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Série 22

Exercice 22.1 : PROCESSUS STATIONNAIRES (BASIQUE)

Cet exercice vous permet de constater que le traitement de processus stochastiques (ici un bruit blanc,
défini au slide 12−29) ressemble beaucoup à celui des signaux déterministes. À la place de transformée
de Fourier, vous aurez ici à calculer des densités spectrales de puissance, que l’on peut facilement
obtenir grâce au théorème de Wiener-Khintchine (voir slide 12 − 26). Le résultat d’un filtrage est donc
également aisé à calculer, comme on peut le voir au slide 12−28. Ce que vous avez appris de “basique”
dans votre cours de Signaux & Systèmes peut donc être transposé facilement afin de manipuler des
processus aléatoires complexes, et ça, c’est chouette.

On considère le système représenté en Figure 1.

x(t) y(t)
h(t)

Figure 1 – Système de filtrage.

On suppose que l’entrée x(t) est la réalisation d’un bruit blanc gaussien X(t). Sa densité spectrale de
puissance (DSP) est alors donnée par

SX(ω) = σ2.

On suppose également que la réponse impulsionnelle du filtre, h(t), est réelle et symétrique autour
de 0 (i.e. h(t) = h(−t)).

Dans cet exercice, on désire ajuster le filtre h(t) de sorte que la sortie y(t) soit la réalisation d’un
processus stationnaire au sens large Y (t) ayant une densité spectrale de puissance SY (ω) fixée par
l’utilisateur.

1) Cas général : SY (ω) = S(ω) quelconque.
(a) Donner la relation entre les DSP du signal d’entrée X(t) et de sortie Y (t).
(b) Donner les expressions de |H(ω)| et ΦH(ω) pour que la DSP du signal de sortie soit égale

à S(ω), une fonction quelconque.
(c) Donner l’expression de la fonction d’autocorrélation ρX(t). Donner l’expression de ρY (t) en

fonction de h(t).
2) Cas particulier : SY (ω) = S(ω) = e−2|ω|.

(a) Donner l’expression d’un filtre h(t) qui permet de générer un processus stationnaire au sens
large caractérisé par le S(ω) donné ci-dessus.

(b) Donnez l’expression de ρY (t) pour le filtre h(t) obtenu à la question précédente.

Exercice 22.2 : DÉCONVOLUTION (AVANCÉ)

Bien que cet exercice soit de type avancé et qu’il paraisse long au premier abord, nous vous encourageons
vivement à le faire pour trois raisons. Premièrement, parce que les assistants le trouvent joli. Ensuite,
parce qu’il s’agit de l’exercice que vous rencontrerez qui se trouve le plus connecté à la réalité et
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vous permet donc de voir (en s’investisant un minimum pour comprendre le problème) comment le
traitement du signal s’inscrit dans des problèmes concrets.

Soit un système d’acquisition modélisé par la première partie du schéma bloc en Figure 2. Une réa-
lisation x(t) du signal stochastique X(t) est acquise via le système de réponse impulsionnelle h(t).
Malheureusement, l’acquisition n’est pas parfaite. Le signal dont l’utilisateur dispose est bruité et est
donné par l’expression y(t) = h(t) ∗ x(t) + n(t), où n(t) est une réalisation d’un bruit blanc gaussien
N(t). Le problème typique de traitement du signal dit de déconvolution va être de parvenir à récupérer
une estimation précise du signal d’entrée x(t) sachant que l’on a à disposition uniquement la sortie
y(t). Ceci est effectué efficacement en utilisant le filtre de Wiener optimal, que nous allons découvrir
étape par étape.

x(t)
y(t)h(t)

n(t)
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Figure 2 – Schéma-bloc du problème de déconvolution.

On suppose que la densité spectrale de puissance du signal d’entrée X(t) (dont x(t) est une réalisation)
est donnée par

SX(ω) = 1
1 + ω2 .

On rappelle que puisque N(t) (dont n(t) est une réalisation) est un bruit blanc gaussien alors sa
densité spectrale de puissance est donnée par

SN (ω) = σ2.

On suppose de plus que le signal X(t) et le bruit N(t) sont indépendants.

La fonction de transfert du filtre h est supposée être de la forme

H(ω) = jω − s

(jω + 2)2 ,

où s est tel que Re (s) ≤ 0.

1) Filtrage inverse : on va tout d’abord tenter de compenser l’effet du filtre h.
(a) Donner l’expression de la fonction de transfert Hinv d’un filtre hinv qui permettrait de

récupérer x(t) à partir de sa version filtrée non bruitée (c’est à dire h(t) ∗ x(t)).
(b) Le filtre Hinv est-il stable ?
(c) Donner l’expression de y1, le signal obtenu après filtrage inverse de y.

On notera n1 le résultat du filtrage du bruit n(t) par hinv. Le signal n1 est une réalisation
du signal stochastique noté N1(t).

(d) Donner les densités spectrales de puissance de chacune des composantes de y1.
2) Filtrage de Wiener-Hopf : Le filtre de Wiener-Hopf est donné par

HW (ω) = SX(ω)
SX(ω) + SN1(ω) .

Ce dernier permet d’obtenir x̃(t), une estimation de l’entrée x(t) à partir de y1(t).
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(a) En quoi ce filtre est-il optimal ?
On pourra se référer aux slides 12 − 43 et 12 − 46.

(b) Donner l’expression du filtre de Wiener équivalent Hopt(ω) obtenu en combinant le filtre
inverse et le filtre de Wiener-Hopf.

(c) Donner l’expression limite de Hopt(ω) lorsque le rapport signal-sur-bruit SX(ω)/SN1(ω)
tend vers l’infini.

(d) Donner l’expression limite de Hopt(ω) lorsque le rapport signal-sur-bruit SX(ω)/SN1(ω)
tend vers zéro.

(e) Expliquer pourquoi le comportement observé dans les deux points précédents est désirable.

Exercice 22.3 : DÉTECTEUR PAR CORRÉLATION (AVANCÉ)

Cet exercice vous permet enfin d’utiliser les propriétés statistiques des signaux dans une application se
rapprochant plus du concret. On a ici un signal passé dans un canal de transmission et dégradé par des
imperfections que l’on appelle du bruit. A la sortie du canal, on cherche à détecter la présence dudit
signal dans le bruit. On parviendra ici à comprendre quel est le détecteur optimal, c’est-à-dire celui
qui aura le moins de chance de commettre une erreur pour supprimer le bruit et restaurer le signal
initial.

La sortie d’un détecteur par corrélation est modélisée par

Y = X + N.

Dans cette équation, le signal X est une variable aléatoire binaire pouvant prendre deux états (pré-
sence ou absence de signal). De son côté, N est un bruit aléatoire dû à la transmission. Le bruit N et
le signal X sont indépendants.

On donne Prob{X = 0} = 0.8 et Prob{X = 4} = 0.2. On connait également la densité de probabilité
g du bruit, représentée ci-dessous.

1) Exprimer et tracer la densité de probabilité f(x) de X.
2) Donner la forme analytique de la densité de probabilité conditionnelle pY |X(y|x = 4).
3) Donner la forme analytique de la densité de probabilité conditionnelle pY |X(y|x = 0).
4) Représenter les fonctions pX(x = 0)pY |X(y|x = 0) et pX(x = 4)pY |X(y|x = 4) sur un même graphe.
5) Proposer une règle simple pour une détection optimale.

Une détection optimale signifie que l’on minimise la probabilité d’erreur globale.
6) Calculer la probabilité d’erreur dans ce cas.
7) Que devient la règle du point 5) lorsque les états X = 0 et X = 4 sont équiprobables ?
8) Calculer la probabilité d’erreur dans ce cas.


