Résumé Systemes Embarqués et Robotique

Groupe Semaine 2
Aude Chigard, Daniel Da Silva, Georg Schwabedal & Dominic Stratila

Mars 2024

1 Structure du compilateur C

1.1 Compilateur C

Ce cours se base sur le compilateur GCC en mode croisé. GCC est le compilateur C du projet GNU, démarré en 1984
pour réaliser un OS similaire a UNIX mais libre. Le développement de GCC a débuté en 1987 et on est actuellement
alaversion 12.2, le projet fait 15M lignes de code. GCC est soumis a la licence GPL (General Public License). GCC
supporte la grande majorité des processeurs existants a ce jour, est modulaire et permet de la compilation croisée
(cross-compilation) pour un grand nombre de cibles.

Le compilateur C prend le code écrit en C et le transforme en code assembleur, ensuite un encoding est réalisé pour

pouvoir arriver a I’exécution.

Compiler

Un compilateur est un programme informatique (ou un ensemble de programmes) qui transforme un code source
écrit dans un langage informatique (le langage source) en un autre langage informatique (le langage cible). Le nom
"compilateur" est principalement utilisé pour les programmes qui traduisent le code source d'un langage de pro-
grammation de haut niveau vers un langage de niveau inférieur (par exemple en langage assembleur) pour créer

un programme exécutable.

Encoding

Pour que les instructions assembleur puissent étre exécutées par le microcontroleur de I’e-puck 2, elles doivent
étre traduites. En effet, le microcontroleur principal ne peut pas lire 'assembleur et donc notre code source di-
rectement. Cet encodage est fait par le programme AS du compilateur. Les différents bouts de code binaire ainsi

générés sont ensuite passés a I'éditeur de lien pour le mettre ensemble.

Linker (éditeur de liens)
En informatique, un éditeur de liens est un programme qui prend un ou plusieurs objets générés par un compila-

teur et les combine en un seul programme exécutable.

C source files (*.c) II

I

C compiler (gcc)

Header files (x.h) II Preprocessor (in ccl)
C source files (x.1) II

C compiler (ccl)

ASM source files (x.5) II
ASM source files (x.s) II Assembler (as)

I

Archiver (ar) object files (x.0)

static libraries (x.a) II

Linker (1d) C run-time files (crt...)

executable file

i

Figure 1: Structure du compilateur C

Du fichier ".c" a 'exécutable

Lorsqu’on compile notre code, les fichiers source ".c" et les fichiers header ".h" passent par une étape de pré-
processeur ol ces fichiers sont mis ensemble et transformés en seul fichier ".i" (un fichier ".i" par paire de fichier
".c" et ".h"). C’est aussi lors de cette étape que les directives "define" sont remplacées par leur valeurs respectives.
Puis, les fichiers ".i" sont compilés et transformés en des fichiers assembleur ".s" . Enfin les fichiers assembleur
sont transformés en fichiers objets ".0".

Les fichiers crt (C run-time files) sont mis ensemble avec les fichiers objets et les librairies statiques lors de la
derniere étape de I'éditeur de liens et donnent le fichier executable. Ces fichiers crt permettent d’initialiser les
éléments nécessaires (comme les pointeurs, la mémoire, etc) afin de pouvoir démarrer I'exécutable correctement.
11 est possible d’effectuer seulement certaines étapes de ce processus avec certaines commandes précises dans le
compilateur. Par exemple, la commande "gcc -S" permet au compilateur de s’arréter au fichier assembleur ".s"

Il est important de mentionner, qu'un code source en C peut donner des instructions assembleur différentes en
fonction du compilateur et des parametres d’optimisation. Par ailleurs, le code assembleur généré par le compila-

teur n’est jamais optimal (sauf pour des codes tres simples).

1.2 Cross-compilateur C

On parle de cross-compilateur quand le code est généré pour un autre processeur que celui sur lequel tourne le
compilateur, par exemple on compile un programme sur un ordinateur pour qu'il tourne sur un robot. Afin de
distinguer gcc (propre a l'ordinateur) des cross-gcc on ajoute un préfix au nom de gcc (exemple : pic30-gcc, xc16-
gcc, arm-none-eabi-gcc ...). Dans le cadre de ce cours,on compile du code pour des microprocesseurs ayant une
architecture de la famille ARM Cortex-M.

La suite d’outils de gcc prennent la méme forme (arm-none-eabi-ld, arm-none-eabi-as, etc.)

Micro-332 2 Lausanne - March 3, 2024

2 Organisation de code

Une solide compréhension de la structuration d'un code est indispensable pour assurer un fonctionnement opti-
misé et une méthodologie de travail qui favorise le développement rapide et sans bugs, ainsi qu’ une reprise efficace
du code.

2.1 Compilation grace au makefile

La compilation d'un projet peut étre réalisée soit par des commandes ciblées de compilation, soit par la commande
"make" qui génére I'exécutable grace a I'invocation du fichier "makefile". Il crée un exécutable au format Exe-
cutable and Linkable Format (ELF) utilisable par la suite. Enfin, le "makefile", s’il est congu de maniere judicieuse,
peut inclure d’autres "makefiles" et sélectionner uniquement les fichiers modifiés, évitant ainsi une recompilation

compleéte.

2.2 Lerole et 'optimisation des fichiers

C—y G——y
.0 .al.hl.cl.hl.cll.a
crt.o bootloader lib.a lib.h code + libc.a
définitions

Figure 2: Structure de fichiers

La conception d'un code implique la distinction entre les fichiers source (.c) et les fichiers d’en-téte (.h). Cette
organisation est cruciale pour garantir une encapsulation efficace des taches. Lors de la compilation ces fichiers
sont regroupés dans un seul fichier. Des fichiers finalisés et testés peuvent étre convertis en une bibliotheque (.a)
et inclus dans une archive. Cette bibliothéque est alors placée au méme niveau que les bibliotheques standard du
langage C et n’est pas recompilée.

Le fichier crt.o, fourni par les développeurs du systéme (ici le robot e-puck), assure la mise en place initiale du
systéme, comme par exemple la configuration des entrées-sorties au niveau de la fonction main().

Enfin, la région de bootloader est une zone de code constante située au début de la mémoire flash de certains
systemes protégée a la réécriture. Elle permet entre autres la reprogrammation du systéme sans avoir de hardware

spécifique (comme dans le robot le deuxiéme microcontrdleur).

2.3 BIOS/OS

Le BIOS (Basic Input/Output System) indique le regroupement des fichiers crt.o, bootloader, et des autres fonction-
nalités de base du systéme. Il est présent des le démarrage. Pour le robot e-puck c’est le code qui gere la lecture des
capteurs par exemple. Le OS (Operating System) regroupe la gestion de fichiers, mémaoire, taches et Input/Output.

Ensuite vient le code de notre application pour réaliser des taches spécifique.

Micro-332 3 Lausanne - March 3, 2024

3 Abstraction matérielle

Le but d'une abstraction dans I’écriture du code est d’écrire du code court et clair pour le codeur. Ceci est essentiel
pour un code propre, ce qui facilite I'écriture, la lecture(surtout aprés un long intervalle de temps, mais aussi pour
d’autres lecteurs) et le debug. On pourrait écrire tout en assembleur ou méme qu’avec des 1 et des 0, mais cette
maniere est évidemment plus longue et lourde.

Cette abstraction peut étre réalisée avec différentes méthodes complémentaires:
¢ Les mécanismes de redéfinition de noms (define)
* Les structures ou les classes(absentes en C, mais pas dans C++)
¢ Ladivision des longues fonction en fonctions courtes et simples qui font une seule tiche mieux délimitée.

Il est aussi essentiel de nommer les variables et les fonctions avec des noms représentatifs. C’est mieux d’avoir un
nom long, mais représentatif et clair, qu'un nom court mais qui n’explique rien en soi(ex: "int aireDuRectangle" vs
"inta").

Dans le cas d'une fonction longue qui fait plusieurs taches ou contient plusieurs étapes (ex: (1) faire un certain cal-
cul (2) pour tous les éléments d'une matrice et puis (3) printer la matrice) c’est mieux de la subdiviser en plusieurs,
ol chacune fait une tache précise et courte (ex: une fonc . séparée pour (1), (2) et (3), et puis les assembler ensem-
ble; une fonc-sommaire avec deux fonctions, ot la premiere(1) appelle la (2) pour chaque élément, et puis la (3)
fait le print). Voir Figure.3.

typeElemMatrice make_some_calcs_1lelem(
void make_some_calcs(tri. return

U }
void make_some_calcs_forMatric(
1

}

void make_some_calcs_print(

}

void make_some_calcs_sum(){
make_some_calcs_lelem(|/+
make_some_calcs_print(/+

}

Figure 3: Exemple de deux réalisations d'une tache

Micro-332 4 Lausanne - March 3, 2024

	Structure du compilateur C
	Organisation de code
	Abstraction matérielle

