
Laboratoire d’Actionneurs Intégrés (LAI) EPF-Lausanne

Conversion Électromécanique I

Corrigé: Système électrodynamique

Champ magnétique de l’aimant

En premier, il faut calculer l’induction dans l’entrefer B générée par l’aimant seul.

On pose le système:

Bδ = μ0Hδ (1)

B = B0 + μdrμ0H (2)

H +Hδδ = 0 (3)

BS = BδSδ (4)

et, comme S = Sδ, (4) donne B = Bδ = B.

La solution du système (1)-(4) est:

B =
B0

1+ δ

μdr
=

1.1

1+ 5
51.05

= 0.5366 T (5)

Flux de la bobine Ψ créé par l’aimant

Pour poser les équations de la force et de la tension, il faut déterminer le flux de la

bobine créé par l’aimant Ψ (Fig. 1).
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2

Figure 1: Le flux de la bobine

Toutes les spires de la bobine ne sont pas traversées par le même flux. L’élément

d de la bobine est traversé par le flux correspondant aux lignes du flux 2. Ce flux

 est donné par:

 = BS = B(h− ϵ− )L (6)
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où B est donné par (5), et L est la profondeur du système. Les lignes du flux 1 ne

traversent pas l’élément d.

Cela signifie que l’élément d, qui contient:

dN = N
d

b
(7)

spires, capte le flux totalisé de:

dΨ = 2dN = 2NBL
1

b
(h− ϵ− )d (8)

Le facteur 2 est introduit à cause de la symétrie.

L’intégration donne le flux:

Ψ = 2NBL
1

b

∫ b

0

(h− ϵ− )d = 2NBL(h− ϵ−
b

2
) (9)

Sa dérivée par rapport à ϵ est:

dΨ

dϵ
= K = −2NBL (10)

La constante K peut être appelée la constante de la force ou la constante de la

tension induite, comme il sera démontré par la suite. Sa valeur absolue de 25.756

peut être donné soit en N/A soit en V/(m/s).

Equation de la force ƒ

La force agissant sur la bobine est:

ƒ =
1

2

dΛ

dϵ
Θ2

+

1

2

dLb

dϵ
2 +

dΨ

dϵ
 (11)

Dans un système électrodynamique (un aimant fixe et une bobine mobile), l’absence

de circuit ferromagnétique associé à la bobine entraîne la suppression du couple

réluctant dû à l’aimant seul. Cela signifie que le premier terme en (11) est égal à

zéro.

Le deuxième terme en (11) est égal à zéro, conformément à la donnée Lb = const.

Finalement, en utilisant (10), la force est donnée par:

ƒ = K = −2NBL (12)

La force est proportionnelle au courant avec la constante K.
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Il est important de noter que le même résultat peut être obtenu par la force de

Laplace par laquelle le champ magnétique de l’aimant agit sur la bobine.

Pour avoir une force qui tend à éjecter la bobine (ƒ > 0), il faut que le courant  soit

négatif. Pour le courant statique de  =  = −1 A (cas 1), la force est de ƒ = 25.756 N.

Equation de la tension 

L’équation de la tension de la bobine est:

 = R+ Lb
d

dt
+

dΨ

dt
(13)

Le troisième terme, la tension induite e créée par l’aimant dans la bobine, peut être

transformé comme suit:

e =
dΨ

dt
=

dΨ

dϵ

dϵ

dt
= K (14)

La tension induite créée par l’aimant est proportionnelle à la vitesse avec la con-

stante K. Ainsi:
ƒ


=
e


(15)

La puissance électromagnétique p est donnée par:

p = ƒ = e (16)

Equation de mouvement

L’équation de mouvement (loi de Newton) est:

m
d

dt
= ƒ (17)

Ainsi, le système de 2 équations différentielles à résoudre est donné par:

U = R+ Lb
d

dt
+ K (18)

m
d

dt
= K (19)
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Après élimination de , on obtient l’équation du deuxième ordre:

d2

dt2
+

R

Lb

d

dt
+

K2

mLb
 =

KU

mLb
(20)

Résolution de l’équation de mouvement

L’équation caractéristique correspondante à (20) est:

r2 +
R

Lb
r +

K2

mLb
= 0 (21)

Sa solution est:

r1,2 = −
R

2Lb
± ȷ

s

K2

mLb
−

R2

4L2b
= ± ȷb (22)

Valeurs numériques sont  = −218.18 et b = 270.20.

La solution particulière de (20) est  = U/K, et cela donne la solution finale:

 =
U

K
+ (C1 cosbt + C2 sinbt)et (23)

En utilisant (19), le courant est:

 =
m

K

d

dt
=
m

K
[(C1 + bC2) cosbt + (C2 − bC1) sinbt]et (24)

Pour déterminer les constantes C1 et C2, les conditions initiales |t=0 = 0 et |t=0 = 0
sont combinées avec (23) et (24). La solution pour les constantes est C1 = −U/K et

C2 = U/(bK).

Les solution finales pour la vitesse et le courant sont:

 =
U

K
−
U

K
(cosbt −



b
sinbt)et (25)

 =
mU(2 + b2)

bK2
sinbt et (26)

La position ϵ est:

ϵ =
∫

dt =
U

K
t −

U

K

1

2 + b2
(2 cosbt +

b2 − 2

b
sinbt)et + C3 (27)

Pour déterminer la constante C3, la condition initiale ϵ|t=0 = 0 est appliquée. Cela
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donne C3 = 2U/(K(2 + b2)), et la solution finale est:

ϵ =
U

K
t −

U

K

1

2 + b2
(2 cosbt +

b2 − 2

b
sinbt)et +

2U

K(2 + b2)
(28)

Les fonctions e(t), (t), (t) et ƒ (t) sont présentées à la Fig. 2.
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Figure 2: Les fonctions e(t), (t), (t) et ƒ (t)
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