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A B S T R A C T   

Despite centuries of research and significant advances, the escapement mechanism used to count and maintain 
oscillations of mechanical time bases remains a complex mechanism and a major source of energy losses. We 
showed in previous work that, instead of the widely used rotational one degree-of-freedom (DOF) oscillators, 2- 
DOF flexure oscillators have the potential of revolutionizing mechanical watchmaking by eliminating the 
traditional escapement, replacing it by a simple crank driving a pin. Additionally, using flexures increases the 
quality factor of the time base, leading to further potential improvements in timekeeping accuracy and energy 
consumption. However, a significant challenge of these new time bases is their balancing such that the influence 
of external accelerations on their frequency is minimized, a necessary condition for accurate timekeeping in 
portable applications. This article presents a novel 2-DOF planar flexure oscillator called Wattwins and dem
onstrates how it can be made insensitive to linear accelerations such as gravity. For this purpose, a new approach 
to shaking force balancing is developed based on the decomposition of perturbations into effects corresponding 
to different orders of center of mass displacement. A full analytical model for frequency tuning and shaking force 
balancing of the 2-DOF oscillator is derived using a pseudo-rigid-body model and assuming that it can be 
decomposed into two independent 1-DOF oscillators. The results are validated by the finite element method and 
show that practical mechanical watch specifications can theoretically be reached. A physical prototype was also 
constructed and preliminary experimental results confirm the theory as well as the simulations.   

1. Introduction 

1.1. The IsoSpring concept 

High chronometric accuracy and long power reserve (i.e., high effi
ciency) have become the most important performance requirements of 
modern mechanical watches. The recent developments of silicon flexure 
oscillators have allowed to significantly increase the quality factor of the 
time base in comparison to traditional balance wheel and hairspring 
oscillator [1,2]. This paves the way to significant improvements in ac
curacy and efficiency since the quality factor quantifies the energy losses 
of the time base and is considered to be a direct indicator of timekeeping 
accuracy [3]. The next step in increasing mechanical watch efficiency is 
to address the efficiency of the escapement mechanism, which does not 
exceed 40% for the lever escapement used in most mechanical watches. 
This significant power loss results from shocks and friction between 
parts during the stop-and-go motion of this mechanism, see Fig. 1 [4]. 

The IsoSpring mechanical time base solves the efficiency issue of the 
escapement by completely eliminating it with the introduction of the 2- 

DOF oscillator [5,6]. This isotropic harmonic oscillator, where a point 
mass m at position r is subject to a central linear restoring force (Hooke’s 
law), was first described in 1687 by Isaac Newton in Principia Mathe
matica [7]. The resulting trajectories depicted in Fig. 2a are elliptical 
and isochronous, that is, the frequency of rotation is the same for all 
orbits. Since isochronism is the basis of precision timekeeping, oscilla
tors based on this concept are ideal candidates as time bases for me
chanical timekeepers. The most interesting property of this oscillator is 
that its motion is unidirectional, as opposed to the back and forth motion 
of existing mechanical time bases. As a result, the problem of in
efficiency of the escapement is solved by eliminating it completely since 
there is no more stop-and-go motion. In practice, Fig. 2b depicts how the 
escapement mechanism is replaced by a crank c driven by the energy 
storage mechanism, such as a watch mainspring, that maintains and 
counts time base oscillations by a pin p attached to the oscillator. 

1.2. The Wattwins oscillator 

In theory, the IsoSpring could be implemented such as described in 
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Fig. 2. In practice, however, the moving mass has a non-zero inertia 
which results in an isochronism defect [5]. This problem can be solved 
by having the mass translate on its elliptical orbit without rotating, 
hence eliminating the effect of its inertia. This can be implemented by 
constraining the motion of the mass to planar translations and coupling 
it in parallel to two orthogonal springs providing an isotropic linear 
central restoring force. As proof-of-concept, we embodied this idea in a 
flexure-based planar IsoSpring [6] and used it as time base for a me
chanical clock.1 

The planar clock oscillator successfully showed that the IsoSpring 
enables eliminating the escapement but this oscillator cannot be used for 
portable timekeepers, such as watches, which are the ultimate target of 
this invention. Indeed, this oscillator is very sensitive to linear acceler
ations (such as gravity) and can hence only operate in a horizontal plane. 
For this reason, a new 2-DOF planar mechanical oscillator called Watt
wins was developed whose architecture is based on two orthogonal Watt 
linkages, each realizing one DOF in translation (thick black lines on 
Fig. 3a). We showed that this oscillator could be implemented at watch 
scale with a silicon flexure prototype, see Fig. 4a, and that it could 
successfully be driven by a watch movement, see Fig. 4 and video [8]. 
The Wattwins architecture was chosen for its potential to be insensitive 
to linear and angular accelerations. We already showed in previous work 
[9] how to dynamically balance for small amplitudes an ideal Watt 
oscillator (Watt’s linkage with torsion springs at each joint) and how to 
tune its eigenfrequency. However, when a coupler is added between the 
two Watt oscillators (thin red lines on Fig. 3), balancing the system 
becomes a significantly more complex task. Moreover, matching the 
eigenfrequencies of the two DOFs, an essential condition for elliptical 
orbits and oscillator stability, also becomes a greater challenge. These 
two issues, which need to be solved before implementation in a watch, 
are the main topic of this article. 

Remark 1.1. A different implementation of the IsoSpring using 2-DOF 
in rotation instead of translations was also studied [10] and demon
strated on a mechanical clock.2 This oscillator architecture is however 
considered too sensitive to angular accelerations for portable 
applications. 

1.3. Oscillator balancing 

Definition: An oscillator is shaking force balanced if its linear mo
mentum is constant for all movements over its workspace [11,12]. 
Necessarily, the potential energy of the oscillator is then independent of 
all linear accelerations. The shaking force balanced oscillator is then 
insensitive to all linear accelerations and does not export any forces to its 
frame [13]. 

Definition: An oscillator is shaking moment balanced if its angular 
momentum is constant for all movements over its workspace [11,12]. 
The shaking moment balanced oscillator is then insensitive to all purely 
angular accelerations and does not export any torques to its frame [13]. 

Definition: An oscillator is dynamically balanced if it is shaking force 
balanced and shaking moment balanced [11,12]. The dynamically 
balanced oscillator is then insensitive to all linear and angular acceler
ations over its workspace. 

The perfect shaking force and shaking moment balancing of a 
mechanism, also called complete or full shaking force and shaking 
moment balancing, often considerably increases the complexity of its 
final design with an inevitable increase of its total mass [14]. Hence, 
partial shaking force and shaking moment balancing are wildly used, 
where exported forces and torques are minimized instead of perfectly 
cancelled. A common approach is to extract the harmonics of the 
displacement components of a mechanism’s center of mass (COM) and 
to cancel the dominant ones using well located counterweights or 
additional mechanisms. Similar approaches exist to minimize the 
shaking moment of a mechanism [13,14]. 

While shaking force and shaking moment balancing has been largely 
investigated in the field of rigid body linkages through the last century, 
little work has been done in the field of compliant mechanisms. Weeke 
et al. [15] designed and manufactured a fully compliant shaking force 
balanced mechanical oscillator using the well-known method of linearly 
independent vectors [16] to compute and fix the position of the struc
ture’s COM. Their final design is a 1-DOF double crank slider mechanism 
having opposite movements that are fully symmetrical, hence fixing the 
position of the COM. Symmetrizing structures makes it possible to bal
ance them fully at the cost of having a bulkier implementation. This 

method is hence not scalable when it comes to initially complex mech
anisms. Martinez et al. [17] addressed the shaking force balancing of a 
compliant leaf-spring table using counterweights mounted on flexures. 
Equalizing the eigenfrequency of the compliant leaf-spring table and the 
eigenfrequency of the counterweights was the key to reach shaking force 
balancing as the motion of the counterweights was not geometrically 

Fig. 1. Shocks during the operation of the Swiss lever escapement: (a) Unlocking, (b) start of impulse by the wheel, (c) start of the balance impulse, (d) end of drop, 
(e) run to the banking [4]. 

1 The working principle of the planar IsoSpring and the operation of the clock 
can be seen in this video: https://youtu.be/e77FbrBCXqI?t=47.  

2 The operation of the mechanical clock with spherical IsoSpring can be seen 
in this video: https://youtu.be/nkScUzJ0YVU. 
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imposed. However, the shaking force balancing of their structure is only 
valid when it vibrates at its first eigenfrequency. Indeed, if the latter is 
subjected to any external in-plane accelerations, the shaking force 
balancing conditions will no longer be respected. 

Since the existing shaking force balancing methods are not satisfac
tory for complex compliant mechanism, we developed a new approach. 
Note that this article focuses only on shaking force balancing, and not 
shaking moment balancing, for the following reasons: 

● Linear accelerations are the main source of perturbation on me
chanical watches (gravity is always present whereas angular accel
erations are transient).  

● The Wattwins architecture is intrinsically shaking moment balanced 
to a first approximation, see Section 2.1. 

● Current mechanical watches achieve sufficient timekeeping perfor
mance even though their time base is not shaking moment balanced. 

In theory, the shaking force balancing of a structure is achieved when 
its potential energy is independent of all linear accelerations. Observe 
that this definition for shaking force balancing is different from the static 
balancing notion. A mechanism is called statically balanced if its total 
potential energy is invariant over its workspace [18]. For example, 
springs can be used to compensate gravity effects without using coun
terweights and vice versa [19,20]. Compliant mechanisms can also be 
designed such that their total elastic potential energy stays constant over 
their range of motion, i.e., their spring stiffness is cancelled [21]. 
However, such systems are necessarily dependent on linear accelera
tions (and the orientation of gravity), hence not shaking force balanced. 

The present article focuses on making a 2-DOF compliant mechanism 
shaking force balanced. This will not result in a static balancing of the 
structure. Indeed, by making its gravitational potential energy constant, 
the variations in potential energy of the system only correspond to 
changes in elastic potential energy. This ensures that the mechanism 
functions as an oscillator with constant stiffness, regardless of linear 
accelerations or changes in the orientation of gravity. This is equivalent 
to cancelling the effect of gravity loads on the effective bending stiffness 
of the flexures, an effect known as stress stiffening. Indeed, a constant 
gravitational potential energy means that there is no work of gravity 
during the motion. The equivalence between the energetic and beam 
theory approaches is discussed by Kahrobaiyan et al. [22] and Thalmann 
[2, Chapter 6]. 

The shaking force balancing of a structure is equivalent to having the 
position of its COM stay constant over its entire workspace. However, 
this condition cannot always be perfectly fulfilled in practice so, instead, 
the level of precision required can be defined by the application. Let us 

take the example of a 1-DOF flexure mechanism. Since flexures have a 
limited range of motion, the displacement of its COM G along the x-axis 
multiplied by its total mass M can be expressed using series expansion 
with three coefficients A, B and C: 

MO
→

G⋅x→ = Aqi + Bq2
i + Cq3

i +ℴ
(
q4

i

)
(1)  

where qi (unit: m) is the motion parameter of the 1-DOF structure. Since 
gravity is the main perturbation this article focuses on, using Eq. (1), the 
gravitational potential energy of the structure, when g

→ 
is along the x-axis 

is: 

Vg = − MO
→

G⋅g→ = −
(
Aqi + Bq2

i + Cq3
i +ℴ

(
q4

i

) )
g (2) 

Using Eq. (2), the static effect of gravity on the structure is then given 
by 

F = −
∂Vg

∂qi
=
(
A + 2Bqi + 3 Cq2

i +ℴ
(
q3

i

) )
g (3) 

One can see in Eq. (3) that the different orders of displacement co
efficients affect the structure differently when subjected to linear ac
celerations: the first order coefficient A creates a disruptive force A ⋅ g 
(unit: N), the second order coefficient B creates a disruptive stiffness 2B ⋅ 
g (unit: N m− 1), the third order coefficient C creates a disruptive 
quadratic stiffness 3 C ⋅ g (unit: N m− 2) and so on. 

As a result, cancelling the first order displacement coefficient A in
hibits the action of external linear accelerations on the structure when it 
is at its rest position, i.e., it cannot be excited externally. This level of 
balancing is sufficient for most applications. In a watchmaking context, 
it is crucial to minimize the effect of linear accelerations on the effective 
stiffness of the oscillator since it directly impacts its frequency and hence 
its chronometric stability. The goal is hence the partial shaking force 
balancing of the structure up to the second order by cancelling the two 
first A and B coefficients. Note that since displacements and accelera
tions (gravity) are small, it is assumed that third order effects are 
negligible for the required precision level. 

This way of decomposing the effect of linear accelerations on 
compliant mechanisms is new and allows to radically change the way we 
measure their balancing. In the literature, the shaking force balancing of 
a system is typically evaluated by mounting it on force sensors and 
measuring the linear forces exported during its motion [15,23,24]. 
Alternatively, the system is mounted on a compliant stage or floating 
platform whose excitation by the exported forces is observed [17,25,26]. 
In Section 3, we explain how, by measuring the sag and the frequency 
variation of a compliant mechanism subjected to different linear accel
eration orientations, it is possible to assess its shaking force balancing up 

Fig. 2. Free and driven isotropic harmonic oscillator.  
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to the second order. 

Remark 1.2. Solutions to minimize the effect of gravity on the effec
tive stiffness (and thus frequency) of flexure oscillators have already 
been proposed for the tuning fork [27] and flexure pivot oscillators [2, 
22,28,29]. These solutions however concern 1-DOF oscillators and are 
not directly applicable here. 

1.4. Goal and structure of the article 

Our goal is to match and tune the eigenfrequencies of the Wattwins 
oscillator while shaking force balancing it up to the second order in 
order to minimize the impact of gravity on these frequencies. In Section 
2 we describe the pseudo-rigid-body model (PRBM) [30] of the Watt
wins architecture and a physical implementation that will be used to 
validate our results numerically and experimentally. We introduce a 
decomposition of the Wattwins oscillator into two independent oscilla
tors, the oscillators I and II translating respectively along the x and y 
axes, that will be used in our analytical model. Section 3 presents the 
analytical model used to compute the frequencies of oscillators I and II 
as well as the motion of their COM. Equations are derived for the 
matching of the two oscillator frequencies and the cancelling of their 

COM motion up to the second order using the tuning masses. Section 4 
validates the analytical model of Section 3 using the finite element 
method (FEM). We show that shaking force balancing and frequency 
tuning can be performed independently and that the results match the 
predictions of the analytical model. Finally, Section 5 presents pre
liminary experimental results that validate the analytical model for the 
first order shaking force balancing. 

2. Design and kinematics of the Wattwins oscillator 

2.1. Design and concept 

The PRBM of the Wattwins oscillator is presented in Fig. 3. Its ar
chitecture is based on two 1-DOF Watt oscillators arranged at 90◦ (thick 
black lines) connected in parallel by a coupler linkage (thin red lines). 
The first Watt oscillator, whose nearly straight line motion is along the x- 
axis, consists of two outer rigid bodies of equal length 1 and 2 each 
connected to the fixed frame at one end with respective pivots P1 and P2 
and to a middle bar 3 at the other end with respective pivots P3 and P11. 
Note that the oscillator’s inertia is largely concentrated on the outer 
rigid bodies 1 and 2, see Fig. 5. The second Watt oscillator, whose nearly 
straight line motion is along the y-axis, follows the same architecture as 

Fig. 3. Pseudo-Rigid-Body Model (PRBM) of the Wattwins oscillator with a) labels for the joints and rigid bodies and b) main geometrical parameters.  

Fig. 4. (a) Centimeter-scale silicon Wattwins oscillator (outer diam. 30 mm) and (b) driving of the Wattwins silicon oscillator with a mechanical watch movement. 
Video available [8]. 
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the first one, with outer rigid bodies 9 and 10, middle bar 8 and pivots 
P8, P9, P10, P14. The coupler consists of a rigid body 6 connected to the 
middle bar of the first Watt oscillator by two parallel rigid bodies 4 and 5 
and to the middle bar of the second Watt oscillator by rigid body 7. Each 
of these rigid bodies have a pivot at each end, respectively P4 and P12, P5 
and P13, P6 and P7. The coupler allows to connect the two Watt oscil
lators without overconstraint in the plane of the structure,3 resulting in a 
2-DOF planar motion of rigid body 6. This body holds the driving pin p 
that performs an elliptical motion and is used to drive the mechanism, 
see Fig. 2b. 

In order for this system to act as a mechanical oscillator, spring 
components must be added. This happens naturally in the flexure 
implementation of the pivot joints and is represented by the torsion 
springs coupled to each pivot of the PRBM in Fig. 3 [30,32]. The other 
essential component of a mechanical oscillator, the inertia, is concen
trated on the outer rigid bodies of the two Watt oscillators in order to 
reach dynamic balancing, see Figs. 4a and 5b. Indeed, one of the main 
advantages of the Watt oscillator is that the two outer rigid bodies (1-2 
and 9-10) rotate in opposite directions. Hence, dividing the inertia of the 
oscillator equally between these two elements makes it possible to 
cancel the in-plane angular momenta, i.e., to reach shaking moment 
balancing in the oscillator plane. Note that this is a first order approxi
mation valid only in the plane of the oscillator since the middle bars and 
the coupler have an in-plane non-negligible rotational inertia. This 
approximation is however considered sufficient for our application since 
it is superior by at least an order of magnitude to existing mechanical 
watch oscillators that only consist of one rotational inertia and are hence 
not shaking moment balanced in their plane of oscillation. 

2.2. Flexure implementation 

Fig. 5 depicts the flexure implementation of the PRBM in Fig. 3. The 
ideal pivots P1, P2, P9, P10 are embodied by remote center of compliance 
(RCC) flexure pivots 101, 102, 109, 110, respectively. The RCC flexure 
pivot is a particular case of the crossed flexure pivot [33] whose flexures 
cross outside of their physical structure, thus presenting an advanta
geous planar structure. The intersection of the flexures defines (to a first 
approximation) the axis of rotation of the pivot [32,34]. The two RCC 
pivots of each Watt oscillator are placed symmetrically so as to 
compensate the effect of their parasitic center shift [22]. The ideal pivots 

P3 to P8 and P11 to P14 are implemented using small-length flexural pivots 
(SLFP) 103 to 108 and 111 to 114, respectively [30]. Note that in order 
to respect the isotropy condition of the IsoSpring, the flexure pivots are 
designed such that the stiffness of the Wattwins oscillator is the same 
along its x and y axes. 

This design was implemented in a physical prototype used for 
experimental validation (Fig. 5b). Its size was chosen to facilitate 
manipulation (75 mm outer diameter instead of 30 mm in Fig. 4). The 
flexible part was manufactured by wire electrical discharge machining 
(EDM) a 1 mm thick Ti–6Al–4V sheet. The inertial bodies were 
conventionally machined in CuZn39Pb3 brass. 

2.3. System for balancing and frequency tuning 

Tuning the eigenfrequencies of the Wattwins oscillator while shaking 
force balancing it is equivalent to being able to independently adjust the 
inertia corresponding to its two DOFs and the motion of its COM. We will 
show in Section 3.3.1 that this can be achieved by tuning the moment of 
inertia and COM position of each outer rigid body (1, 2, 9 and 10). For 
this purpose, we devised a system consisting of three rotating eccentric 
masses per outer rigid body depicted in Fig. 6. For example, by rotating 
eccentric masses 91 to 93, one can modify the COM of the outer rigid 
body 9 as well as its moment of inertia. 

Remark 2.1. One can see on Figs. 5b and 6 that the balance wheels 
that support the eccentric masses are slightly offset from their coun
terparts assembled on the other side of the flexure plate. Those hidden 
balance wheels are centered on the pivots of the outer rigid bodies (1, 2, 
9 and 10) in order to add pure inertia to the system without changing the 
COM conditions of the oscillator. They also compensate the out-of-plane 
torques generated by the balancing and frequency tuning system. The 
balance wheels holding the eccentric masses are offset in order to set to 
the nominal position the COM of their outer rigid body. 

Remark 2.2. Ideally, our prototype (Fig. 5) should be symmetrical 
with respect to its plane of oscillation to prevent exporting (or being 
excited by) out-of-plane moments. This symmetry is slightly deterio
rated here when the eccentric masses are rotated and their supporting 
balance wheels are offset. The resulting out-of-plane effects are however 
considered small and are neglected in the analytical model (Section 3). 
This asymmetry was chosen in order to facilitate experimental manip
ulation but could be eliminated in the final embodiment. 

2.4. Decomposition into two independent 1-DOF oscillators 

Our approach to model the Wattwins oscillator is to decompose it 

Fig. 5. (a) Wattwins flexure plate and (b) assembled physical titanium oscillator prototype (outer diam. 75 mm).  

3 A mechanism is overconstrained when its mobility obtained through Grü
bler’s formula [31] is less than its actual DOF. This can lead to important and 
unpredictable variations of the stiffness of flexure mechanisms and stresses in 
their flexures [32]. 
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Fig. 6. System for balancing and frequency tuning.  

Fig. 7. Wattwins (a) First mode shape (y-axis) and (b) Second mode shape (along the x-axis) for Setting 1.  

Fig. 8. PRBM of the 1-DOF oscillators I and II in their deformed and rest positions.  
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into two independent 1-DOF oscillators corresponding to its two first 
mode shapes. Fig. 7 shows these two mode shapes obtained with the 
finite element model of the oscillator described in Section 4. One can see 
that this corresponds, to a first approximation, to blocking the motion of 
one of the Watt oscillators while letting the other one oscillate freely. 
The kinematics of these two 1-DOF oscillators, named Oscillator I and 
Oscillator II, are depicted in Fig. 8. It is assumed that shaking force 
balancing each of these independent oscillators and the matching of 
their eigenfrequencies result in a shaking force balanced Wattwins 
oscillator with a constant elliptical orbit period. 

3. Analytical model 

In this section we compute expressions for the eigenfrequencies as 
well as the COM displacement of oscillators I and II in terms of our 
tuning parameters which are the inertia and COM position of the four 
outer rigid bodies (1, 2, 9 and 10). We then derive the conditions to 
cancel, up to the second order, the displacement of the COM of each 
oscillator, hence reaching partial shaking force balancing. We proceed 
with the following steps:  

1. Parameterize the mass properties and kinematics of oscillators I and 
II. 

2. Calculate the kinematic relations between the different angular pa
rameters of oscillators I and II.  

3. Calculate the frequencies of oscillators I and II.  
4. Calculate the COM displacement of oscillators I and II.  
5. Solve the equations of steps 3 and 4 in terms of tuning parameters in 

order to tune and match the eigenfrequencies of oscillators I and II 
while shaking force balancing the system. 

The analytical model is valid under the following assumptions: 

● The transverse stiffnesses of the compliant mechanism are consid
ered infinite compared to its in-plane stiffnesses.  

● The rotations are small (±11.5◦ for the solids 1, 2, 4, 5, 7, 9, 10 and 
less than 1.8◦ for the others) and non-linear terms are expressed 
using series expansions about the rest position.  

● The out-of-plane moments generated by the asymmetry of the 
oscillator with respect to its oscillation plane are negligible. Hence, 
the flexures are not subjected to shear or torsion and Euler-Bernoulli 
theory can be used to calculate their stiffness.  

● The centers of rotation of the SLFPs are fixed in the middle of the 
blades.  

● The solids connected by flexures are considered infinitely rigid. 

3.1. Parameterization 

To parameterize the mass properties and kinematics of oscillators I 
and II, we assign to each rigid body j = 1 to 10 a mass mj, a rotation angle 
θj with respect to its rest position and a local coordinate system located 
at one of their pivots Pj, see Fig. 8. The local coordinate system of each 
rigid body is then used to define its COM position with cylindrical co
ordinates ej (unit: m) and ϕj (unit: rad), its inertia Jj and its translation 
velocity Vj (at point Pj). Additionally, the rotational stiffness of each 
flexure pivot Pj is represented by an ideal torsion spring of stiffness kj 
with j = 1 to 14. 

3.2. Kinematics of oscillators I and II 

3.2.1. Oscillator I 
The seven angular parameters θ1 to θ7 of oscillator I can be identified 

by projecting along the x and y axes the following loop closure equa
tions, see Fig. 8a 

P1P3
→

+ P3P11
→

+ P11P2
→

+ P2P1
→

= 0
→

→ P5P13 + → P13P12 + → P12P4 + → P4P5 = 0
→ → P1P3 + → P3P5 + → P5P13

+ → P13P6 + → P6P7 + → P7P1

= 0
→

(4) 

Following the small amplitudes assumption, we use the Taylor series 
expansions of trigonometric functions about θj = 1, …,7 = 0 to solve the 
equation system Eq. (4). We then express the angular parameters θj = 2, 

…,7 in terms of θ1: 

θ2 = − θ1 +ℴ
(
θ3

1

)

θ3 = −
H
L1

θ2
1 +ℴ

(
θ3

1

)

θ4 =
( − a2 + (L3 − 2c)a + L1H + 2L3c

)
H

2L1(L3 − a)2 θ2
1 +ℴ

(
θ3

1

)

θ5 = θ4

θ6 = θ3

θ7 = −
H

L3 − a
θ1 +

1
2
(a + 2c)H
L1(L3 − a)

θ2
1 +ℴ

(
θ3

1

)

(5)  

3.2.2. Oscillator II 
The seven angular parameters θ4 to θ10 of oscillator II can be iden

tified by projecting along the x and y axes the following loop closure 
equations, see Fig. 8b 

→ P9P8 + → P8P14 + → P14P10 + → P10P9

= 0
→

→ P5P13 + → P13P12 + → P12P4 + → P4P5

= 0
→

→ P9P8 + → P8P7 + → P7P6 + → P6P13 + → P13P5 + → P5P9 = 0
→

(6) 

As in Section 3.2.1, we use the Taylor series expansions of trigono
metric functions about θj = 4, …,10 = 0 to solve the equation system Eq. 
(6). We then express the angular parameters θj = 4, …8,10 in terms of θ9: 

θ4 = −
H

L3 − a
θ9 +ℴ

(
θ3

9

)

θ5 = θ4

θ6 = 0

θ7 = −
H2

2(L3 − a)2θ2
9 +ℴ

(
θ3

9

)

θ8 =
H
L1

θ2
9 +ℴ

(
θ3

9

)

θ10 = − θ9 +ℴ
(
θ3

9

)

(7)  

3.3. Frequency tuning of oscillators I and II 

Oscillators I and II are based on nearly straight line compliant 
mechanisms. Hence, we consider them as linear oscillators with an 
equivalent translation stiffness (unit: N m− 1) and an equivalent trans
lation mass (unit: kg) along their observed axis of motion, that is, the x 
and y axes respectively. In this section, we compute the analytical 
eigenfrequencies of the oscillators regardless of external perturbations, 
hence gravity is not considered. The effect of linear accelerations in the 
plane of oscillation will be dealt with in Section 3.4. In order to calculate 
the nominal frequencies of the oscillators we derive their motion law 
using a Lagrangian approach with the following steps:  

1. Compute the kinetic energy of oscillators I and II.  
2. Compute the potential energy of oscillators I and II. 
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3. Write the Lagrangian and compute the Euler-Lagrange equation for 
oscillators I and II in order to extract their motion laws and hence 
their analytical eigenfrequency. 

3.3.1. Kinetic energy of oscillators I and II 
The kinetic energies 𝒯 of oscillators I and II are 

𝒯 I =
1
2
∑7

j=1

(
Jjθ̇

2
j + mjV2

j

)
(8)  

𝒯 II =
1
2
∑10

j=4

(
Jjθ̇

2
j + mjV2

j

)
(9)  

where j = 1…10, Jj, θj, mj, Vj are parameters introduced in Section 3.1. 
Substituting Eqs. (5) and (7) into Eqs. (8) and (9) and neglecting the 

higher order terms yields 

𝒯 I =
1
2

(

J1 + J2 +
H2

(L3 − a)2J7

)

θ̇
2
1 +

1
2
(m3 + m4 + m5 + m6)H2θ̇

2
1 (10)  

𝒯 II =
1
2

(

J9 + J10 +
H2

(L3 − a)2 (J4 + J5)

)

θ̇
2
9 +

1
2
(m6 + m7 + m8)H2θ̇

2
9 (11) 

The inertia of the outer rigid bodies Jj = 1,2,9,10 used to compute Eqs. 
(10) and (11) can be expressed in terms of the rotation angle ϕj,k of the 
eccentric masses jk used to tune the oscillator: 

Jj = Jj,cst +
∑3

k=1

[(
Xj,k + ej,kcos ϕj,k

)2
+
(
Yj,k + ej,ksin ϕj,k

)2
]
mj,k (12) 

In this equation Jj,cst comprises the constant components of the 
inertia of the outer rigid body j (flexure plate inertia, balance wheel 
inertia and inertia of the eccentric masses with respect to their own 
COM). The tunable component of the inertia is function of the mass mj,k 
of the eccentric masses, the coordinates Xj,k, Yj,k of their center of 
rotation (COR) with respect to their respective pivot Pj and the distance 
ej,k from their COR to their COM (Fig. 6). 

3.3.2. Potential energy of oscillators I and II 
Since we do not consider external effects, the total potential energy 

Vi of oscillators i = I or II is reduced to their elastic potential energy Ve,i 
given by 

Ve,I =
1
2
(
k1θ2

1 + k2θ2
2 + k7θ2

7 + k3(θ1 − θ3)
2
+ k11(θ2 − θ3)

2
+ k4(θ3 − θ4)

2

+ k5(θ3 − θ5)
2
+ k12(θ3 − θ4)

2
+ k13(θ3 − θ5)

2
+ k6(θ7 − θ6)

2 )

(13)  

Ve,II =
1
2
(
(k4 + k12)θ2

4 +(k5 + k13)θ2
5 + k6θ2

7 +k9θ2
9 + k10θ2

10 + k14(θ10 − θ8)
2

+ k7(θ7 − θ8)
2
+ k8(θ9 − θ8)

2 )

(14) 

Substituting Eqs. (5) and (7) into Eqs. (13) and (14) and neglecting 
the higher order terms yields 

Ve,I =
1
2

(

k1 + k2 + k3 + k11 +
H2

(L3 − a)2 (k6 + k7)

)

θ2
1 (15)  

Ve,II =
1
2

(

k8 + k9 + k10 + k14 +
H2

(L3 − a)2 (k4 + k5 + k12 + k13)

)

θ2
9 (16) 

The nominal angular stiffnesses kj = 1…14 of the RCC flexure pivots 
and SLFPs can be expressed using the formulas from Cosandier et al. 
[32]. The angular stiffness of the RCC flexure pivots is 

kj =
8EIj

(
L2

2 + 3pL2 + 3p2
)

L3
2

​ with ​ j = 1, 2, 9 ​ and ​ 10 (17)  

where E is Young’s modulus for the flexures, Ij is their area moment of 
inertia, L2 is their length and p is the distance between the mobile end of 
the leaf springs and their intersection axis, see Fig. 5a. 

The SLFPs j = 3, 8, 11 and 14 are mainly subjected to bending stress 
so their angular stiffness can be expressed as 

kj =
EIj

l
​ with ​ j = 3, 8, 11 ​ and ​ 14 (18)  

where l is the length of flexures 103, 108, 111 and 114, see Fig. 5a. 
The SLFPs j = 4, 5, 6, 7, 12 and 13 are subjected to shear and bending 

stress so their equivalent angular stiffness can be expressed as 

kj =
6EIj

(
1 − ξ

2

)2

ξ(3 − 3ξ + ξ2)L3
​ with ​ j = 4, 5, 6, 7, 12 ​ and ​ 13 (19)  

where a is the length of the flexures 104-107, 112 and 113, L3 is the 
length of the coupling solids including the SLFPs’ lengths, ξ = 2a

L3 
is the 

ratio between the length of the flexure blades and the length of the 
coupling solids, see Fig. 5a. 

3.3.3. Motion laws and frequencies of oscillators I and II 
For each oscillator I and II, the Lagrangian is given by 

ℒi = 𝒯 i − Vi  

and the Euler-Lagrange equation in θj (with j = 1 for i = I and j = 9 for i 
= II) satisfies 

d
dt

(
∂ℒi

∂θ̇j

)

=
∂ℒi

∂θj
(20) 

Using the results from Eqs. (10), (11), (15) and (16) and considering 
that for small amplitudes qi = − Hθj, Eq. (20) becomes the equation of 
motion of a simple translation harmonic oscillator 

miq̈i + kiqi = 0 (21)  

with 

mI =
J1 + J2

H2 +
J7

(L3 − a)2 + m3 + m4 + m5 + m6

mII =
J9 + J10

H2 +
J4 + J5

(L3 − a)2 + m6 + m7 + m8

(22)  

kI =
k1 + k2 + k3 + k11

H2 +
k6 + k7

(L3 − a)2

kII =
k8 + k9 + k10 + k14

H2 +
k4 + k5 + k12 + k13

(L3 − a)2

(23) 

The eigenfrequency of each 1-DOF oscillator is then found by solving 
the differential equation (21), yielding 

fi =
1

2π

̅̅̅̅̅
ki

mi

√

(24) 

The frequency of oscillators I and II can now be tuned by modifying 
the inertia of the outer rigid bodies Jj = 1,2,9,10. This tuning is imple
mented using the system of eccentric masses depicted in Fig. 6 using Eq. 
(12) in Section 3.3.1. 

3.4. Sensitivity to linear accelerations 

In Section 1.4, we announced that in order to study the sensitivity to 
linear accelerations of our oscillator, the specific case of gravity 
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sensitivity will be addressed. Indeed, the results from this study can be 
applied to any linear accelerations. 

In order to be gravity insensitive, hence to be insensitive to linear 
accelerations, the total potential energy of the oscillators over their 
entire workspace must be independent of gravity orientation. Consid
ering the effect of gravity only in the plane of oscillation, the potential 
energy of each 1-DOF oscillator i = I or II is 

Vi = Ve,i + Vg,i (25)  

where Ve,i is the elastic potential energy given in Eqs. (15) and (16) and 

Vg,i = − MiO
→

Gi⋅g
→ (26)  

is the gravitational potential energy. In this last equation, Mi, Gi are the 
mass and COM position of the oscillator and 

g→ = gcos ϕg x→ + gsin ϕg y→ (27)  

is the gravitational acceleration vector with angle ϕg with respect to the 
x-axis. 

In order to satisfy the condition for gravity insensitivity, only the 
gravitational potential energy of our oscillators must remain constant 
since their elastic potential is independent from external accelerations. 
Since we consider all gravity orientations in the plane of oscillation, this 
means that the COM of oscillators I and II must remain at the same 
position during oscillation and the condition becomes 

dO
→

Gi

dt
= 0

→
(28) 

The COM velocity of each 1-DOF oscillator can be expressed for small 
displacements in terms of x and y components using the kinematic pa
rameters of Eqs. (5) and (7): 

dO
→

Gi

dt
⋅x→ =

Ai,x + Bi,xθj +ℴ
(

θ2
j

)

Mi
θ̇j

dO
→

Gi

dt
⋅y→ =

Ai,y + Bi,yθj +ℴ
(

θ2
j

)

Mi
θ̇j

(29)  

with 

Ai,x = − ejmjsin ϕj + ej+1mj+1sin ϕj+1 + ai,x
Ai,y = ejmjcos ϕj − ej+1mj+1cos ϕj+1 + ai,y
Bi,x = − ejmjcos ϕj − ej+1mj+1cos ϕj+1 + bi,x
Bi,y = − ejmjsin ϕj − ej+1mj+1sin ϕj+1 + bi,y

(30) 

For each 1-DOF oscillator i = I or II with j = 1 or 9 respectively, ej and 
ϕj are the COM coordinates of the outer rigid bodies that can be tuned 
using the eccentric masses of Section 2.3 and ai,x, ai,y, bi,x, bi,y are fixed 
parameters that depend on the geometrical and mass properties of the 
oscillator given in Appendix A. 

In order to satisfy Eq. (28) for the first two orders, one must have 

Ai,x = Ai,y = Bi,x = Bi,y = 0 (31) 

This condition can be satisfied by solving the equation system Eq. 
(30) as function of the tuning parameters, which are the mass properties 
of the rigid bodies 1, 2, 9 and 10, yielding: 

ej =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ai,x + bi,y

)2
+
(
ai,y − bi,x

)2
√

2mj

ej+1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ai,x − bi,y

)2
+
(
ai,y + bi,x

)2
√

2mj+1

ϕj = arctan2
(
ai,x + bi,y, bi,x − ai,y

)

ϕj+1 = arctan2
(
bi,y − ai,x, ai,y + bi,x

)

(32) 

The effect of the COM displacement of a structure on its shaking force 
balancing can be calculated based on the analytical model. In practice, 

however, it is more convenient to evaluate the displacement of the COM 
of a mechanism by measuring indirect effects corresponding to different 
orders of displacement, see Section 1.3. This is also the approach that is 
used to validate our models in Section 4. These effects can be seen from 
the static equilibrium equations of the oscillators obtained by deriving 
their total potential energy given in Eq. (25): 

Fi = Kiqi (33)  

where 

Fi =
g
H
(
Ai,xcos ϕg + Ai,ysin ϕg

)
(34)  

is the resulting force gravity exerts either along the x-axis of rigid body 3 
of oscillator I or along the y-axis of rigid body 8 of oscillator II, and 

Ki = ki −
g

H2

(
Bi,xcos ϕg + Bi,ysin ϕg

)
(35)  

is the overall equivalent translation stiffness of oscillators I or II with ki 
the nominal translation stiffness in the absence of gravity, see Eq. (23). 

One can see that the first order effect of the COM displacement re
sults in an external force Fi exerted by gravity that will cause a sag of the 
oscillator 

qi,sag =
Fi

Ki
≈

Fi

ki
(36)  

since the first order effects dominate. One can thus assess if a compliant 
mechanism is balanced at first order by measuring the sag of its axes. 

Once the sag is cancelled, the second order effect of the COM 
displacement can be evaluated from the changes in stiffness Ki of the 
oscillator caused by gravity. One can thus assess if a compliant mecha
nism is balanced up to second order by measuring its stiffness variation 
for different orientations of gravity. In practice, this is typically done by 
measuring the variations of its eigenfrequencies. 

3.5. Frequency tuning and shaking force balancing 

For each independent oscillator I and II, we derived above expres
sions to compute the analytical eigenfrequency (one equation per 
oscillator, see Eq. (24)) and to cancel the COM velocity (four equations 
per oscillator, see Eq. (32)). We expressed them as functions of our 12 
tuning parameters which are the inertias and the x and y coordinates of 
the COM of the four outer rigid bodies (1, 2, 9, and 10) that can be 
controlled by rotating the eccentric masses of the balancing and fre
quency tuning system (see Section 2.3). In total, we have 10 equations 
for 12 tuning parameters. The redundant parameters are tunable inertias 
of the two oscillators, which means that, for each of them, the same 
frequency can be reached with different combinations of inertias. Note 
that these two extra tuning DOFs were introduced in order to solve the 
two additional equations necessary to reach shaking moment balancing 
for oscillators I and II, which is out of the scope of this article. 

4. Numerical validation 

In this section, we validate the analytical model described in Section 
3 on the Wattwins oscillator prototype depicted in Fig. 5b by the finite 
element method (FEM) using the commercial software COMSOL Multi
physics© [35]. The rigid bodies of the oscillator are defined as Rigid 
Domains. The oscillator is meshed with 20-node hexahedral elements 
that are refined on the flexure with 3 elements across their thickness and 
5 elements along their height, see Fig. 9. To reduce computation time, 
we set 1 element along the height of the Rigid Domains when possible. All 
the structural analyses were done using the geometric non-linearity 
setting as we are interested in the second order behavior of the 
oscillator. 

All the numerical parameters of the Wattwins oscillator prototype 
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are grouped in Table B.4, B.5 and B.6 in Appendix B. All the imple
mented angular settings for the eccentric masses are grouped in 
Table C.7 and C.8 in Appendix C. 

First, we show that our analytical model for frequency tuning based 
on the independent oscillators I and II is consistent with the simulations 
on the 2-DOF Wattwins oscillator. Then, we show that the predicted sags 
(first order effects of COM displacement) of oscillators I and II when 
subject to gravity match the simulation results on the 2-DOF oscillator. 
Finally, once the sag is cancelled, we demonstrate that our analytical 
model can predict the overall stiffness variation (second order effect of 
COM displacement) of the Wattwins oscillator and that we can adjust it 
without affecting the frequencies. 

4.1. Frequency tuning 

The analytical model used to compute the eigenfrequencies of the 2- 
DOF oscillator is based both on the equivalent translation stiffness and 
equivalent translation mass calculation of the two 1-DOF oscillators I 
and II. In a first step, we use static simulations to validate the analytical 
equivalent translation stiffnesses of the 1-DOF oscillators. Once the 
analytical stiffness calculations are validated, we use the COMSOL 
Eigenfrequency study to validate the analytical eigenfrequencies of the 
1-DOF oscillators, thus indirectly validating the calculation of their 
equivalent translation masses. 

4.1.1. Stiffness validation 
The stiffness of the 2-DOF oscillator for small deformations along the 

x and y axes is computed in COMSOL by adding a load on the driving pin 
attached to the rigid body 6 and evaluating its displacements along these 
axes. Given the numerical parameters in Tables B.4 to B.6 and the 
flexures analytical stiffness from Eqs. (17), (18) and (19) one can 
compute the analytical stiffnesses of the 2-DOF oscillator using Eq. (23). 
Table 1 shows the results for the analytical and numerical stiffnesses of 
the oscillator I (i.e., Wattwins x-axis stiffness) and the oscillator II (i.e., 
Wattwins y-axis stiffness). One can see a good match between the 
analytical and numerical results, which validates this component of our 
model. The numerical stiffnesses are approximately 2% higher, which 
can be explained by the pure bending assumption of our model for 
blades 103, 108, 111 and 114 that are, in practice, slightly subject to 
shear stress, which increases their effective stiffness. 

Remark 4.1. Since all the subsequent results of the numerical vali
dation depend on the stiffness values, we use the numerical values from 
Table 1 for both the analytical and FEM results so as to validate the other 
components of the model independently, without propagating the error 
from the stiffness component of the model. 

4.1.2. Frequency tuning validation 
To numerically validate the analytical eigenfrequency model, we 

extract the two first eigenfrequencies of the Wattwins prototype using 
the COMSOL Eigenfrequency analysis. The analytical and numerical 
results are compared at two extreme settings, which allow to validate 
the range of our tuning system and the validity of our analytical model 
over this range. In Setting 1, the equivalent mass of the oscillator I is at 
the low end of the tuning range (i.e., the tuning masses are as close 
together as possible) while the equivalent mass of the oscillator II is at 
the high end, see Fig. 7. Setting 2 is at the opposite end of the tuning 
range, where the frequencies of oscillators I and II are respectively the 
smallest and the greatest. 

The results are shown in Table 2. In order to independently validate 
the equivalent mass component of the analytical model, the numerical 
stiffness of Section 4.1.1 was used to calculate the analytical frequencies. 
The differences between analytical and numerical results are below 1% 
on both axes for both settings. We thus consider this validates both our 
analytical frequency model and our approach of decomposing the 
Wattwins mechanism into two independent 1-DOF oscillators. 

4.2. Shaking force balancing 

4.2.1. Sag 
We validated the first order shaking force balancing of the Wattwins 

oscillator in COMSOL by subjecting it to different gravity orientations ϕg 
= 0◦ to 360◦, see Eq. (27), and evaluating the sag of the pin attached to 
the rigid body 6 along the x and y axes, see Eq. (36). The analytical and 

Fig. 9. Wattwins (a) mesh overview and (b) close-up views of the mesh.  

Table 1 
Stiffness comparison between analytical model and FEM.   

Analytical Numerical Difference (%) 

x-axis 27.067 N m− 1 27.715 N m− 1 2.4 
y-axis 27.234 N m− 1 27.756 N m− 1 1.9  
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numerical results were compared for two settings: Setting 3 that is not 
balanced and has large sags along the x and y axes and Setting 4 that has 
been shaking force balanced using our analytical model and hence 
shouldn’t display any sag. Fig. 10 shows a good match between the two 
models for both settings with a difference within 3% for large sags and a 
residual error below 1 μm for the balanced setting, which is negligible at 
the scale of our mechanism. 

4.2.2. Stiffness variation 
As explained in Section 3.4, once first order balancing has been 

reached (i.e., the sag of the oscillator has been cancelled), the second 
order of shaking force balancing has been derived from the stiffness 
variation of the oscillator when subjected to different orientations of 
gravity. This was computed in COMSOL by first applying gravity and, 
once the oscillator has stabilized, imposing a force on the driving pin 
attached to the rigid body 6 along the studied axis (x or y) and evalu
ating its displacement along this axis. The stiffness then follows from the 
force-displacement ratio. 

As the Wattwins mechanism is dedicated to horological time bases, it 
is important to show that its shaking force balancing can be achieved 
without altering its nominal frequency, which is the frequency that will 
correspond to civil time. This is shown on Fig. 11 where four different 
settings were implemented without altering the two eigenfrequencies of 
the oscillator, matched at f0 = 16.75 Hz. Note that, in order to relate to 
chronometric performance, the stiffness variations are expressed as daily 
rate ρ, which represents the seconds per day gained or lost with respect 
to the reference frequency f0. Assuming the equivalent masses of the 
oscillator axes to be constant, stiffness is directly linked to its frequency 
and the definition of daily rate at a frequency f [4] 

ρ = 86400
f − f0

f0
(37)  

can be rewritten in terms of stiffness 

ρ = 86400
̅̅̅
k

√
−

̅̅̅̅̅
k0

√

̅̅̅̅̅
k0

√ (38)  

where k and k0 are respectively the measured and nominal stiffnesses of 
the oscillator axes. 

Figs. 11a and d compare analytical and FEM results in the case where 
the analytical model predicts either no second order effects (i.e., partial 
shaking force balancing) or large second order effects, respectively. The 
fact that the performance of Setting 4 (which is theoretically perfect) is 
only a factor of approximately two better than Setting 7 (which theo
retically presents defects of ±200 s/day approximately) shows the limit 
of an open-loop use of the analytical model: the trend of the second order 
defect can be predicted with an accuracy not better than 100 s/day. We 
show, however, that our analytical model allows to control indepen
dently the sign and magnitude of the stiffness variation for each axis:  

● Comparing settings 4 and 5 (Fig. 11a and b) shows that we can 
modify the magnitude of the daily rate variation (i.e., stiffness 
variation) of the x-axis without affecting the y-axis,  

● Comparing settings 5 and 6 (Fig. 11b and c) shows that we can invert 
the daily rate variation (i.e., stiffness variation) of the x-axis without 
affecting the y-axis,  

● Comparing settings 5 and 7 (Fig. 11b and d) shows that we can 
modify the sign and magnitude of the daily rate variation of the y- 
axis without affecting that of the x-axis. 

In summary, even though our analytical is not accurate enough to 
directly reach shaking force balancing, it can be used iteratively to tune 
independently the balancing of each oscillation axis and hence find a 
setting that cancels the effect of gravity without affecting the nominal 
frequencies set in Section 4.1. This is the main result of this work. The 
next section explains how to calculate these settings. 

4.2.3. Fine tuning 
One can see from the results of Figs. 10b and 11a that the residual 

defects for first and second order effects of gravity have a cosine shape. 
This means that our analytical model is still valid at this order of 
magnitude but that the geometric and mass parameters of our system are 
not estimated accurately enough, see Table B.4. This can be explained by 
the simplifications of our PRBM, which assumes that the rigid and 
flexible parts can be clearly separated and that the flexure joints behave 
as ideal rotational joints with a torsional stiffness, whereas this is not 
exactly the case in practice. 

In order to improve these results, one can still use the developed 
analytical model to find a new setting based on the residual defect ob
tained by FEM. The method is to compensate the residual first and 
second order FEM defects by generating a setting for which the analyt
ical model produces the opposite defects. We proceed with the following 
steps:  

1. Using the residual defect curves for sag Sag(ϕg) and daily rate ρ(ϕg) in 
Figs. 10b and 11a, compute the coefficients Ai,x,cor, Ai,y,cor, Bi,x,cor, Bi,y, 

cor of the opposite curves. These coefficients can be obtained from the 
results for specific values of ϕg: 

− Sag(ϕg = 0∘) = Sag(ϕg = 180∘) =
g

Hki
Ai,x,cor

− Sag(ϕg = 90∘) = Sag(ϕg = 270∘) =
g

Hki
Ai,y,cor

− ρ(ϕg = 0∘) = ρ(ϕg = 180∘) = 86400

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ki −
g

H2Bi,x,cor

√

−
̅̅̅̅
ki

√

̅̅̅̅
ki

√

− ρ(ϕg = 90∘) = ρ(ϕg = 270∘) = 86400

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ki −
g

H2Bi,y,cor

√

−
̅̅̅̅
ki

√

̅̅̅̅
ki

√

2. Using the coefficients from step 1, compute the new COM locations of 
the outer rigid bodies for each axis ej,cor, ϕj,cor, ej+1,cor, ϕj+1,cor using 
Eq. (30).  

3. Compute the positions of the eccentric masses allowing to obtain the 
COM coordinates of step 2 without changing the inertia of the outer 
bars. 

Applying our three steps algorithm resulted in the Setting 8 depicted 
in Fig. 12. This last setting allows to improve the previous results of 
Setting 4 by an order of magnitude. The residual sag is reduced from 
approximately ±1 μm to approximately ±10 nm. The daily rate caused 
by the residual stiffness variation is also reduced from approximately 
±100 s/day to a value between +4.6 and − 2.7 s/day for both axes. 

Table 2 
Frequency comparison between analytical model and FEM for Setting 1 and Setting 2.   

Setting 1 Setting 2 

Analytical Numerical Difference (%) Analytical Numerical Difference (%) 

x-axis 17.600 Hz 17.459 Hz 0.8 16.318 Hz 16.230 Hz 0.5 
y-axis 16.333 Hz 16.222 Hz 0.7 17.551 Hz 17.443 Hz 0.6  
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Fig. 10. Sag of the x and y axes of the Wattwins oscillator with respect to the orientation of gravity for Setting 3 (a) and Setting 4 (b) of the tuning masses.  

Fig. 11. Daily rate in s/day of the x and y axes of the Wattwins oscillator as a function of the angle ϕg of the direction of gravity in the xy-plane, for different settings 
of the tuning masses. 
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With this fine tuning, the sensitivity of the time base to gravity is well 
within the 10 s/day variation in daily rate limit specified by official 
mechanical watch testing organizations to obtain the “Chronometer” 
certification.4 This method can also be applied with experimental results 
instead of FEM simulations so we expect to reach the same level of ac
curacy with the physical prototype. 

Remark 4.2. The sag and stiffness variation of the 2-DOF oscillator in 
Fig. 12 are no longer of cosine shape, showing that we have reached the 
limits of this analytical model. 

5. Preliminary experimental validation 

In this section, we present the first experimental results concerning 
the shaking force balancing of the titanium Wattwins oscillator proto
type. These results are limited to the first order shaking force balancing 
characterized by the sag of the oscillator under different gravity orien
tations, see Eq. (36). The experimental validation of the second order 
shaking force balancing and frequency matching requires the develop
ment of dedicated experimental setups and frequency extraction algo
rithms that are beyond the scope of this article. The preliminary results 
should however reassure the reader that the theory presented here will 
not be invalidated by these subsequent experiments. 

5.1. Stiffness measurement 

As in the numerical validation (Section 4.1.1), the sag of the oscil
lator for a given level of balancing depends on the stiffness of the 
oscillator. We hence start by measuring the stiffnesses of the x and y axes 
of our prototype. These values will then be used for the analytical results 
in Section 5.2, so as to compare sag results that are independent from 
stiffness discrepancies. 

The setup for measuring the x and y axes stiffnesses of the prototype 
is shown in Fig. 13. A force sensor (Kistler type 9207) with a sensitivity 
of approximately − 115 μC N− 1 mounted on a translating micrometric 
table imposes a displacement to either the middle bar 3 or 8. This 
displacement is measured by a linear laser distance sensor (Keyence type 
LK-H082) with a repeatability of 0.1 μm. The stiffness is then estimated 
from the slope of a linear regression of the measured force-displacement 
data, see Fig. 14. 

Table 3 compares the expected analytical stiffness and the measured 
one. Note that the expected stiffness is based on the dimensions specified 
before manufacturing. The differences are within the limits determined 
by the tolerances on the flexure dimensions and can hence be attributed 
to manufacturing defects. 

5.2. Shaking force balancing measurement 

The experimental setup for the shaking force balancing measurement 
is shown in Fig. 15. The prototype is mounted on a vertical rotating table 
whose orientation with respect to gravity is measured by an inclinom
eter. Two laser displacement sensors measure the sag of the oscillator 
along the x and the y directions. 

Fig. 16 shows the sag of the oscillator for twelve equal angular po
sition increments adding up to a full rotation. The orientation with 
respect to gravity is defined by the angle ϕg between the gravity vector 
and the x-direction of the oscillator. Error bars indicate the repeatability 
for five measurements performed in each position. 

In order to validate the first order shaking force balancing, two set
tings are compared: Setting 9 that is not balanced and has large sags 
(equivalent to Setting 3 in Fig. 10) and Setting 10 that is shaking force 

balanced according to our analytical model. Fig. 16a shows that the 
analytical model well predicts the prototype’s behavior for large defects, 
with a difference within 5% for the x-axis sag and 10% for the y-axis sag. 
In the balanced setting (Fig. 16b), the absolute difference between the 
results stays of the same order, resulting in a residual sag of the proto
type of about ±10 μm. These differences can be attributed to the un
certainty on the flexure dimensions and COM location of the different 
parts composing the physical oscillator. In fact, only the weights of the 
physical parts were measured and updated in the analytical model. It is 
however important to notice that the sag of the prototype has been 
reduced by almost one order of magnitude thanks to the tuning pre
scribed by the analytical model: from ±100 μm and ±80 μm for the x 
and y axes, respectively, to ±15 μm and ±10 μm. This shows that our 
model provides an effective way of force shaking balancing the Watt
wins oscillator up to the first order. We expect to be able to further 
improve the balancing by using the fine-tuning method validated 
numerically in Section 4.2.3. 

Remark 5.1. Note that the analytical model predicts a non-zero sag for 
Setting 10 (Fig. 16b). This is due to the fact that exact settings cannot be 
physically implemented and that the analytical results have hence been 
adapted to match the physical prototype. 

Remark 5.2. Ideally, the numerical results would be compared 
directly to the experimental ones. This is however complicated since all 
results depend on the stiffness values, see Remark 4.1. The stiffnesses 
can easily be adapted in the analytical model to match either the nu
merical or experimental values. However, matching experimental and 
numerical models would require artificially changing the dimensions or 
material properties in the FEM model, which can have side effects. For 
this reason, we consider that the fit between experimental and FEM 
results can be indirectly confirmed by comparing them to the analytical 
results, i.e., comparing Figs. 10 and 16. 

6. Conclusion and contributions 

In this article, we introduced the Wattwins horological time base, a 
novel 2-DOF flexure oscillator based on the parallel coupling of two 1- 
DOF Watt oscillators. For this time base to be compatible with a time
keeper, we showed that we were able to tune independently and match 
its two eigenfrequencies, as well as make them insensitive to linear ac
celerations such as gravity, a major source of perturbation for portable 
timekeepers. This was achieved by developing a new approach to 
shaking force balancing based on the decomposition of perturbations 
into effects corresponding to different orders of COM displacement. As a 
result, the level of shaking force balancing can be tailored to the order of 
precision required for the application, in our case the second order. This 
approach is novel and particularly suited to the field of compliant 
mechanisms, where perfect shaking force balancing significantly in
creases the complexity of the mechanisms. 

We developed a model of the oscillator based on its decomposition 
into two independent 1-DOF oscillators (I and II) whose kinematics are 
based on its two first mode shapes. This approach was validated by 
numerical simulation where we showed that the analytical model 
correctly predicts the behavior of the 2-DOF oscillator at first and second 
order. The analytical model did not enable us to reach the desired level 
of shaking force balancing for our application in a single step but, based 
on the residual error, the analytical model was able to provide a setting 
reaching our goal. With this setting, the remaining chronometric error 
due to gravity is well within 10 s/day, which satisfies typical mechanical 
watch specifications. 

This fine tuning can also be performed on physical prototypes using 
experimental results: a system of twelve eccentric masses was devised to 
implement it. Two prototypes were built to validate our concepts: one in 
titanium at the decimeter scale and one in silicon at the centimeter scale. 
The silicon prototype served as proof-of-concept: we succeeded in 
matching its eigenfrequencies and driving it using a watch movement. 

4 See the requirements for the “Chronometer” certificate of the Official Swiss 
Chronometer Testing Institute (COSC) at www.cosc.swiss/en/certification/m 
echanical-movements. 
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The titanium prototype allowed to validate experimentally our analyt
ical model for the shaking force balancing at first order and to demon
strate the practicality of our tuning system. The experimental validation 
of the second order shaking force balancing and frequency matching is 
beyond the scope of this article and will hence be the topic of future 
publications. Nevertheless, based on our preliminary results, we expect 
these experiments to confirm our analytical and numerical results. Our 
future research will also consist in studying the dynamic balancing of the 
Wattwins and its isochronism defect, which is a major concern for 
flexure time bases [2,28,29]. Finally, the out-of-plane gravity effects will 
be investigated in order to minimize the differences in oscillator fre
quencies between its horizontal and vertical positions. 

To summarize, the main contributions of this article are:  

1. A novel Wattwins mechanism design for 2-DOF flexure horological 
oscillator based on two coupled orthogonal Watt linkages.  

2. A new approach to shaking force balancing particularly suited for 
compliant mechanisms based on the decomposition of perturbations 
into effects corresponding to different orders of COM displacement.  

3. A numerically validated analytical model for the calculation of the 
eigenfrequencies of the 2-DOF Wattwins oscillator based on two 1- 
DOF oscillators allowing to independently tune the eigen
frequencies and hence to make them match at a target absolute 
frequency.  

4. A numerically validated analytical model for the shaking force 
balancing of the Wattwins oscillator up to second order allowing to 
reach typical mechanical watch chronometric specification.  

5. A tuning mechanism comprising twelve eccentric masses allowing to 
independently tune gravity effects on the two eigenfrequencies of the 
Wattwins oscillator while matching them to a target frequency.  

6. Two Wattwins prototypes at the decimeter and centimeter scales 
ready for the experimental validation of our theory. They already 
demonstrated the successful driving of the time base and the prac
ticality of the tuning mechanism.  

7. An experimental method to measure the first order shaking force 
balancing of a Wattwins prototype and the resulting preliminary 
experimental validation of our theory. 

Fig. 12. Setting 8: (a) Residual sag (in μm) and (b) residual gravity stiffness variation (in s d− 1) of the x and y axes of the Wattwins oscillator versus the angle ϕg of 
the gravity load in the xy-plane for the corrected setting. 

Fig. 13. Stiffness measurement of the y-axis: the force sensor (on the left) 
pushes the y-axis of the Wattwins oscillator by making contact with the back 
side of the laser reflector while the Keyence Laser sensor (on the right) mea
sures its displacement. 

Fig. 14. Experimental stiffness results for the x and y axes of the 2-DOF 
physical oscillator. The data are fitted with linear regressions: Fx(Δ) =
24.023Δ and Fy(Δ) = 26.073Δ. 

Table 3 
Stiffness comparison between the analytical model and the physical one.   

Analytical Experimental Difference (%) 

x-axis 27.067 N m− 1 24.023 N m− 1 12.7 
y-axis 27.234 N m− 1 26.073 N m− 1 4.5  
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One should note that the Wattwins design is a generic 2-DOF 
dynamically balanced translation mechanism. It can therefore be used 
for other applications than horology such as XY high speed robotic 
manipulators or embedded oscillators on aerospace or other vehicle 
with high vibration levels. 
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Appendix A. Details of the balancing coefficients ai,x, ai,y, bi,x and bi,y 

aI,x =
H

L3 − a
(e7m7sin ϕ7 +(− L3 + a)(m2 +m4 +m5 +m6)) (A.1)  

aI,y = −
H

L3 − a
e7m7cos ϕ7 (A.2)  

Fig. 15. Titanium Wattwins prototype positioned vertically on its balancing measurement test bench with (a) ϕg = 0◦ and (b) ϕg = 30◦.  

Fig. 16. Sag of the x and y axes of the titanium Wattwins prototype for two different settings under varying orientations of gravity. The error bars are based on the 
standard deviation for five measurements per position. 
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bI,x =
1

L1(L3 − a)2

(
2e2m2(− L3 + a)2Hsin ϕ2…

− e4m4(− Ha2 − 2H
(

c −
L3

2

)

a + 2cHL3 + H2L1)sin ϕ4…

− e5m5(− Ha2 − 2H
(

c −
L3

2

)

a + 2cHL3 + H2L1)sin ϕ5…

+2e6m6(− L3 + a)2Hsin ϕ6…

+e7m7(− L3 + a)(a + 2c)Hsin ϕ7…

− e7m7H2L1cos ϕ7…

− (− L3 + a)2H(− m6a − 2m6c + f (m4 + m5))
)
;

(A.3)  

bI,y =
1

L1(L3 − a)2

(
− 2m2e2(− L3 + a)2Hcos ϕ2…

− + e4m4(− Ha2 − 2H
(

c −
L3

2

)

a + 2cHL3 + H2L1)cos ϕ4…

− + e5m5(− Ha2 − 2H
(

c −
L3

2

)

a + 2cHL3 + H2L1)cos ϕ5…

− − 2e6m6(− L3 + a)2Hcos ϕ6…

− − e7m7(− L3 + a)(a + 2c)Hcos ϕ7…

− −
(
m7e7sin ϕ7(H2)…

− +
(
Hm2a − Hm2L3 + m6H2)(− L3 + a)

)
L1
)

(A.4)  

aII,x =
H

L3 − a
(e4m4sin ϕ4 + e5m5sin ϕ5) (A.5)  

aII,y =
H

L3 − a
(− e4m4cos ϕ4 − e5m5cos ϕ5 +(− L3 + a)(m6 +m7 +m8)); (A.6)  

bII,x =
1

L1(L3 − a)2

(
− 2m8e8(− L3 + a)2Hsin ϕ8…

−
(
m4H2e4cos ϕ4 + m5H2e5cos ϕ5 − m7H2e7sin ϕ7…

− ( − Hm8L3…

+Hm8a + m6H2)( − L3 + a)
)
L1
)

(A.7)  

bII,y =
1

L1(L3 − a)2

(
− H2L1(e4m4sin ϕ4 + e5m5sin ϕ5 + e7m7cos ϕ7)…

+ 2e8m8(− L3 + a)2Hcos ϕ8
)

(A.8)  

Appendix B. Geometric and mass parameters for the titanium Wattwins prototype  

Table B.4 
Ideal Titanium Wattwins prototype: rigid bodies (j) and eccentric masses (jk) geometric and mass parameters.  

J mj (kg) ej (m) ϕj (rad) Jj (kg m2) 

1 5.25e-3 Tunable Tunable Tunable 
2 5.25e-3 Tunable Tunable Tunable 
3 2.10e-4 1.20e-2 − 3.05 3.44e-8 
4 7.86e-5 9.32e-3 0.33 8.29e-9 
5 8.29e-5 9.37e-3 0.31 8.81e-9 
6 7.35e-5 4.42e-3 − 1.59 1.75e-9 
7 1.16e-4 9.24e-3 − 1.85 1.14e-8 
8 2.54e-4 1.14e-2 1.44 3.82e-8 
9 5.25e-3 Tunable Tunable Tunable 
10 5.25e-3 Tunable Tunable Tunable 
jk mj,k (kg) ej,k (m) ϕj,k (rad) Jj,k(kg m2) 
11 12 13 4.58e-4 1.43e-3 Tunable 1.85e-9 
21 22 23     
91 92 93     
101 102 103       
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Table B.5 
Physical Titanium Wattwins prototype: rigid bodies (j) and eccentric masses (jk) geometric and mass parameters.  

j mj (kg) ej (m) ϕj (rad) Jj (kg m2) 

1 5.33e-3 Tunable Tunable Tunable 
2 5.27e-3 Tunable Tunable Tunable 
3 2.07e-4 1.19e-2 − 3.04 3.39e-8 
4 8.23e-5 9.32e-3 0.33 8.69e-9 
5 8.67e-5 9.37e-3 0.31 9.22e-9 
6 7.67e-5 4.42e-3 − 1.59 1.83e-9 
7 1.19e-4 9.24e-3 − 1.85 1.19e-8 
8 2.53e-4 1.13e-2 1.43 3.79e-8 
9 5.32e-3 Tunable Tunable Tunable 
10 5.30e-3 Tunable Tunable Tunable 
jk mj,k (kg) ej,k (m) ϕj,k (rad) Jj,k (kg m2) 
11 12 13 4.60e-4 1.43e-3 Tunable 1.86e-9 
21 22 23     
91 92 93     
101 102 103       

Table B.6 
Titanium Wattwins prototype: gravity constant, 
Young’s modulus, geometric and mass 
parameters.  

Parameter Value 

G (m s− 2) 9.8066 
ETi (Pa) 114e9 
L1 (m) 20.00e-3 
L2 (m) 11.00e-3 
L3 (m) 20.80e-3 
a (m) 4.00e-3 
c (m) 2.50e-3 
f (m) 3.00e-3 
H (m) 16.00e-3 
l (m) 3.00e-3 
p (m) 0.90e-3 
Ij = 1,2,9,10 (kg m2) 1.8e-17 
Ij = 3,8,11,14 (kg m2) 1.8e-17 
Ij = 4,5,12,13 (kg m2) 1.8e-17 
Ij = 6,7 (kg m2) 3.52e-17 
X1,1 (m) − 5.45e-3 
X1,2 (m) 7.87e-4 
X1,3 (m) 4.39e-3 
X2,1 (m) − 4.53e-3 
X2,2 (m) 5.33e-3 
X2,3 (m) − 7.75e-4 
X9,1 (m) − 3.17e-3 
X9,2 (m) 6.09e-3 
X9,3 (m) − 1.73e-3 
X10,1 (m) 6.10e-4 
X10,2 (m) 1.94e-3 
X10,3 (m) − 7.27e-3 
Y1,1 (m) 1.82e-3 
Y1,2 (m) − 5.95e-3 
Y1,3 (m) 3.33e-3 
Y2,1 (m) − 1.93e-3 
Y2,2 (m) − 5.74e-4 
Y2,3 (m) 7.29e-3 
Y9,1 (m) − 4.39e-3 
Y9,2 (m) − 7.06e-4 
Y9,3 (m) 5.47e-3 
Y10,1 (m) − 5.35e-3 
Y10,2 (m) 4.52e-3 
Y10,3 (m) 7.41e-4  
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Appendix C. Implemented settings  

Table C.7 
Settings 1 to 6.   

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6 

ϕ1,1 ( ) 338.77 158.77 270.10 158.77 271.77 82.77 
ϕ1,2 ( ) 98.77 278.77 270.10 − 81.23 278.77 98.77 
ϕ1,3 ( ) 218.77 38.77 270.10 38.77 295.77 104.77 
e1 (m) 3.70e-04 3.70e-04 7.42e-04 3.70e-04 7.27e-04 8.59e-05 
ϕ1 ( ) − 97.90 − 97.90 − 93.88 − 97.90 − 87.94 179.44 
ϕ2,1 ( ) 37.84 217.84 89.58 29.37 − 87.53 88.23 
ϕ2,2 ( ) 157.84 337.84 89.58 149.37 − 63.98 108.59 
ϕ2,3 ( ) 277.84 97.84 89.58 − 90.63 277.83 89.62 
e2 (m) 1.17e-03 1.17e-03 1.55e-03 1.17e-03 8.15e-04 1.54e-03 
ϕ2 ( ) 89.90 89.90 89.82 89.90 84.44 91.23 
ϕ9,1 ( ) 231.71 51.71 0.62 51.71 51.71 51.71 
ϕ9,2 ( ) 351.71 171.71 0.62 171.71 171.71 171.71 
ϕ9,3 ( ) 111.71 291.71 0.62 291.71 291.71 291.71 
e9 (m) 4.51e-04 4.51e-04 8.23e-04 4.51e-04 4.51e-04 4.51e-04 
ϕ9 ( ) 9.07 9.07 5.24 9.07 9.07 9.07 
ϕ10,1 ( ) 292.30 112.30 179.94 − 71.16 − 71.16 − 71.16 
ϕ10,2 ( ) 52.30 232.30 179.94 48.84 48.84 48.84 
ϕ10,3 ( ) 172.30 352.30 179.94 168.84 168.84 168.84 
e10 (m) 1.16e-03 1.16e-03 1.53e-03 1.16e-3 1.16e-03 1.16e-03 
ϕ10 ( ) − 179.27 − 179.27 − 179.46 − 179.27 − 179.27 − 179.27   

Table C.8 
Settings 7 to 10.   

Setting 7 Setting 8 Setting 9 Setting 10 

ϕ1,1 ( ) 271.77 158.86 − 90.57 93.24 
ϕ1,2 ( ) 278.77 − 142.49 − 88.84 − 154.84 
ϕ1,3 ( ) 295.77 15.82 − 88.44 − 18.55 
e1 (m) 7.27e-04 3.92e-04 7.45e-4 3.46e-4 
ϕ1 ( ) − 87.94 − 111.89 − 93.54 − 98.71 
ϕ2,1 ( ) − 87.53 98.00 89.92 − 139.25 
ϕ2,2 ( ) − 63.98 179.63 88.88 0.17 
ϕ2,3 ( ) 277.83 − 68.37 87.70 103.37 
e2 (m) 8.15e-04 1.18e-03 1.55e-3 1.21e-3 
ϕ2 ( ) 84.44 94.56 89.65 89.85 
ϕ9,1 ( ) 307.62 210.00 − 0.41 − 128.89 
ϕ9,2 ( ) 315.62 17.56 − 2.07 − 3.52 
ϕ9,3 ( ) 328.62 − 69.93 0.18 119.48 
e9 (m) 7.39e-04 5.04e-04 8.25e-4 4.43e-4 
ϕ9 ( ) − 14.08 − 8.07 4.58 9.70 
ϕ10,1 ( ) − 54.00 173.90 184.19 − 67.59 
ϕ10,2 ( ) − 32.96 − 19.62 183.72 63.77 
ϕ10,3 ( ) 318.75 − 62.91 181.56 177.65 
e10 (m) 9.25e-04 1.12e-03 1.53e-3 1.18e-3 
ϕ10 ( ) − 163.31 − 172.07 − 178.69 − 179.38  
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de Chronométrie; 2014. p. 43–8. 

[2] Thalmann EFG. Flexure pivot oscillators for mechanical watches. 2020. p. 173. 
https://doi.org/10.5075/epfl-thesis-8802. 
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[6] Rubbert L, Bitterli R, Ferrier N, Fifanski S, Vardi I, Henein S. Isotropic springs based 

on parallel flexure stages. Precis Eng 2016;43:132–45. https://doi.org/10.1016/j. 
precisioneng.2015.07.003. ISSN 01416359. 

[7] Newton I. The mathematical principles of natural philosophy, vol. I; 1729. B. 
Motte, translated by Andrew Motte. 

[8] Schneegans H, Thalmann E, Henein S. Driven Wattwins, a 2-DOF isotropic 
horological oscillator. 2020. https://doi.org/10.5281/zenodo.4309695. 

[9] Schneegans H. Statically and dynamically balanced oscillator based on Watt’s 
linkage, 2020-06-12. In: 20th international conference of the European society for 
precision engineering and nanotechnology (EUSPEN); 2020. Geneva,CH. 

[10] Vardi I, Rubbert L, Bitterli R, Ferrier N, Kahrobaiyan M, Nussbaumer B, Henein S. 
Theory and design of spherical oscillator mechanisms. Precis Eng 2018;51: 
499–513. https://doi.org/10.1016/j.precisioneng.2017.10.005. ISSN 01416359. 

[11] van der Wijk V, Herder JL, Demeulenaere B. Comparison of various dynamic 
balancing principles regarding additional mass and additional inertia. J Mech 
Robot 2009;1(4):1942–4310. https://doi.org/10.1115/1.3211022. 041006, ISSN 
1942-4302. 

[12] Wei B, Zhang D. A review of dynamic balancing for robotic mechanisms. Robotica 
2021;39:55–71. https://doi.org/10.1017/S0263574720000168. ISSN 0263-5747, 
1469-8668. 

[13] Lowen G, Berkof R. Survey of investigations into the balancing of linkages. J Mech 
1968;3(4):221–31. https://doi.org/10.1016/0022-2569(68)90001-3. ISSN 
00222569. 

[14] Arakelian V. Balancing of linkages and robot manipulators: advanced methods 
with illustrative examples, vol. 27. Cham: Springer; 2015. https://doi.org/ 
10.1007/978-3-319-12490-2. 978-3-319-12490-2 978-3-319-12489-6, of 
Mechanisms and Machine Science. 

[15] Weeke SL, Tolou N, Semon G, Herder JL. A fully compliant force balanced 
oscillator. In: Volume 5A: 40th mechanisms and robotics conference. Charlotte, 

H. Schneegans et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0141-6359(21)00158-6/sref1
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref1
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref1
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref1
https://doi.org/10.5075/epfl-thesis-8802
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref3
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref4
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref4
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref5
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref5
https://doi.org/10.1016/j.precisioneng.2015.07.003
https://doi.org/10.1016/j.precisioneng.2015.07.003
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref7
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref7
https://doi.org/10.5281/zenodo.4309695
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref9
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref9
http://refhub.elsevier.com/S0141-6359(21)00158-6/sref9
https://doi.org/10.1016/j.precisioneng.2017.10.005
https://doi.org/10.1115/1.3211022
https://doi.org/10.1017/S0263574720000168
https://doi.org/10.1016/0022-2569(68)90001-3
https://doi.org/10.1007/978-3-319-12490-2
https://doi.org/10.1007/978-3-319-12490-2


Precision Engineering 72 (2021) 502–520

520

North Carolina, USA: American Society of Mechanical Engineers; 2016, ISBN 978- 
0-7918-5015-2. https://doi.org/10.1115/DETC2016-59247. V05AT07A008. 

[16] Berkof RS, Lowen GG. A new method for completely force balancing simple 
linkages. J. Eng. Ind. 1969;91(1):21–6. https://doi.org/10.1115/1.3591524. ISSN 
0022-0817. 

[17] Martinez S, Meijaard JP, van der Wijk V. On the shaking force balancing of 
compliant mechanisms. In: 2019 7th international conference on control, 
mechatronics and automation (ICCMA). Delft, Netherlands: IEEE; 2019, ISBN 978- 
1-72813-787-2. p. 310–4. https://doi.org/10.1109/ICCMA46720.2019.8988681. 

[18] Martini A, Troncossi M, Rivola A. Algorithm for the static balancing of serial and 
parallel mechanisms combining counterweights and springs: generations, 
assessment and ranking of effective design variants. Mech Mach Theor 2019;137: 
336–54. https://doi.org/10.1016/j.mechmachtheory.2019.03.031. 

[19] Carricato M, Gosselin C. A statically balanced Gough/Stewart-type platform: 
conception, design and simulation. J Mech Robot 2009;1:031005. https://doi.org/ 
10.1115/1.3147192. 

[20] Lu Q, Ortega C, Ma O. Passive Gravity Compensation Mechanisms: Technologies 
and Applications5; 2011. p. 32–44. https://doi.org/10.2174/ 
1872212111105010032. ISSN 18722121. 

[21] Radaelli G, Gallego JA, Herder JL. An Energy Approach to Static Balancing of 
Systems with Torsion Stiffness133; 2011. p. 1528–9001. https://doi.org/10.1115/ 
1.4004704. 091006, ISSN 1050-0472. 

[22] Kahrobaiyan MH, Thalmann E, Rubbert L, Vardi I, Henein S. Gravity-Insensitive 
Flexure Pivot Oscillators140; 2018. p. 1528–9001. https://doi.org/10.1115/ 
1.4039887. 075002, ISSN 1050-0472. 

[23] Tricamo SJ, Lowen GG. A new concept for force balancing machines for planar 
linkages. Part 2: application to four-bar linkage and experiment. ASME. J. Mech. 
Des. 1981;103:784–92. https://doi.org/10.1115/1.3254988. ISSN 0161-8458. 

[24] P. T. Oortwijn, Fine tuning of a force balanced 1-DoF rotating mechanism .. 

[25] Van der Wijk V, Herder JL. Active dynamic balancing unit for controlled shaking 
force and shaking moment balancing. In: Volume 2: 34th annual mechanisms and 
robotics conference, parts A and B, ASME 2010 international design engineering 
technical conferences and computers and information in engineering conference. 
Montreal, Quebec, Canada: ASMEDC; 2010, ISBN 978-0-7918-4410-6. p. 1515–22. 
https://doi.org/10.1115/DETC2010-28423. 

[26] Van der Wijk V, Krut S, Pierrot F, Herder JL. Design and Experimental Evaluation 
of a Dynamically Balanced Redundant Planar 4-RRR Parallel Manipulator32; 2013. 
p. 744–59. https://doi.org/10.1177/0278364913484183. ISSN 0278-3649, 1741- 
3176. 

[27] Hetzel M. Le diapason et son influence sur l’horlogerie. Bulletin Annuel de La 
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