
P.A. Besse, EPFL Ch.4, p.1, “Semi-conducteur hors équilibre” Composants semi-conducteurs, 2024

COMPOSANTS SEMI-CONDUCTEURS

IV) Semi-conducteur hors équilibre

P.A. Besse
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Rappel: équations à l’équilibre

Solutions pour une structure à l’équilibre:  

3 inconnues: champ électrique E, (ou potentiel électrique ) 
concentration d’électrons libres n  
concentration de trous p 

3 équations:
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valable hors équilibre
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A l’équilibre: 
trois inconnues: E, n et p
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Génération  /  

Recombinaison

 Equations de continuité
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Exemple hors équilibre: 
« faible injection »

Illumination
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Génération et recombinaison :
à effets radiatifs 

« Band-to-Band », équilibre radiatifs avec le corps noir

Génération radiative

, ( ) ( )th rad rad v cG N p N n  

,th rad rad v cG N N

Recombinaison radiative

,th rad radR n p

Black 
body

Absorption
Emission
spontanée

Black 
body

Emission
stimulée

Black 
body

Black 
body

n

p

n

pNv

Nc
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 
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Génération et recombinaison
carrier assisted

« Band-to-Band », effets Auger

Impact ionisation

Electron chaud

Trou
chaud

, ,ii n ii n v cG N N n

Dopé N Dopé P

, ,ii p ii p v cG N N p

Auger
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Génération et recombinaison:
Trap assisted

Effets thermiques indirects (« trap assisted »)

Génération indirecte Recombinaison indirecte

0 0
, , , 2th i th i th i i T

i

np n p
U R G N

n p n


 
      

Taux net de
recombinaison par 
volume

Densité de traps Déséquilibre

Pour un piège au milieu du gap ,
avec des taux de capture identiques pour les électrons et les trous: 

Shockley-Read-Hall theory

p

NT

Nv

Nc

NT

p

NT
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Taux net de recombinaison thermique total
faible injection de trous

Black 
body

Direct «Radiatif»
(gap direct)

 0 0thU n p n p 

0

1
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
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Direct «Auger»
(gap indirect)
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2
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1
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Indirect «trap assisted»
(basse concentration)
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0
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
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Générations et recombinaisons 
spécifiques: exemples

avoptoptspec GGRU 

Optique

Absorption Emission
stimulée

Génération
Gopt

Recombinaison
Ropt

Avalanche

S. M. Sze “Semiconductor Devices”

E-field
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Variation de porteurs dans un cube

n

t





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Équation de continuité: modèle 1D

S. M. Sze “Semiconductor Devices”
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Équation de continuité 
et conservation des charges

)()()()( njdivRqGq
t

n
q









Variations de charge =   génération   - recombinaison - (courant OUT - IN)

La génération et la recombinaison sont identiques pour les électrons et les trous:


1
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Lois de continuité Conservation des charges
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Résumé simplifié: 
3 inconnues / 3 équations

1) Equation de Maxwell: 

   0 D Adiv E q p N n N          


 E


3 inconnues: pE n


2) Equation de continuité des électrons libres 
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3) Equation de continuité des trous 
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Approximation de

faible injection



P.A. Besse, EPFL Ch.4, p.24, “Semi-conducteur hors équilibre” Composants semi-conducteurs, 2024

Approximation de faible injection

n
th

p
U






Approximation de faible injection: 

« la concentration des majoritaires hors équilibre est la même qu’à l’équilibre »

Matériel de type N, à faible injection Minoritaires pn

0nn 

Matériel de type P, à faible injection  Minoritaires np

0pp  p
th

n
U






Majoritaires:

Majoritaires:
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Faible injection et 
équation de continuité des minoritaires
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Faible injection et 
équation de continuité des minoritaires

Matériel de type N, à faible injection

L’équation de continuité pour la concentration des minoritaires pn devient:

  npnpnp
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Matériel de type P, à faible injection 

L’équation de continuité pour la concentration des minoritaires np devient:
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Exemple 1:
Longueur de diffusion

N-type

Minoritaires

p
D

p
x pp






1

2

2

Solution:

)/(0 pLxExppp 

Longueur de diffusion:

ppp DL 
Typique: L [m - mm]

20 0n n n
p n

p

p p p
D p

t 
 

    


S. M. Sze “Semiconductor Devices”
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Exemple 2:
Temps de vie des porteurs minoritaires

Phase 1: 
illumination GL

Phase 2: 
GL=0

Phase 1: L
p

nn G
pp





0

Phase 2: 
p

nnn pp

t

p


0





Solution: )/()( 0 pLpnn tExpGptp  

Temps de vie des minoritaires

S. M. Sze “Semiconductor Devices”
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Mesure du temps de vie des minoritaires:
photoconduction

Résistance: 

S

L

nq
R

n
1



Neutralité: 

npn  Lp
p

n GtExp
nn

p
R

R



)/(

1

000




S. M. Sze 
“Semiconductor Devices”

Photoconducteur type N

Vbias

V0

Vbias

V>V0

Vbias

VV0

t < 0 t = 0 t > 0
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Temps de vie des minoritaires 
(bande directe)

band-to-band

Trap assisted

GaAs type P Semi-conducteur à bande directe

Trap assisted:

1
T

n

N




Band-to-band:

0

1

n

p




Ashcroft “Solid state physics”
0p
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Temps de vie des minoritaires 
(silicium)

Trap :

1
T

p

N




Auger :

2
0

1

p

n




Trap :

1
T

n

N




Auger :

2
0

1

n

p




Silicium: Semi-conducteur à bande indirecte

Auger

Trap Trap

Auger

Kittel: « introduction to solid state physics »

P- doped N- doped

0n0p
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Exemple 3:
Expérience de Haynes-Shockley

Vout

Diode passante
« Injecteur de 
minoritaires »

Diode bloquante
« Extracteur de 
minoritaires »

Adrian Seet, 
Uni Queensland 1998

I

Expérience originale: Haynes, Shockley, Phys. Rev. 75, 691 (1949).
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Résumé: expérience de 
Haynes-Shockley (1949)

Haynes, Shockley 
1949

Transistor bipolaire
à point de contact

Bardeen, Brattain, Shockley
1948
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Expérience de Haynes-Shockley

tmax

Vmax

t

Adrian Seet, Uni Queensland 1998

outV n
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Expérience de Haynes-Shockley

Caractéristiques des minoritaires:

maxt
Et

d
n 


max

(Mobilité)Drift 

t
 
 tt

tdt
Dn 




max

2
max

2

4
Diffusion

maxV
max,1 max,2

max,2 max,2

max,1 max,1

Recombinaison

ln

n

t t

t V

t V





 

  
 ou intégrale de la courbe
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Paramétrisation par

Quasi-niveaux de Fermi
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A l’équilibre: 
trois inconnues: E, n et p

Vacuum

x=0

Ev

Ec

Ei

-q(x)

Ef
n(x)

p(x)

E
x


 


F iE E

kT
in n e



 

i FE E

kT
ip n e



 
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Analogie: quasi-niveaux de Fermi

EFp

EFn

Quasi-équilibre  «quasi-niveaux de Fermi»
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Quasi-niveaux de Fermi  
hors équilibre

La distribution de Fermi ne s’applique plus de façon exacte !!
Néanmoins on paramétrise n et p par les « quasi niveaux de Fermi » EF,n et EF,p:

kTEE
i

pFnFenpn /)(2 ,, 

kTEE
i

inFenn /)( ,  kTEE
i

pFienp /)( ,

Loi d’action de masse modifiée: 
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E

Ec

Ev

Efn

Extraction

0 11/2

n

Efp

p

Efn < Efp

n.p < ni
2

E

Ec

Ev

Efn

Injection

0 1/2

n

Efp

p

1

Efn > Efp

n.p > ni
2

Quasi-niveaux de Fermi 
en faible injection

E

Ec

Ev

Ef

Equilibre

0 11/2

n

p

Efn=Efp=Ef

n.p=ni
2
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Ef,n

n(x)

Trois inconnues , n et p
Hors équilibre

Vacuum

x=0

Ev

Ec

Ei

-q(x)

Paramétrisation par , Efn et Efp. 

Ef.p

p(x)
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Quasi-niveaux de Fermi et courants

kTEE
i

inFenn /)( ,  ( )
2

g
i

E
E q q     gradE 



Equation des courants de drift et de diffusion

)(ngradkTEqnj nnn  


 )()()( ,  gradqEgrad
kT

n
kTgradnqj nFnnn 



)( ,nFnn Egradnj  


)( , pFpp Egradpj  

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Avantages des 
quasi-niveaux de Fermi

1) Ils ne varient que de quelques eV sur toute la structure

2) A l’équilibre, ils correspondent au niveau de Fermi qui lui 
a une signification physique (taux de remplissage de ½)

3) Sur le schéma de bande, 
ils déterminent les concentrations n et p

4) Leur gradient donne directement le courant total 
pour une sorte de porteur
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Exemples de

calcul de bandes
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Semi-conducteur homogène dopé N 
à l’équilibre thermique

1) Poser l’énergie du vide Evac

0vacE

vacE

iE

2) Dessiner les bandes à partir de
l’affinité, du gap et du matériel intrinsèque   cE

vE
AD NNn 

 iiF nnkTEE ln

3) Déterminer l’énergie de Fermi
(constante dans toute la structure)  

fE
n p



P.A. Besse, EPFL Ch.4, p.50, “Semi-conducteur hors équilibre” Composants semi-conducteurs, 2024

Semi-conducteur inhomogène 
à l’équilibre thermique

iE

cE

vE

2)    Ef constant dans toute la structure
vacE

1) Au point « left »: 
- Poser
- Dessiner les bandes
- Déterminer Ef à partir de Ei

0vacE

« left »

fE

4) Résoudre:

avec les conditions aux deux bords. 



0



qEvac 5)    Tracer Evac: 

6) Tracer les bandes en tout point depuis Evac

3)    Au point « right »:
- Déterminer Ei à partir de Ef

- Dessiner les bandes
- Tracer Evac

« right »
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Potentiel de « built-in »:
potentiel interne et tension électrique externe

À l’équilibre: La tension électrique externe V est nulle
L’énergie de Fermi Ef est constante
Le potentiel interne donne la tension de built-in:  =Vbi

Hors équilibre: La tension externe est non-nulle 
EF varie de -qV

avec de « bons » contacts: La tension externe se reporte sur le potentiel interne 
=Vbi+V

0 

V

« contact » « contact »A B

C D
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Structure en semi-conducteur
À l’équilibre

Structure en semi-conducteur: 
à l’équilibre

EF

qVbi

Evac

EF

Evac



P.A. Besse, EPFL Ch.4, p.57, “Semi-conducteur hors équilibre” Composants semi-conducteurs, 2024

Evac

EF

Cuivre
(T0)

Cuivre
(T0)

qm

Structure en semi-conducteur
À l’équilibre (T0)

Structure en semi-conducteur: 
à l’équilibre

«b
on

» 
co

nt
ac

t

qm

«b
on

» 
co

nt
ac

t
Evac

EF
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Structure en semi-conducteur: 
hors équilibre

Evac

EF

Cuivre
(T0)
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Structure en semi-conducteur: 
hors équilibre

Cuivre
(T0)
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Semi-conducteur homogène 
parcouru par un courant

iE

cE

vE

vacE

1) Au point « left »: 
- Poser
- Dessiner les bandes
- Déterminer Ef à partir de Ei

0vacE

« left »

fE

V

4) Homogène  Ef et Evac sont linéaires

5) Tracer les bandes en tout point depuis Evac

2) EF,n =E F,p= EF dans toute la structure

EF n’est pas constant

« right »

3)    Au point « right »:
- Ef est donné par -qV
- Dessiner les bandes
- Tracer Evac

-qV

I
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Semi-conducteur inhomogène 
en général

1) Au point « left »: 
- Décrire les bandes et déterminer EfEvac

Ev

Ec

Ef

« left »

Ei

« right »

2)    Au point « right »:
- Trouver Ef à partir de la tension externe V

-qV
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Semi-conducteur inhomogène 
en général

3) Résoudre

avec les conditions aux deux bords.
Les inconnues sont , EF,n et EF,p

1
( )spec th p

p
U U div j

t q


   



1
( )spec th n

n
U U div j

t q


   




0

1
( )d aq p N n N

 
      

5)    Tracer les bandes en tout point depuis Evac

1) Au point « left »: 
- Décrire les bandes et déterminer EfEvac

Ev

Ec

Ef

« left »

Ei

4)     Tracer Evac= - q EF,n et    EF,p

Ef.p

Ef,n

2)    Au point « right »:
- Trouver Ef à partir de la tension externe V
- Dessiner les bandes et trouver Evac

« right »
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1er test à blanc

Données sur Moodle


