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Série 18

Exercice 18.1 : LIEN ENTRE LES TRANSFORMATIONS DE FOURIER (BASIQUE)

Vous avez désormais vu trois types de transformées de Fourier : la transformée de Fourier continue
(FT), la transformée de Fourier à temps discret (DTFT) et la transformée de Fourier discrète (DFT).
Cet exercice absolument capital vous permet de comprendre comment sont reliées ces trois transforma-
tions aux définitions différentes. Il permet donc également de connecter toute la théorie des signaux
continus vue au premier semestre avec celle des signaux discrets que vous êtes en train de découvrir.
Il est fortement recommandé de prendre le temps de bien comprendre ce problème, car le lien entre ces
différentes transformées est à la base de la compréhension de ce cours.

1) Cas général : Soient f(t) un signal continu, T une période d’échantillonnage et N un entier
strictement positif.
(a) On note g(t) le signal continu correspondant à l’échantillonnage de f(t) à la période T , et

a[n] la suite discrète correspondant aux échantillons de f(t).
i. Exprimer g(t) en utilisant a[n].
ii. Exprimer G(ω), la transformée de Fourier de g(t), en utilisant Fd{a}(ω), la DTFT de

a[n].
(b) On note h(t) le signal continu correspondant à la (NT )-périodisation de g(t), et b[n] la suite

discrète correspondant à la N -périodisation de a[n].
i. Exprimer h(t) en utilisant b[n].
ii. Exprimer H(ω), la transformée de Fourier de h(t), en utilisant B[n], la DFT de b[n].

2) Application : On définit le signal continu

f(t) =
{

e−t si t ≥ 0,

0 sinon

avec T = 1
5 et N = 20. On reprend en outre les définitions de g(t), h(t), a[n], b[n] et de leurs

transformations respectives données dans le cas général.
(a) Calculer a[n] et b[n].
(b) Représenter graphiquement f(t), g(t) et h(t).
(c) Calculer F (ω), Fd{a}(ω) et B[n].
(d) Représenter graphiquement F (ω), T Fd{a}(ωT ) et T

∑
k∈Z B[k]δ(ω − k 2π

NT ).

Exercice 18.2 : DFT D’UN SIGNAL RÉEL (BASIQUE)

La DFT comporte certaines propriétés intéressantes décrites à la slide 10 − 26 du cours. Cet exercice
propose de les mettre en pratique au travers d’exemples simples.

Soient des signaux discrets réels fi[n], N -périodiques, dont on ne connaît que certaines valeurs des
coefficients Fi[n] de leurs DFTs.

1) Pour f1[n], N = 3 et F1[0] = 1, F1[1] = 5 + j.
(a) Calculer F1[2].
(b) Calculer m1, la moyenne de f1[n].

2) Pour f2[n], N = 4 et F2[0] = 0, F2[1] = 1 − 2j.
(a) Calculer F2[3].
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(b) Que peut-on dire de F2[2] ?
3) Calculer explicitement f1[n] et f2[n].

Dans le cas de f2, on gardera F2[2] = p comme paramètre.

Exercice 18.3 : DFT INVERSE (INTERMÉDIAIRE)

Les propriétés de la DFT ayant été intégrées à l’exercice 18.2, voici venir le tour de la DFT inverse.
On propose dans cet exercice de démontrer la propriété importante de dualité et de l’appliquer à un
exemple de signal discret.

1) Soient deux suites f [n] et g[n] composées de N points ainsi que leurs DFT notées respectivement
F [n] et G[n]. Démontrer la propriété

N−1∑
n=0

F [n] · g[n] =
N−1∑
n=0

f [n] · G[n].

2) Calculer Gk[n], la DFT de la suite gk[n′] = e−j2πn′k/N où k est un entier quelconque fixé entre 1
et N .
Ceci devrait vous rappeler un calcul que vous avez fait récemment dans les séries de Signaux &
Systèmes.

3) Déduire de la question précédente que pour tout 1 ≤ k ≤ N

DFT{DFT{f}}[n] = N · f [−n].

Expliquer alors pourquoi cette relation est vraie pour tout entier k ∈ Z. Nous avons redémontré
la relation de dualité vue en cours.

4) Vérifier la relation de dualité sur la suite f [n] = [7, 3, −1, −2] et donc avec N = 4.

Exercice 18.4 : TRANSFORMATION EN COSINUS DISCRÈTE (AVANCÉ)

On propose dans cet exercice de s’éloigner un petit peu du contenu du cours et de découvrir des appli-
cations concrètes des Signaux & Systèmes via l’exemple de la transformée en cosinus discrète (DCT).
Cette transformation est très similaire à la DFT. Comme son nom l’indique, elle tente d’approximer
les signaux à l’aide de cosinus en lieu et place des exponentielles complexes dans le cas de Fourier.
Le résultat est donc que les coefficients de la DCT d’un signal sont forcéments réels, ce qui n’est pas
le cas pour la DFT. La DCT a de nombreuses applications pratiques sprécialement en compression.
Vous l’utilisez en fait probablement tous les jours, car elle est à la base des codages JPEG, MPEG et
MP3 pour les images, les vidéos et les sons respectivement.

Soient les suites

ek[n] =

√
2 − δ[k]

N
cos

(
kπ

N
(n + 1/2)

)
définies pour 0 ≤ k < N et n = 0, . . . , N − 1 , où N est un entier strictement positif.

1) Soit m un entier. En utilisant la formule d’Euler, calculer la valeur de

Cm =
N−1∑
n=0

cos
(

mπ

N
(n + 1/2)

)

où −N < m < 2N − 1.
Dans le calcul, on distinguera trois cas : m = 0, m = N , et les autres.

2) En utilisant le point précédent, déduire que les ek[n] forment une base orthonormale.
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3) Soit N = 4 et le signal x[n] = [1, 1, 0, 0].
(a) Rappeler pourquoi il est possible d’écrire

x[n] =
N−1∑
k=0

c[k]ek[n].

(b) Calculer explicitement les coefficients c[k].


