordre et du timing lors d’une exécution des multi-
taches dans un RTOS. Toutes les taches ont une priorité par rapport aux autres et possedent des
timings exact dans leur taches. Le Scheduler est responsable pour l'ordre de I'exécution des taches
en respectant leur propriétés de priorités et timings. Le but est d’exécuter une couche d’une priorité
plus bas pendant un sleep d’une priorité plus haute qui permet de laisser tourner les taches en pseudo
parallel. Cela permet d’avoir une efficacité et une réactivité sur le systéme ou les ressources sont
limitées et les spécifications en temps réel sont strictes.

Il est important de respecter et libérer des ressources car il existe le risque du phénomene de
I'inversion de priorité illustrée dans la Fig. 9. Ce phénomene de I'inversion de priorité peut se produire
lorsque une tache de haute priorité, comme le main, doit attendre une ressource qui est bloquée

par une tache de priorité inférieure par exemple par Thread03. Mais si Thread03 devient bloquée
et interrompu par des taches de haute priorités (i.e. Thread0l et Thread02), le main doit d’abord
attendre que Thread03 se termine et libere la ressource. Ce cas oblige main a attendre Thread03
pendant la durée du blocage de la ressource. Cette inversion de priorité est a éviter car il y a un risque
d’avoir des retards significatifs pour les taches de haute priorité.

[SI8feY Sl chThdSleepMiliseconds(125)
main
NORMALPRIO S
Thr 1
NORMALPRIO -1 A:h_’ead 50ms
Eoy ¢ 50ms 'y
Thread2
NORMALPRIO - 2 —— — — —_— —>
20ms S ¢ 50ms Ty
Thread3
|
IDLEPRIO ‘de .. _)
»

Figure 9: Diagramm du timing d’'un “mauvais” planning avec probleme du inversion de priorité.
Source: [9].

References

[1] Prof. Francesco Mondada. Micro-315, systémes embarqués et robotique, 2024. Cours 4, slides p.
28.

[2] Prof. Francesco Mondada. Micro-315, systémes embarqués et robotique, 2024. Cours 4, slides p.
22.

[3] Prof. Francesco Mondada. Micro-315, systémes embarqués et robotique, 2024. Cours 4, slides p. 6.
[4] Prof. Francesco Mondada. Micro-315, systémes embarqués et robotique, 2024. Cours 4, slides p. 7.

[6] Prof. Francesco Mondada. Micro-315, systémes embarqués et robotique, 2024. Cours 4, slides p.
12.

[6] Posted by: LTP. Stm32f0 tutorial 3: External interrupts. https://letanphuc.net/2015/03/
stm32f0-tutorial-3-external-interrupts/, 2015/03/21. Accessed: 2024-03-15.

[7] Prof. Francesco Mondada. Micro-315, systémes embarqués et robotique, 2024. Cours 4, slides p.
51.

[8] chibios.org. chibios.org/dokuwiki. http://www.chibios.org/dokuwiki/lib/exe/detail.
php?id=chibios’%3Adocumentation’3Abooks’3Art)3Akernel&media=chibios:documentation:
books:rt:kernel:rt_arch.png, 2020/05/12. Accessed: 2024-03-12.

[9] Posted by: Rocco Marco Guglielmi. The complete reference for
multithreading in chibios/rt. https://www.playembedded.org/blog/
the-complete-reference-for-multithreading-in-chibios-rt/, 2024/01/03. Accessed:
2024-03-12.

https://letanphuc.net/2015/03/stm32f0-tutorial-3-external-interrupts/
https://letanphuc.net/2015/03/stm32f0-tutorial-3-external-interrupts/
http://www.chibios.org/dokuwiki/lib/exe/detail.php?id=chibios%3Adocumentation%3Abooks%3Art%3Akernel&media=chibios:documentation:books:rt:kernel:rt_arch.png
http://www.chibios.org/dokuwiki/lib/exe/detail.php?id=chibios%3Adocumentation%3Abooks%3Art%3Akernel&media=chibios:documentation:books:rt:kernel:rt_arch.png
http://www.chibios.org/dokuwiki/lib/exe/detail.php?id=chibios%3Adocumentation%3Abooks%3Art%3Akernel&media=chibios:documentation:books:rt:kernel:rt_arch.png
https://www.playembedded.org/blog/the-complete-reference-for-multithreading-in-chibios-rt/
https://www.playembedded.org/blog/the-complete-reference-for-multithreading-in-chibios-rt/

	Les nombres à virgule
	Gestion des variables
	Représentation des nombres à virgule
	Gestion des nombres à virgule

	RTOS Real-Time Operating System
	Programmation concurrente et temps réel
	Multi-tâches et multi-threading
	ChibiOS
	Scheduling

