Yilmaz Fatih, Bienaimé Natacha, Microtechnique BA6 2024
Baube Maxime, Malyk Gregory Résumé cours 3

Systemes embarqués et robotique : résumé cours 3

1. La Mémoire dans les Systéemes Embarqués :

e Les systemes embarqués utilisent des mémoires de l'ordre des
KBytes/MBytes, ce qui nécessite une optimisation du code pour une
efficacité maximale dans l'interaction avec la mémoire.

e Le STM32F4 opere sur une structure de 32 bits, signifiant que les registres
et le stockage de données s'effectuent sur 4 bytes.

2. MemoryMap:

¢ Chaqgue microcontrbéleur posséde une organisation mémoire unique. Lors
de la compilation, le compilateur utilise la memory map pour savoir ou
placer le code et les données dans la mémoire. La memory map
détermine comment les différentes zones de mémoire sont allouées et
utilisées par le microcontréleur, ce qui inclut la mémoire programme
(FLASH), la mémoire des données (RAM), et les registres (aussi en RAM).

e Mémoire Flash (non-volatile) :
o .text: Contient le code exécutable.
e .rodata: Pour les données constantes invariables.
e .isr_vector : Héberge la table des vecteurs d'interruption.
e Mémoire RAM (volatile) :
o .data: Destiné aux variables statiques et globales
initialisées non-nulles
e .bss: Pourlesvariables globales et statiques non-
initialisées ou initialisées nulles.
o .stack: Utilisée pour les opérations telles que les pop et
push, stockant les variables locales.
o .heap : Réservé al'allocation dynamique de mémoire.

RAM
darm-none-edaoiL- L€ DY LINKYy.€1T
Flash iy RENE data bss dec hex filename
e 1640 4 1540 3184 c70 blinky.elf

> Done

16:07:31 Build Finished (took 146ms)

Figure 1- source : slide 12

Yilmaz Fatih, Bienaimé Natacha, Microtechnique BA6 2024
Baube Maxime, Malyk Gregory Résumé cours 3

3. Gestion de la Memory Map et Stockage :

e LaMemory Map est fixe, mais il est possible de réserver des zones
spécifiques de la mémoire (Flash ou RAM) a des fins déterminées via un
fichier spécial (comme STM32F407VGTx_FLASH.ld pour le STM32F4)
utilisé par le linker lors de la compilation. Ce fichier définit les adresses de
début et les tailles des segments de mémoire, permettant de réserver des
parties spécifiques de la mémoire FLASH ou RAM pour différents usages.

o Ladistinction est faite entre la SRAM (plus grande mais avec un accés
plus lent d(au passage par le bus de communication générique) et la
CCRAM (plus petite mais avec un acces plus rapide, car elle communique
directement avec le processeur).

4. La mémoire programme

Le code écrit par le programmeur, une fois transformé en binaire (apres avoir été
assemble) est conservé dans la mémoire Flash (non volatile).

Disposition de ces sections dans la mémoire Flash :

.isrvect: table des vecteurs d’interruption

.isrvect Ox...

text

.text: code ecrit par le programmeur

\
use|4
v

-rodata

other

st | %-—a rodata: la ou les constantes sont stockees

Figure 2 - Slide 22 montrant la structure de la mémoire programme.

Au début, on trouve la table des vecteurs d'interruption (isrvect). Ony trouve des
adresses qui pointent vers des parties de codes, qui sont exécutées lorsque l'appareil
recoit des signaux d'interruption spécifiques. Lorsqu'une interruption survient, le
processeur interrompt le déroulement actuel du programme, sauvegarde le contexte
actuel, notamment le compteur de programme (Program Counter, PC), puis accede a la
table des vecteurs d'interruption pour savoir quelle partie de code exécuter pour cette
interruption spécifique.

Yilmaz Fatih, Bienaimé Natacha, Microtechnique BA6 2024
Baube Maxime, Malyk Gregory Résumé cours 3

La section .text contient le code du programme, le .rodata contient les variable
constantes (qu’il ne sera pas possible de modifier) utilisées par le programme.

Démarrage : RESET

Le RESET est un vecteur d’interruption spécial qui se trouve au début de la Flash (cf
schéma : on trouve 'adresse de démarrage du code a la position 4 (0x0004) et a la
position 0 (0x000) ily a 'adresse ou se trouve le stack) servant de point d'entrée pour le
microcontréleur lors de son initialisation. Lorsque le microcontrbleur est alimenté le
RESET est invoqué pour commencer l'exécution du code. Cette interruption a une haute
priorité (essentiel pour redémarrer le systeme convenablement)

-10 Usage fault
0x0018 |

-1 Bus fault
0x0014

-12 Memory management fault
0x0010

-13 Hard fault
0x000C |

-14 NMI

Reset

0x0004 |

Initial SP value
0x0000

Figure 38— Source : Vector table slide 30 du cours.

5. Les registres :

Les registres permettent la configuration des GPIOs (entrées et sorties des ports) et ils
sont conservés dans une zone dédiée, accessible pour la modification, ou sontregroupés
l'ensemble des registres associés aux périphériques du microcontroleur. On peut se
référer au document STM32F407 Reference Manual pour trouver leurs adresses.
Plusieurs exemples ont été réalisés lors du TP1 afin de modifier précisément des registres
GPIOx précis.

Le fichier stm32f407xx.h permet a lutilisateur de trouver les différents #define liés aux
ports des périphériques mais aussi 'adresse de base des périphériques. Il suffit par la
suite de faire des shifts afin de retrouver Uadresse exacte du registre dans la mémoire. Par
exemple, les registres propres au GPIOD sont tous localisés en mémoire entre
0x40000000U et 0x40020C00U.

Yilmaz Fatih, Bienaimé Natacha, Microtechnique BA6 2024
Baube Maxime, Malyk Gregory Résumé cours 3

#define] PERIPH BASE'\)

#define [AHBIPERIPH_BASE | [PERIPH_BASE|+ 0x00020000U)

....... ; axesoo) 0x40000000U
ATBIPERTPH BASE + 0x1000U) + 0x00020000U
+ 0x00000C00U

#define GPIOC BA
#define[GPIOD BASE

#define GPIOE ¥

#define LEDS GPIOD, 10
#define LED7 GPIOD, 11
#define FRONT_LED GPIOD, 14

fid pEE

efin P10 P10 RIOC _BA
#define GPIOD GPIO TypeDef ‘ GPIOD BASE

#define GPIOE ((GPIO_TypeDef *) GPIOE_BASE)

stm32F407xx.h =. 0x40020C00U

main.h

Figure 4 - source : slide 36-37 du cours, adresse exacte d’un registre

Par exemple, si on veut obtenir 'adresse exacte du registre MODER du GPIOD, on va
d’abord chercher l'adresse de base de GPIOD puis on va rajouter U'offset du registre
correspondant (ici MODER) qui est indiqué dans le fichier stm34f407xx.h comme indiqué
ci-dessous.

typedef struct
{,

l I0 uint32_t MODER; I /*1< GPIO port mode register, I»‘u:a‘ ss
/*!1< GPIO port output type register, Radres

oxeo |
. OXo4

offset:

— - 2 /
__I0 uint32_t OSPEEDR; /*!< GPIO port output speed ter, : Ox08 /
__I0 uint32_t PUPDR; /*!< GPIO port /
__I0 uint32_t IDR; /*1< GPIO port J,
__I0 uint32_t ODR; /*!< GPIO port outp /
__I0 uint32_t BSRR; /*!< GPIO port bit te /
__I0 uint32_t LCKR; /*!< GPIO port configuration lock register, A

I0 uint32_t AFR[2]; /*!1< GPIO alternate function registers, et: 0x20-0x24 */

PIO_TypeDef;

-
[

stm32F407xx.h

Figure 5 - source : slide 41,
Les adresses des registres sont simplement définies comme :

Adresse du registre = 0x40020C00U + offset

6. La mémoire des données

6.1 Types de Mémoire et Variables

Les systemes embarqués disposent généralement de mémoire de Uordre des KBytes a
MBytes, nécessitant une optimisation rigoureuse du code pour une interaction efficace
avec la mémoire. La structure 32 bits du STM32F4 implique que les données sont souvent
stockées sur 4 bytes, relevant de deux types de mémoire principaux : Flash (non-volatile)
et RAM (volatile), divisés en plusieurs segments pour différents usages tels que le code
du programme, les données constantes, les variables globales et statiques, ainsi que
pour l'exécution de taches spécifiques comme l'allocation dynamique.

Yilmaz Fatih, Bienaimé Natacha, Microtechnique BA6 2024
Baube Maxime, Malyk Gregory Résumé cours 3

6.2 Gestion des Variables Locales

Les variables locales sont stockées temporairement sur la pile (stack) pendant
l'exécution de la fonction qui les contient. Le compilateur s'occupe d'allouer
suffisamment d'espace sur la pile en ajustant le Stack Pointer (SP) en fonction du type et
de la taille de chaque variable locale. Cette gestion dépend de la taille des données (par
exemple, 4 octets pour un int sur le STM32F4) et du nombre de variables utilisées dans la
fonction. Une fois la fonction terminée, l'espace alloué sur la pile est nettoyé, et le SP
revient a sa position initiale.

6.4 Variables Statiques et Globales

Les variables statiques, contrairement aux locales, sont stockées hors de la pile, dans les
segments de mémoire bss ou data selon qu'elles sont initialisées ou non. Elles restent
persistantes tout au long de l'exécution du programme mais sont uniquement
accessibles dans la fonction ou elles sont déclarées. Les variables globales suivent une
gestion similaire a celle des statiques mais sont accessibles de maniére globale dans
tout le programme.

6.5 Overflow de la Pile

Un défi majeur dans la gestion de la mémoire est d'éviter l'overflow de la pile, qui peut se
produire lors de l'utilisation intensive de variables locales ou de fonctions récursives
profondes. Cela peut entrainer un dépassement de la capacité limitée de la pile, avec des
conséquences potentiellement désastreuses, telles que la corruption de la mémoire.
Pour mitiger ce risque, il est conseillé de limiter l'utilisation de grandes structures de
données comme les tableaux et d'éviter les récursions profondes. L'allocation
dynamique sur le tas (heap) via malloc, calloc, etc., bien que plus complexe, offre une
alternative pour gérer de grandes quantités de données sans risquer d'overflow de la pile.

En conclusion, la gestion efficace des variables et de la mémoire dans les systemes
embarqués repose sur une compréhension approfondie de la structure de la mémoire du
microcontroleur ciblé, ainsi que sur des choix judicieux concernant le type, la portée, et
la durée de vie des variables pour optimiser l'espace de mémoire limité disponible.

