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Série 19

Exercice 19.1 : CARACTÉRISATION DE FILTRES (BASIQUE)

Voici encore un exercice récapitulatif qui doit vous permettre de bien vous entrainer pour l’examen
final. On fait ici appel à toutes les notions utiles pour la caractérisation de systèmes : pôles/zéros,
stabilité, support de la réponse impulsionnelle, réponse en amplitude et en phase, etc. En plus de cela
viennent s’ajouter les questions de phase linéaire que vous venez de voir en cours. Si cet exercice vous
pose problème, il est absolument capital de reprendre vos notes de cours et de vous assurez que vous
êtes au clair avec les définitions des différents concepts.

Soient les fonctions de transfert suivantes.

H1(z) = 1 + 6z−1 + 9z−2

H2(z) = 1 − 5z−1

5 − z−1

H3(z) = 1
1 + 0.3jz + 0.04z2

H4(z) = 1 − z−3

1 − z−1

1) Déterminer les pôles et les zéros de chacunes des fonctions H1 à H4, puis les tracer dans le plan
complexe.

2) Caractériser le support (RIF/RII) des filtres correspondants à chacunes des fonctions H1 à H4.
3) Préciser si les filtres correspondants à chacunes des fonctions H1 à H4 sont stables.

On supposera que ces filtres sont causaux si cela s’avère nécessaire.
4) Déterminer l’expression analytique de la réponse en amplitude de H1.
5) Donner l’expression de la réponse en amplitude de H2 après l’avoir simplifiée.
6) A quel type de filtre la fonction H2 correspond-elle ?
7) La fonction H3 correspond-elle à un filtre réel ?
8) Donner l’expression de la réponse en phase de H4, puis la tracer.
9) Les fonctions H1 et H4 correspondent-elles à des filtres à phase linéaire ?

Exercice 19.2 : RELATIONS ENTRE LES DIFFERENTES TRANSFORMATIONS DE
FOURIER (BASIQUE)

En ayant fait les deux dernières séries, vous devriez être tout à fait à l’aise avec les différentes transfor-
mées de Fourier et les liens entre signaux discrets et continus. Pour vous en assurer, ce petit exercice
propose de revoir sous un autre angle dess résultats que vous devriez déjà connaître.

Soit le signal à temps continu x(t) = e−tu(t).

1) Calculer la transformée de Fourier X(ω) de x(t).
2) On échantillonne x(t) avec un pas d’échantillonage de T . Donner l’expression du signal échan-

tillonné, noté x[n].
3) Calculer la DTFT Xd(ejω) de x[n].
4) Calculer la DFT sur N points X[k] du signal x[n] tronqué à n = 0, . . . , N − 1, où N > 0 est un

nombre entier arbitraire.
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5) Vérifier l’égalité suivante en utilisant les résultats de convergence des séries géométriques.

X[k]
Xd(ej 2πk

N )
= 1 − e−NT

6) Que peut-on dire de la relation entre DFT et DTFT quand N ≫ 1/T ?
7) Calculer la limite quand T → 0 de TXd(ejT ω) et mettre le résultat en relation avec la transformée

de Fourier de x(t).
On utilisera le développement limité de Xd(ejT ω) autour de 0.

Exercice 19.3 : ZERO-PADDING (INTERMÉDIAIRE)

Cet exercice permet de constater l’effet du zero-padding, c’est à dire l’extension d’un signal en ajoutant
des échantillons nuls. Comme on le verra, cette opération a priori insignifiante a des implications
intéressantes dans le domaine fréquentiel. Cet exemple est aussi une bonne occasion de se rappeler des
définitions des différentes transformées de Fourier discrètes (DTFT et DFT), de leurs différences et
des liens qui les unissent.

Soit les trois signaux discrets suivants.

f0[n] = e−n, n = 0, . . . , N − 1

f1[n] =
{

e−n n = 0, . . . , N − 1
0 n = N, . . . , 2N − 1

f [n] =
{

e−n n = 0, . . . , N − 1
0 pour tout autre n ∈ Z

Le signal f1 correspond donc à f0 étendu jusqu’à la longueur 2N en ajoutant N éléments nuls à sa fin.
On appelle cette opération zero-padding. Le dernier signal, f , correspond à la version non-périodique
de f0.

1) Calculer la DFT F0[m] de f0[n].
2) Calculer la DFT F1[m] de f1[n].
3) Exprimer la relation entre F1[2m] et F0[m], pour m = 0, . . . , N − 1.
4) Calculer la DTFT Fd{f}(w) de f [n].
5) Expliquer le lien entre les deux DFT F0[m] et F1[m] et la DTFT Fd{f}(w).
6) Déduire des questions ci-dessus quel effet dans le domaine fréquentiel correspond au zero-padding

dans le domaine temporel.

Exercice 19.4 : SOUS-ÉCHANTILLONNAGE DE SIGNAUX DISCRETS (INTERMÉ-
DIAIRE)

Tant pour les signaux continus que discrets, il existe un lien étroit entre échantillonnage et périodisation
entre les domaines temporels et fréquentiels. Ce problème vous permet de découvrir les effets du sous-
échantillonnage sur des signaux discrets au travers d’un exemple concret. Les différentes observations
que vous ferez dans cet exercice, en particulier les points (b) et (c) de la seconde partie, devraient vous
rappeler de bons souvenirs du premier semestre.

Soit un signal discret x[n] que l’on sous-échantillonne d’un facteur 2 pour obtenir y[n] = x[2n].

1) Cas général : on considère x[n] quelconque.
(a) Rappeler la relation entre les transformées en z de x[n] et y[n].
(b) Déduire du point précédent une relation similaire pour les DTFT de x[n] et y[n].
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2) Application : on prend pour x[n] la suite discrète représentant les échantillons de la fonction
f(t) = sinc2(t) à la période T = 1/2 .
(a) Calculer la DTFT de x[n].
(b) Représenter graphiquement X(ejω), X(ejω/2) et Y (ejω).

Pour remédier au phénomène observé ci-dessus, on convolue x[n] avec le filtre discret h[n] =
sinc(n/2)

4 (issu de l’échantillonage de la fonction h(t) = sinc(t)
4 à la période T = 1

2) avant
l’étape de sous-échantillonnage. Le résultat est le signal noté xmod[n] = (x ∗ h) [n].

(c) En appliquant judicieusement la formule de reconstruction de Shannon (vue au premier
semestre), montrer que xmod[n] = 1

T (f ∗ h)(nT ).
(d) Calculer et représenter graphiquement les DTFT de xmod[n] = (x ∗ h) [n] et ymod[n] =

xmod[2n].


