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Despite centuries of research and significant advances, the escapement mechanism used to count and maintain
oscillations of mechanical time bases remains a complex mechanism and a major source of energy losses. We
showed in previous work that, instead of the widely used rotational one degree-of-freedom (DOF) oscillators, 2-
DOF flexure oscillators have the potential of revolutionizing mechanical watchmaking by eliminating the
traditional escapement, replacing it by a simple crank driving a pin. Additionally, using flexures increases the
quality factor of the time base, leading to further potential improvements in timekeeping accuracy and energy
consumption. However, a significant challenge of these new time bases is their balancing such that the influence
of external accelerations on their frequency is minimized, a necessary condition for accurate timekeeping in
portable applications. This article presents a novel 2-DOF planar flexure oscillator called Wattwins and dem-
onstrates how it can be made insensitive to linear accelerations such as gravity. For this purpose, a new approach
to shaking force balancing is developed based on the decomposition of perturbations into effects corresponding
to different orders of center of mass displacement. A full analytical model for frequency tuning and shaking force
balancing of the 2-DOF oscillator is derived using a pseudo-rigid-body model and assuming that it can be
decomposed into two independent 1-DOF oscillators. The results are validated by the finite element method and
show that practical mechanical watch specifications can theoretically be reached. A physical prototype was also
constructed and preliminary experimental results confirm the theory as well as the simulations.

1. Introduction DOF oscillator [5,6]. This isotropic harmonic oscillator, where a point

mass m at position r is subject to a central linear restoring force (Hooke’s

1.1. The IsoSpring concept

High chronometric accuracy and long power reserve (i.e., high effi-
ciency) have become the most important performance requirements of
modern mechanical watches. The recent developments of silicon flexure
oscillators have allowed to significantly increase the quality factor of the
time base in comparison to traditional balance wheel and hairspring
oscillator [1,2]. This paves the way to significant improvements in ac-
curacy and efficiency since the quality factor quantifies the energy losses
of the time base and is considered to be a direct indicator of timekeeping
accuracy [3]. The next step in increasing mechanical watch efficiency is
to address the efficiency of the escapement mechanism, which does not
exceed 40% for the lever escapement used in most mechanical watches.
This significant power loss results from shocks and friction between
parts during the stop-and-go motion of this mechanism, see Fig. 1 [4].

The IsoSpring mechanical time base solves the efficiency issue of the
escapement by completely eliminating it with the introduction of the 2-

* Corresponding author.

law), was first described in 1687 by Isaac Newton in Principia Mathe-
matica [7]. The resulting trajectories depicted in Fig. 2a are elliptical
and isochronous, that is, the frequency of rotation is the same for all
orbits. Since isochronism is the basis of precision timekeeping, oscilla-
tors based on this concept are ideal candidates as time bases for me-
chanical timekeepers. The most interesting property of this oscillator is
that its motion is unidirectional, as opposed to the back and forth motion
of existing mechanical time bases. As a result, the problem of in-
efficiency of the escapement is solved by eliminating it completely since
there is no more stop-and-go motion. In practice, Fig. 2b depicts how the
escapement mechanism is replaced by a crank c driven by the energy
storage mechanism, such as a watch mainspring, that maintains and
counts time base oscillations by a pin p attached to the oscillator.

1.2. The Wattwins oscillator

In theory, the IsoSpring could be implemented such as described in
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Fig. 2. In practice, however, the moving mass has a non-zero inertia
which results in an isochronism defect [5]. This problem can be solved
by having the mass translate on its elliptical orbit without rotating,
hence eliminating the effect of its inertia. This can be implemented by
constraining the motion of the mass to planar translations and coupling
it in parallel to two orthogonal springs providing an isotropic linear
central restoring force. As proof-of-concept, we embodied this idea in a
flexure-based planar IsoSpring [6] and used it as time base for a me-
chanical clock.’

The planar clock oscillator successfully showed that the IsoSpring
enables eliminating the escapement but this oscillator cannot be used for
portable timekeepers, such as watches, which are the ultimate target of
this invention. Indeed, this oscillator is very sensitive to linear acceler-
ations (such as gravity) and can hence only operate in a horizontal plane.
For this reason, a new 2-DOF planar mechanical oscillator called Watt-
wins was developed whose architecture is based on two orthogonal Watt
linkages, each realizing one DOF in translation (thick black lines on
Fig. 3a). We showed that this oscillator could be implemented at watch
scale with a silicon flexure prototype, see Fig. 4a, and that it could
successfully be driven by a watch movement, see Fig. 4 and video [8].
The Wattwins architecture was chosen for its potential to be insensitive
to linear and angular accelerations. We already showed in previous work
[9] how to dynamically balance for small amplitudes an ideal Watt
oscillator (Watt’s linkage with torsion springs at each joint) and how to
tune its eigenfrequency. However, when a coupler is added between the
two Watt oscillators (thin red lines on Fig. 3), balancing the system
becomes a significantly more complex task. Moreover, matching the
eigenfrequencies of the two DOFs, an essential condition for elliptical
orbits and oscillator stability, also becomes a greater challenge. These
two issues, which need to be solved before implementation in a watch,
are the main topic of this article.

Remark 1.1. A different implementation of the IsoSpring using 2-DOF
in rotation instead of translations was also studied [10] and demon-
strated on a mechanical clock.? This oscillator architecture is however
considered too sensitive to angular accelerations for portable
applications.

(c)
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1.3. Oscillator balancing

Definition: An oscillator is shaking force balanced if its linear mo-
mentum is constant for all movements over its workspace [11,12].
Necessarily, the potential energy of the oscillator is then independent of
all linear accelerations. The shaking force balanced oscillator is then
insensitive to all linear accelerations and does not export any forces to its
frame [13].

Definition: An oscillator is shaking moment balanced if its angular
momentum is constant for all movements over its workspace [11,12].
The shaking moment balanced oscillator is then insensitive to all purely
angular accelerations and does not export any torques to its frame [13].

Definition: An oscillator is dynamically balanced if it is shaking force
balanced and shaking moment balanced [11,12]. The dynamically
balanced oscillator is then insensitive to all linear and angular acceler-
ations over its workspace.

The perfect shaking force and shaking moment balancing of a
mechanism, also called complete or full shaking force and shaking
moment balancing, often considerably increases the complexity of its
final design with an inevitable increase of its total mass [14]. Hence,
partial shaking force and shaking moment balancing are wildly used,
where exported forces and torques are minimized instead of perfectly
cancelled. A common approach is to extract the harmonics of the
displacement components of a mechanism’s center of mass (COM) and
to cancel the dominant ones using well located counterweights or
additional mechanisms. Similar approaches exist to minimize the
shaking moment of a mechanism [13,14].

While shaking force and shaking moment balancing has been largely
investigated in the field of rigid body linkages through the last century,
little work has been done in the field of compliant mechanisms. Weeke
et al. [15] designed and manufactured a fully compliant shaking force
balanced mechanical oscillator using the well-known method of linearly
independent vectors [16] to compute and fix the position of the struc-
ture’s COM. Their final design is a 1-DOF double crank slider mechanism
having opposite movements that are fully symmetrical, hence fixing the
position of the COM. Symmetrizing structures makes it possible to bal-
ance them fully at the cost of having a bulkier implementation. This

TN
(e)

Fig. 1. Shocks during the operation of the Swiss lever escapement: (a) Unlocking, (b) start of impulse by the wheel, (c) start of the balance impulse, (d) end of drop,

(e) run to the banking [4].

! The working principle of the planar IsoSpring and the operation of the clock
can be seen in this video: https://youtu.be/e77FbrBCXql?t=47.

2 The operation of the mechanical clock with spherical IsoSpring can be seen
in this video: https://youtu.be/nkScUzJOYVU.
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method is hence not scalable when it comes to initially complex mech-
anisms. Martinez et al. [17] addressed the shaking force balancing of a
compliant leaf-spring table using counterweights mounted on flexures.
Equalizing the eigenfrequency of the compliant leaf-spring table and the
eigenfrequency of the counterweights was the key to reach shaking force
balancing as the motion of the counterweights was not geometrically


https://youtu.be/e77FbrBCXqI?t=47
https://youtu.be/nkScUzJ0YVU
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imposed. However, the shaking force balancing of their structure is only
valid when it vibrates at its first eigenfrequency. Indeed, if the latter is
subjected to any external in-plane accelerations, the shaking force
balancing conditions will no longer be respected.

Since the existing shaking force balancing methods are not satisfac-
tory for complex compliant mechanism, we developed a new approach.
Note that this article focuses only on shaking force balancing, and not
shaking moment balancing, for the following reasons:

@ Linear accelerations are the main source of perturbation on me-
chanical watches (gravity is always present whereas angular accel-
erations are transient).

@ The Wattwins architecture is intrinsically shaking moment balanced
to a first approximation, see Section 2.1.

@ Current mechanical watches achieve sufficient timekeeping perfor-
mance even though their time base is not shaking moment balanced.

In theory, the shaking force balancing of a structure is achieved when
its potential energy is independent of all linear accelerations. Observe
that this definition for shaking force balancing is different from the static
balancing notion. A mechanism is called statically balanced if its total
potential energy is invariant over its workspace [18]. For example,
springs can be used to compensate gravity effects without using coun-
terweights and vice versa [19,20]. Compliant mechanisms can also be
designed such that their total elastic potential energy stays constant over
their range of motion, i.e., their spring stiffness is cancelled [21].
However, such systems are necessarily dependent on linear accelera-
tions (and the orientation of gravity), hence not shaking force balanced.

The present article focuses on making a 2-DOF compliant mechanism
shaking force balanced. This will not result in a static balancing of the
structure. Indeed, by making its gravitational potential energy constant,
the variations in potential energy of the system only correspond to
changes in elastic potential energy. This ensures that the mechanism
functions as an oscillator with constant stiffness, regardless of linear
accelerations or changes in the orientation of gravity. This is equivalent
to cancelling the effect of gravity loads on the effective bending stiffness
of the flexures, an effect known as stress stiffening. Indeed, a constant
gravitational potential energy means that there is no work of gravity
during the motion. The equivalence between the energetic and beam
theory approaches is discussed by Kahrobaiyan et al. [22] and Thalmann
[2, Chapter 6].

The shaking force balancing of a structure is equivalent to having the
position of its COM stay constant over its entire workspace. However,
this condition cannot always be perfectly fulfilled in practice so, instead,
the level of precision required can be defined by the application. Let us

(a) Elliptical orbit under central Hooke’s law.
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take the example of a 1-DOF flexure mechanism. Since flexures have a
limited range of motion, the displacement of its COM G along the x-axis
multiplied by its total mass M can be expressed using series expansion
with three coefficients A, B and C:
MO G- = Ag: + B + C® + O(g?) )
where g; (unit: m) is the motion parameter of the 1-DOF structure. Since
gravity is the main perturbation this article focuses on, using Eq. (1), the

gravitational potential energy of the structure, when g is along the x-axis
is:
= ~MO G-g = —(Aq; + Bq; +Cq; +0(q}) )g

Ve (2)

Using Eq. (2), the static effect of gravity on the structure is then given
by

Ve _

3)

(A+2Bg;+3 CZ +0(q) )g

qi

One can see in Eq. (3) that the different orders of displacement co-
efficients affect the structure differently when subjected to linear ac-
celerations: the first order coefficient A creates a disruptive force A - g
(unit: N), the second order coefficient B creates a disruptive stiffness 2B -
g (unit: Nm™1), the third order coefficient C creates a disruptive
quadratic stiffness 3 C - g (unit: N m2) and so on.

As a result, cancelling the first order displacement coefficient A in-
hibits the action of external linear accelerations on the structure when it
is at its rest position, i.e., it cannot be excited externally. This level of
balancing is sufficient for most applications. In a watchmaking context,
it is crucial to minimize the effect of linear accelerations on the effective
stiffness of the oscillator since it directly impacts its frequency and hence
its chronometric stability. The goal is hence the partial shaking force
balancing of the structure up to the second order by cancelling the two
first A and B coefficients. Note that since displacements and accelera-
tions (gravity) are small, it is assumed that third order effects are
negligible for the required precision level.

This way of decomposing the effect of linear accelerations on
compliant mechanisms is new and allows to radically change the way we
measure their balancing. In the literature, the shaking force balancing of
a system is typically evaluated by mounting it on force sensors and
measuring the linear forces exported during its motion [15,23,24].
Alternatively, the system is mounted on a compliant stage or floating
platform whose excitation by the exported forces is observed [17,25,26].
In Section 3, we explain how, by measuring the sag and the frequency
variation of a compliant mechanism subjected to different linear accel-
eration orientations, it is possible to assess its shaking force balancing up

(b) An isotropic harmonic oscillator driven by a crank.

Fig. 2. Free and driven isotropic harmonic oscillator.
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Fig. 3. Pseudo-Rigid-Body Model (PRBM) of the Wattwins oscillator with a) labels for the joints and rigid bodies and b) main geometrical parameters.

Fig. 4. (a) Centimeter-scale silicon Wattwins oscillator (outer diam. 30 mm) and (b) driving of the Wattwins silicon oscillator with a mechanical watch movement.

Video available [8].

to the second order.

Remark 1.2. Solutions to minimize the effect of gravity on the effec-
tive stiffness (and thus frequency) of flexure oscillators have already
been proposed for the tuning fork [27] and flexure pivot oscillators [2,
22,28,29]. These solutions however concern 1-DOF oscillators and are
not directly applicable here.

1.4. Goal and structure of the article

Our goal is to match and tune the eigenfrequencies of the Wattwins
oscillator while shaking force balancing it up to the second order in
order to minimize the impact of gravity on these frequencies. In Section
2 we describe the pseudo-rigid-body model (PRBM) [30] of the Watt-
wins architecture and a physical implementation that will be used to
validate our results numerically and experimentally. We introduce a
decomposition of the Wattwins oscillator into two independent oscilla-
tors, the oscillators I and II translating respectively along the x and y
axes, that will be used in our analytical model. Section 3 presents the
analytical model used to compute the frequencies of oscillators I and II
as well as the motion of their COM. Equations are derived for the
matching of the two oscillator frequencies and the cancelling of their
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COM motion up to the second order using the tuning masses. Section 4
validates the analytical model of Section 3 using the finite element
method (FEM). We show that shaking force balancing and frequency
tuning can be performed independently and that the results match the
predictions of the analytical model. Finally, Section 5 presents pre-
liminary experimental results that validate the analytical model for the
first order shaking force balancing.

2. Design and kinematics of the Wattwins oscillator
2.1. Design and concept

The PRBM of the Wattwins oscillator is presented in Fig. 3. Its ar-
chitecture is based on two 1-DOF Watt oscillators arranged at 90° (thick
black lines) connected in parallel by a coupler linkage (thin red lines).
The first Watt oscillator, whose nearly straight line motion is along the x-
axis, consists of two outer rigid bodies of equal length 1 and 2 each
connected to the fixed frame at one end with respective pivots P; and Py
and to a middle bar 3 at the other end with respective pivots P3 and Pq;.
Note that the oscillator’s inertia is largely concentrated on the outer
rigid bodies 1 and 2, see Fig. 5. The second Watt oscillator, whose nearly
straight line motion is along the y-axis, follows the same architecture as
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Fig. 5. (a) Wattwins flexure plate and (b) assembled physical titanium oscillator prototype (outer diam. 75 mm).

the first one, with outer rigid bodies 9 and 10, middle bar 8 and pivots
Pg, Py, P19, P14. The coupler consists of a rigid body 6 connected to the
middle bar of the first Watt oscillator by two parallel rigid bodies 4 and 5
and to the middle bar of the second Watt oscillator by rigid body 7. Each
of these rigid bodies have a pivot at each end, respectively P4 and Py, P5
and P;3, Pg and P;. The coupler allows to connect the two Watt oscil-
lators without overconstraint in the plane of the structure,’ resulting in a
2-DOF planar motion of rigid body 6. This body holds the driving pin p
that performs an elliptical motion and is used to drive the mechanism,
see Fig. 2b.

In order for this system to act as a mechanical oscillator, spring
components must be added. This happens naturally in the flexure
implementation of the pivot joints and is represented by the torsion
springs coupled to each pivot of the PRBM in Fig. 3 [30,32]. The other
essential component of a mechanical oscillator, the inertia, is concen-
trated on the outer rigid bodies of the two Watt oscillators in order to
reach dynamic balancing, see Figs. 4a and 5b. Indeed, one of the main
advantages of the Watt oscillator is that the two outer rigid bodies (1-2
and 9-10) rotate in opposite directions. Hence, dividing the inertia of the
oscillator equally between these two elements makes it possible to
cancel the in-plane angular momenta, i.e., to reach shaking moment
balancing in the oscillator plane. Note that this is a first order approxi-
mation valid only in the plane of the oscillator since the middle bars and
the coupler have an in-plane non-negligible rotational inertia. This
approximation is however considered sufficient for our application since
it is superior by at least an order of magnitude to existing mechanical
watch oscillators that only consist of one rotational inertia and are hence
not shaking moment balanced in their plane of oscillation.

2.2. Flexure implementation

Fig. 5 depicts the flexure implementation of the PRBM in Fig. 3. The
ideal pivots P;, Pa, Pg, P1¢ are embodied by remote center of compliance
(RCC) flexure pivots 101, 102, 109, 110, respectively. The RCC flexure
pivot is a particular case of the crossed flexure pivot [33] whose flexures
cross outside of their physical structure, thus presenting an advanta-
geous planar structure. The intersection of the flexures defines (to a first
approximation) the axis of rotation of the pivot [32,34]. The two RCC
pivots of each Watt oscillator are placed symmetrically so as to
compensate the effect of their parasitic center shift [22]. The ideal pivots

% A mechanism is overconstrained when its mobility obtained through Grii-
bler’s formula [31] is less than its actual DOF. This can lead to important and
unpredictable variations of the stiffness of flexure mechanisms and stresses in
their flexures [32].
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P3 to Pg and Py to Py4 are implemented using small-length flexural pivots
(SLFP) 103 to 108 and 111 to 114, respectively [30]. Note that in order
to respect the isotropy condition of the IsoSpring, the flexure pivots are
designed such that the stiffness of the Wattwins oscillator is the same
along its x and y axes.

This design was implemented in a physical prototype used for
experimental validation (Fig. 5b). Its size was chosen to facilitate
manipulation (75 mm outer diameter instead of 30 mm in Fig. 4). The
flexible part was manufactured by wire electrical discharge machining
(EDM) a 1 mm thick Ti-6Al-4V sheet. The inertial bodies were
conventionally machined in CuZn39Pb3 brass.

2.3. System for balancing and frequency tuning

Tuning the eigenfrequencies of the Wattwins oscillator while shaking
force balancing it is equivalent to being able to independently adjust the
inertia corresponding to its two DOFs and the motion of its COM. We will
show in Section 3.3.1 that this can be achieved by tuning the moment of
inertia and COM position of each outer rigid body (1, 2, 9 and 10). For
this purpose, we devised a system consisting of three rotating eccentric
masses per outer rigid body depicted in Fig. 6. For example, by rotating
eccentric masses 9; to 93, one can modify the COM of the outer rigid
body 9 as well as its moment of inertia.

Remark 2.1. One can see on Figs. 5b and 6 that the balance wheels
that support the eccentric masses are slightly offset from their coun-
terparts assembled on the other side of the flexure plate. Those hidden
balance wheels are centered on the pivots of the outer rigid bodies (1, 2,
9 and 10) in order to add pure inertia to the system without changing the
COM conditions of the oscillator. They also compensate the out-of-plane
torques generated by the balancing and frequency tuning system. The
balance wheels holding the eccentric masses are offset in order to set to
the nominal position the COM of their outer rigid body.

Remark 2.2. Ideally, our prototype (Fig. 5) should be symmetrical
with respect to its plane of oscillation to prevent exporting (or being
excited by) out-of-plane moments. This symmetry is slightly deterio-
rated here when the eccentric masses are rotated and their supporting
balance wheels are offset. The resulting out-of-plane effects are however
considered small and are neglected in the analytical model (Section 3).
This asymmetry was chosen in order to facilitate experimental manip-
ulation but could be eliminated in the final embodiment.

2.4. Decomposition into two independent 1-DOF oscillators

Our approach to model the Wattwins oscillator is to decompose it
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X Center of rotation of Contcr of mass of
the eccentric masses G

the solid assembly
Fig. 6. System for balancing and frequency tuning

(a) (b)

Fig. 7. Wattwins (a) First mode shape (y-axis) and (b) Second mode shape (along the x-axis) for Setting 1

g — Deformed
(a) Oscillator I

Rest
(b) Oscillator II

Fig. 8. PRBM of the 1-DOF oscillators I and II in their deformed and rest positions.
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into two independent 1-DOF oscillators corresponding to its two first
mode shapes. Fig. 7 shows these two mode shapes obtained with the
finite element model of the oscillator described in Section 4. One can see
that this corresponds, to a first approximation, to blocking the motion of
one of the Watt oscillators while letting the other one oscillate freely.
The kinematics of these two 1-DOF oscillators, named Oscillator I and
Oscillator II, are depicted in Fig. 8. It is assumed that shaking force
balancing each of these independent oscillators and the matching of
their eigenfrequencies result in a shaking force balanced Wattwins
oscillator with a constant elliptical orbit period.

3. Analytical model

In this section we compute expressions for the eigenfrequencies as
well as the COM displacement of oscillators I and II in terms of our
tuning parameters which are the inertia and COM position of the four
outer rigid bodies (1, 2, 9 and 10). We then derive the conditions to
cancel, up to the second order, the displacement of the COM of each
oscillator, hence reaching partial shaking force balancing. We proceed
with the following steps:

1. Parameterize the mass properties and kinematics of oscillators I and
IL.

. Calculate the kinematic relations between the different angular pa-
rameters of oscillators I and II.

. Calculate the frequencies of oscillators I and II.

. Calculate the COM displacement of oscillators I and II.

. Solve the equations of steps 3 and 4 in terms of tuning parameters in
order to tune and match the eigenfrequencies of oscillators I and II
while shaking force balancing the system.

N

The analytical model is valid under the following assumptions:

@ The transverse stiffnesses of the compliant mechanism are consid-
ered infinite compared to its in-plane stiffnesses.

@ The rotations are small (+11.5° for the solids 1, 2, 4, 5, 7, 9, 10 and
less than 1.8° for the others) and non-linear terms are expressed
using series expansions about the rest position.

@ The out-of-plane moments generated by the asymmetry of the
oscillator with respect to its oscillation plane are negligible. Hence,
the flexures are not subjected to shear or torsion and Euler-Bernoulli
theory can be used to calculate their stiffness.

@® The centers of rotation of the SLFPs are fixed in the middle of the
blades.

@ The solids connected by flexures are considered infinitely rigid.

3.1. Parameterization

To parameterize the mass properties and kinematics of oscillators I
and II, we assign to each rigid body j = 1 to 10 a mass mj, a rotation angle
0; with respect to its rest position and a local coordinate system located
at one of their pivots Pj, see Fig. 8. The local coordinate system of each
rigid body is then used to define its COM position with cylindrical co-
ordinates e; (unit: m) and ¢; (unit: rad), its inertia J; and its translation
velocity V; (at point P;). Additionally, the rotational stiffness of each
flexure pivot P;j is represented by an ideal torsion spring of stiffness k;
withj =1 to 14.

3.2. Kinematics of oscillators I and II

3.2.1. Oscillator 1

The seven angular parameters 6 to 87 of oscillator I can be identified
by projecting along the x and y axes the following loop closure equa-
tions, see Fig. 8a
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P]P3 +P3P]1 +P11P2 +P2P1 :0
= PsPi3+ = PP+ = PPy +~ PyPs =0
+ = P13P¢ + = P¢P7 + = P;P,

= P\P3+ = P3Ps + = PsPy3

=0
()]
Following the small amplitudes assumption, we use the Taylor series
expansions of trigonometric functions about 6; — 1, .7 = 0 to solve the

equation system Eq. (4). We then express the angular parameters 6; _ o,
_.,7 in terms of 6;:

0, =—6,+0(6})

H
03 = _9?"'_0(0?)

L

—d+ (L -2 LiH +2Lsc)H
o, — @t 2)at LH 42 o)
2L (Ls — a) 5)
95 :6)4
06 :63
H 1 (a+2c)H , 3

[ = - 0, + O(6;
’ L;—lll 2L1(L3—a)1+ (1)

3.2.2. Oscillator IT

The seven angular parameters 64 to 019 of oscillator II can be iden-
tified by projecting along the x and y axes the following loop closure
equations, see Fig. 8b

= PoPg + = PyPiy + = P1aPio + = PioPy
= 0= PsPi3 +~ P3Py + = PPy + = PyPs
= 0~ PyPg + = PgP7 + = P;Pc + = PsPi3 +~ P;3Ps + = PsPy =0 6)

As in Section 3.2.1, we use the Taylor series expansions of trigono-
metric functions about 6; — 4, .. ;10 = 0 to solve the equation system Eq.
(6). We then express the angular parameters 6; — 4, . g 10 in terms of fg:

_ H

0s = b+ 0(6;)
05 =0,
06 =0
2o (@]
0, =——— 02+ 0(6
7 2(L3 _ a)2 9 ( 9)
H
05 = L—lag +0(6;)
010 = 709 + 0(0;)

3.3. Frequency tuning of oscillators I and II

Oscillators I and II are based on nearly straight line compliant
mechanisms. Hence, we consider them as linear oscillators with an
equivalent translation stiffness (unit: N m’l) and an equivalent trans-
lation mass (unit: kg) along their observed axis of motion, that is, the x
and y axes respectively. In this section, we compute the analytical
eigenfrequencies of the oscillators regardless of external perturbations,
hence gravity is not considered. The effect of linear accelerations in the
plane of oscillation will be dealt with in Section 3.4. In order to calculate
the nominal frequencies of the oscillators we derive their motion law
using a Lagrangian approach with the following steps:

1. Compute the kinetic energy of oscillators I and II.
2. Compute the potential energy of oscillators I and II.
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3. Write the Lagrangian and compute the Euler-Lagrange equation for
oscillators I and II in order to extract their motion laws and hence
their analytical eigenfrequency.

3.3.1. Kinetic energy of oscillators I and II
The kinetic energies 7 of oscillators I and II are

7
T = % )3 (78 +mv?) ®
=
1 Qo Y
Ty = 3 Z(J_/-Hj + m/-Vf> (C)]

=

where j = 1...10, Jj;, 6, m;, V; are parameters introduced in Section 3.1.
Substituting Egs. (5) and (7) into Egs. (8) and (9) and neglecting the
higher order terms yields

1 H? o] .
Tr=-(h+h+t—7h 0} + = (ms + my + ms + mg)H*0, (10)

2 (L3 — a) 2

1 H? . 1 .
Tu=5|Jo+Jiw+——75stJs5) 95+7(m6+m7+m3)H29§ an

2 (Ls — a) 2

The inertia of the outer rigid bodies J; — 1,2,9,10 used to compute Egs.
(10) and (11) can be expressed in terms of the rotation angle ¢; of the
eccentric masses ji used to tune the oscillator:

3

]j = ‘Ij.CSl + E

k=1

[k + eixc0s ¢2)" + (Yia + ejasin )" 12)

In this equation Jj.; comprises the constant components of the
inertia of the outer rigid body j (flexure plate inertia, balance wheel
inertia and inertia of the eccentric masses with respect to their own
COM). The tunable component of the inertia is function of the mass m;x
of the eccentric masses, the coordinates Xj, Yjx of their center of
rotation (COR) with respect to their respective pivot P; and the distance
ejx from their COR to their COM (Fig. 6).

3.3.2. Potential energy of oscillators I and II

Since we do not consider external effects, the total potential energy
V; of oscillators i = I or II is reduced to their elastic potential energy Ve
given by

1
Vo =5 (k162 + ko602 + by 62 + k3 (01 — 6)° + ki1 (8 — 05)° + k(65 — 64)°
+ks(03 — 05)7 + ki2(6 — 64)" + ki (65 — 65)* + ke(67 — 65)°)
(13)
1
Ven =5 (ks + k12)03 + (ks + k13 )02 + k662 + ko0 + k16 + k1a (010 — 65)

+ k(67— 05)" +ks (05— 05)7)
14)

Substituting Egs. (5) and (7) into Egs. (13) and (14) and neglecting
the higher order terms yields

2

H
ky +ky 4+ ks +kiyy +———
(Ls —a)

1
2(k6+k7)>9%
3 —da

Ve,l =5

5 (15)

2

1
Ve =3 <k3+k9+k10 + ki + 5 (kg + ks + kiz +k13)>9§ (16)

(Ls —a)

The nominal angular stiffnesses kj — 1...14 of the RCC flexure pivots
and SLFPs can be expressed using the formulas from Cosandier et al.
[32]. The angular stiffness of the RCC flexure pivots is
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i _ 8L (L3 +3pLy + 3p%)

; o an

with j=1,2,9 and 10

where E is Young’s modulus for the flexures, J; is their area moment of
inertia, L is their length and p is the distance between the mobile end of
the leaf springs and their intersection axis, see Fig. 5a.

The SLFPs j = 3, 8, 11 and 14 are mainly subjected to bending stress
so their angular stiffness can be expressed as

El;

k== with j=3.8,11 and 14 18)
where [ is the length of flexures 103, 108, 111 and 114, see Fig. 5a.

The SLFPsj=4, 5, 6,7, 12 and 13 are subjected to shear and bending
stress so their equivalent angular stiffness can be expressed as

o1 3)
T E(B -3+ &)L,

with j=4,5,6,7,12 and 13 (19)
where a is the length of the flexures 104-107, 112 and 113, L3 is the
length of the coupling solids including the SLFPs’ lengths, & = %‘31 is the

ratio between the length of the flexure blades and the length of the
coupling solids, see Fig. 5a.

3.3.3. Motion laws and frequencies of oscillators I and II
For each oscillator I and II, the Lagrangian is given by
Li=T,-V,

and the Euler-Lagrange equation in 6; (withj =1 fori=1Iandj= 9 fori
= II) satisfies

i (5)
dr \ 06;
Using the results from Egs. (10), (11), (15) and (16) and considering

that for small amplitudes q; = —H®j, Eq. (20) becomes the equation of
motion of a simple translation harmonic oscillator

oL
T 0

(20)

mig; +kiq; =0 21
with
Ji+J J
mp = T oy +my + ms + mg
H (Ls —a)
(22)
Jo +J1o Jy+Js
my =7 m + me +m7 +mg
k :k1+kz+2k3+k1|+ k6+k72
H (Ls —a)
(23)
k kst ko +kio+khiy | ke +ks + ki ks
1l 72 L 7a)2

The eigenfrequency of each 1-DOF oscillator is then found by solving
the differential equation (21), yielding

o 1 ki
- 2z m;

The frequency of oscillators I and II can now be tuned by modifying
the inertia of the outer rigid bodies Jj — 1,29 10. This tuning is imple-
mented using the system of eccentric masses depicted in Fig. 6 using Eq.
(12) in Section 3.3.1.

fi (24

3.4. Sensitivity to linear accelerations

In Section 1.4, we announced that in order to study the sensitivity to
linear accelerations of our oscillator, the specific case of gravity
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sensitivity will be addressed. Indeed, the results from this study can be
applied to any linear accelerations.

In order to be gravity insensitive, hence to be insensitive to linear
accelerations, the total potential energy of the oscillators over their
entire workspace must be independent of gravity orientation. Consid-
ering the effect of gravity only in the plane of oscillation, the potential
energy of each 1-DOF oscillator i = I or II is

Vi=Vei+ Vg (25)

where V,; is the elastic potential energy given in Egs. (15) and (16) and

Vi = —M;0 G;-g (26)
is the gravitational potential energy. In this last equation, M;, G; are the
mass and COM position of the oscillator and
g = gcos ¢, X + gsin ¢,y 27)
is the gravitational acceleration vector with angle ¢, with respect to the
Xx-axis.

In order to satisfy the condition for gravity insensitivity, only the
gravitational potential energy of our oscillators must remain constant
since their elastic potential is independent from external accelerations.
Since we consider all gravity orientations in the plane of oscillation, this
means that the COM of oscillators I and II must remain at the same
position during oscillation and the condition becomes

do G,

dt =0

(28)

The COM velocity of each 1-DOF oscillator can be expressed for small
displacements in terms of x and y components using the kinematic pa-
rameters of Egs. (5) and (7):

S A;X+B;x9-+0<92) 5 Ay + B; ‘9-+0(0?)
oG, 7 T 1) d0Giy T TR0 .

dt M; Todt M;

(29)

with
Ay = —e;mysin qﬁj + ej 1My 1sin qﬁjﬂ + a;,
Aiy = em;cos ¢; — €j1Mm;11CO8 Py + aiy (30)
B, = —emjcos (]SJ- — €j11M1€0S Py + by
Biy = —emsin ¢; — ejymjisin ¢y + by

For each 1-DOF oscillator i = I or Il with j = 1 or 9 respectively, ¢; and
¢; are the COM coordinates of the outer rigid bodies that can be tuned
using the eccentric masses of Section 2.3 and a;, a;y, b;y, b;y are fixed
parameters that depend on the geometrical and mass properties of the
oscillator given in Appendix A.

In order to satisfy Eq. (28) for the first two orders, one must have
Ay =Aiy=Bi,=B;, =0 31

This condition can be satisfied by solving the equation system Eq.
(30) as function of the tuning parameters, which are the mass properties
of the rigid bodies 1, 2, 9 and 10, yielding:

\/(a[,x + bi.y)2 + (ai,y - bi.,\‘)2

¢j

2mj
2 2
e = \/(ai,x - bi,y) + (ai,y + bi,x) (32)
’j 2mj
¢; = arctan2 (a,-,x + by, bix — a,»_y)
¢, = arctan2 (b,-,y — Gy, aiy + b,v_).)

The effect of the COM displacement of a structure on its shaking force
balancing can be calculated based on the analytical model. In practice,
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however, it is more convenient to evaluate the displacement of the COM
of a mechanism by measuring indirect effects corresponding to different
orders of displacement, see Section 1.3. This is also the approach that is
used to validate our models in Section 4. These effects can be seen from
the static equilibrium equations of the oscillators obtained by deriving
their total potential energy given in Eq. (25):

F; = Kiq; .
where

g .
F, = o (Ajxcos ¢, + Ajysin ¢,) G

is the resulting force gravity exerts either along the x-axis of rigid body 3
of oscillator I or along the y-axis of rigid body 8 of oscillator II, and
K=k — % (Bicos ¢, + By,sin ¢,) (35)
is the overall equivalent translation stiffness of oscillators I or II with k;
the nominal translation stiffness in the absence of gravity, see Eq. (23).

One can see that the first order effect of the COM displacement re-
sults in an external force F; exerted by gravity that will cause a sag of the
oscillator

(36)

F;
qi. = — =
isag K,

el

since the first order effects dominate. One can thus assess if a compliant
mechanism is balanced at first order by measuring the sag of its axes.

Once the sag is cancelled, the second order effect of the COM
displacement can be evaluated from the changes in stiffness K; of the
oscillator caused by gravity. One can thus assess if a compliant mecha-
nism is balanced up to second order by measuring its stiffness variation
for different orientations of gravity. In practice, this is typically done by
measuring the variations of its eigenfrequencies.

3.5. Frequency tuning and shaking force balancing

For each independent oscillator I and II, we derived above expres-
sions to compute the analytical eigenfrequency (one equation per
oscillator, see Eq. (24)) and to cancel the COM velocity (four equations
per oscillator, see Eq. (32)). We expressed them as functions of our 12
tuning parameters which are the inertias and the x and y coordinates of
the COM of the four outer rigid bodies (1, 2, 9, and 10) that can be
controlled by rotating the eccentric masses of the balancing and fre-
quency tuning system (see Section 2.3). In total, we have 10 equations
for 12 tuning parameters. The redundant parameters are tunable inertias
of the two oscillators, which means that, for each of them, the same
frequency can be reached with different combinations of inertias. Note
that these two extra tuning DOFs were introduced in order to solve the
two additional equations necessary to reach shaking moment balancing
for oscillators I and II, which is out of the scope of this article.

4. Numerical validation

In this section, we validate the analytical model described in Section
3 on the Wattwins oscillator prototype depicted in Fig. 5b by the finite
element method (FEM) using the commercial software COMSOL Multi-
physics© [35]. The rigid bodies of the oscillator are defined as Rigid
Domains. The oscillator is meshed with 20-node hexahedral elements
that are refined on the flexure with 3 elements across their thickness and
5 elements along their height, see Fig. 9. To reduce computation time,
we set 1 element along the height of the Rigid Domains when possible. All
the structural analyses were done using the geometric non-linearity
setting as we are interested in the second order behavior of the
oscillator.

All the numerical parameters of the Wattwins oscillator prototype
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are grouped in Table B.4, B.5 and B.6 in Appendix B. All the imple-
mented angular settings for the eccentric masses are grouped in
Table C.7 and C.8 in Appendix C.

First, we show that our analytical model for frequency tuning based
on the independent oscillators I and II is consistent with the simulations
on the 2-DOF Wattwins oscillator. Then, we show that the predicted sags
(first order effects of COM displacement) of oscillators I and II when
subject to gravity match the simulation results on the 2-DOF oscillator.
Finally, once the sag is cancelled, we demonstrate that our analytical
model can predict the overall stiffness variation (second order effect of
COM displacement) of the Wattwins oscillator and that we can adjust it
without affecting the frequencies.

4.1. Frequency tuning

The analytical model used to compute the eigenfrequencies of the 2-
DOF oscillator is based both on the equivalent translation stiffness and
equivalent translation mass calculation of the two 1-DOF oscillators I
and II. In a first step, we use static simulations to validate the analytical
equivalent translation stiffnesses of the 1-DOF oscillators. Once the
analytical stiffness calculations are validated, we use the COMSOL
Eigenfrequency study to validate the analytical eigenfrequencies of the
1-DOF oscillators, thus indirectly validating the calculation of their
equivalent translation masses.

4.1.1. Stiffness validation

The stiffness of the 2-DOF oscillator for small deformations along the
x and y axes is computed in COMSOL by adding a load on the driving pin
attached to the rigid body 6 and evaluating its displacements along these
axes. Given the numerical parameters in Tables B.4 to B.6 and the
flexures analytical stiffness from Egs. (17), (18) and (19) one can
compute the analytical stiffnesses of the 2-DOF oscillator using Eq. (23).
Table 1 shows the results for the analytical and numerical stiffnesses of
the oscillator I (i.e., Wattwins x-axis stiffness) and the oscillator II (i.e.,
Wattwins y-axis stiffness). One can see a good match between the
analytical and numerical results, which validates this component of our
model. The numerical stiffnesses are approximately 2% higher, which
can be explained by the pure bending assumption of our model for
blades 103, 108, 111 and 114 that are, in practice, slightly subject to
shear stress, which increases their effective stiffness.

(a)
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Remark 4.1. Since all the subsequent results of the numerical vali-
dation depend on the stiffness values, we use the numerical values from
Table 1 for both the analytical and FEM results so as to validate the other
components of the model independently, without propagating the error
from the stiffness component of the model.

4.1.2. Frequency tuning validation

To numerically validate the analytical eigenfrequency model, we
extract the two first eigenfrequencies of the Wattwins prototype using
the COMSOL Eigenfrequency analysis. The analytical and numerical
results are compared at two extreme settings, which allow to validate
the range of our tuning system and the validity of our analytical model
over this range. In Setting 1, the equivalent mass of the oscillator I is at
the low end of the tuning range (i.e., the tuning masses are as close
together as possible) while the equivalent mass of the oscillator II is at
the high end, see Fig. 7. Setting 2 is at the opposite end of the tuning
range, where the frequencies of oscillators I and II are respectively the
smallest and the greatest.

The results are shown in Table 2. In order to independently validate
the equivalent mass component of the analytical model, the numerical
stiffness of Section 4.1.1 was used to calculate the analytical frequencies.
The differences between analytical and numerical results are below 1%
on both axes for both settings. We thus consider this validates both our
analytical frequency model and our approach of decomposing the
Wattwins mechanism into two independent 1-DOF oscillators.

4.2. Shaking force balancing

4.2.1. Sag

We validated the first order shaking force balancing of the Wattwins
oscillator in COMSOL by subjecting it to different gravity orientations ¢
= 0° to 360°, see Eq. (27), and evaluating the sag of the pin attached to
the rigid body 6 along the x and y axes, see Eq. (36). The analytical and

Table 1
Stiffness comparison between analytical model and FEM.

Analytical Numerical Difference (%)
x-axis 27.067 Nm™! 27.715Nm™} 2.4
y-axis 27.234 Nm! 27.756 Nm ™! 1.9

e e
S ‘&»

ol l“‘lw

(b)

Fig. 9. Wattwins (a) mesh overview and (b) close-up views of the mesh.
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numerical results were compared for two settings: Setting 3 that is not
balanced and has large sags along the x and y axes and Setting 4 that has
been shaking force balanced using our analytical model and hence
shouldn’t display any sag. Fig. 10 shows a good match between the two
models for both settings with a difference within 3% for large sags and a
residual error below 1 pm for the balanced setting, which is negligible at
the scale of our mechanism.

4.2.2. Stiffness variation

As explained in Section 3.4, once first order balancing has been
reached (i.e., the sag of the oscillator has been cancelled), the second
order of shaking force balancing has been derived from the stiffness
variation of the oscillator when subjected to different orientations of
gravity. This was computed in COMSOL by first applying gravity and,
once the oscillator has stabilized, imposing a force on the driving pin
attached to the rigid body 6 along the studied axis (x or y) and evalu-
ating its displacement along this axis. The stiffness then follows from the
force-displacement ratio.

As the Wattwins mechanism is dedicated to horological time bases, it
is important to show that its shaking force balancing can be achieved
without altering its nominal frequency, which is the frequency that will
correspond to civil time. This is shown on Fig. 11 where four different
settings were implemented without altering the two eigenfrequencies of
the oscillator, matched at fy = 16.75 Hz. Note that, in order to relate to
chronometric performance, the stiffness variations are expressed as daily
rate p, which represents the seconds per day gained or lost with respect
to the reference frequency fy. Assuming the equivalent masses of the
oscillator axes to be constant, stiffness is directly linked to its frequency
and the definition of daily rate at a frequency f [4]

p= 864007 =0 37)
Jo
can be rewritten in terms of stiffness
k — vk
p= s6400 V2= VHo (38
Vo

where k and kg are respectively the measured and nominal stiffnesses of
the oscillator axes.

Figs. 11a and d compare analytical and FEM results in the case where
the analytical model predicts either no second order effects (i.e., partial
shaking force balancing) or large second order effects, respectively. The
fact that the performance of Setting 4 (which is theoretically perfect) is
only a factor of approximately two better than Setting 7 (which theo-
retically presents defects of £200 s/day approximately) shows the limit
of an open-loop use of the analytical model: the trend of the second order
defect can be predicted with an accuracy not better than 100 s/day. We
show, however, that our analytical model allows to control indepen-
dently the sign and magnitude of the stiffness variation for each axis:

@ Comparing settings 4 and 5 (Fig. 11a and b) shows that we can
modify the magnitude of the daily rate variation (i.e., stiffness
variation) of the x-axis without affecting the y-axis,

@ Comparing settings 5 and 6 (Fig. 11b and c) shows that we can invert
the daily rate variation (i.e., stiffness variation) of the x-axis without
affecting the y-axis,
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@ Comparing settings 5 and 7 (Fig. 11b and d) shows that we can
modify the sign and magnitude of the daily rate variation of the y-
axis without affecting that of the x-axis.

In summary, even though our analytical is not accurate enough to
directly reach shaking force balancing, it can be used iteratively to tune
independently the balancing of each oscillation axis and hence find a
setting that cancels the effect of gravity without affecting the nominal
frequencies set in Section 4.1. This is the main result of this work. The
next section explains how to calculate these settings.

4.2.3. Fine tuning

One can see from the results of Figs. 10b and 11a that the residual
defects for first and second order effects of gravity have a cosine shape.
This means that our analytical model is still valid at this order of
magnitude but that the geometric and mass parameters of our system are
not estimated accurately enough, see Table B.4. This can be explained by
the simplifications of our PRBM, which assumes that the rigid and
flexible parts can be clearly separated and that the flexure joints behave
as ideal rotational joints with a torsional stiffness, whereas this is not
exactly the case in practice.

In order to improve these results, one can still use the developed
analytical model to find a new setting based on the residual defect ob-
tained by FEM. The method is to compensate the residual first and
second order FEM defects by generating a setting for which the analyt-
ical model produces the opposite defects. We proceed with the following
steps:

1. Using the residual defect curves for sag Sag(¢,) and daily rate p(¢,) in
Figs. 10b and 11a, compute the coefficients A;x,cor, Aiy,cor» Bix,cors Biy,
cor Of the opposite curves. These coefficients can be obtained from the
results for specific values of ¢g:

8
A[,x.mr

—Sag(p, = 0") = Sag(p, = 180°) = e

—Sag(g, = 90") = Sag(h, = 270°) = £ A

ki - & Bi.x.mr - \/]?1

: . H
—plgp, = 0") = p(¢h, = 180") = 86400 NG
g
ki - 72Bi‘y,mr - \/k_t
—p(, = 90°) = p(¢p, = 270°) = 86400 N

2. Using the coefficients from step 1, compute the new COM locations of
the outer rigid bodies for each axis €j cor, ®j.cors €j+1,cor Pji+1,cor USING
Eq. (30).

3. Compute the positions of the eccentric masses allowing to obtain the
COM coordinates of step 2 without changing the inertia of the outer
bars.

Applying our three steps algorithm resulted in the Setting 8 depicted
in Fig. 12. This last setting allows to improve the previous results of
Setting 4 by an order of magnitude. The residual sag is reduced from
approximately +1 pm to approximately +£10 nm. The daily rate caused
by the residual stiffness variation is also reduced from approximately
£100 s/day to a value between +4.6 and —2.7 s/day for both axes.

Table 2
Frequency comparison between analytical model and FEM for Setting 1 and Setting 2.
Setting 1 Setting 2
Analytical Numerical Difference (%) Analytical Numerical Difference (%)
X-axis 17.600 Hz 17.459 Hz 0.8 16.318 Hz 16.230 Hz 0.5
y-axis 16.333 Hz 16.222 Hz 0.7 17.551 Hz 17.443 Hz 0.6
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Fig. 10. Sag of the x and y axes of the Wattwins oscillator with respect to the orientation of gravity for Setting 3 (a) and Setting 4 (b) of the tuning masses.
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Fig. 11. Daily rate in s/day of the x and y axes of the Wattwins oscillator as a function of the angle ¢, of the direction of gravity in the xy-plane, for different settings

of the tuning masses.
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With this fine tuning, the sensitivity of the time base to gravity is well
within the 10 s/day variation in daily rate limit specified by official
mechanical watch testing organizations to obtain the “Chronometer”
certification.” This method can also be applied with experimental results
instead of FEM simulations so we expect to reach the same level of ac-
curacy with the physical prototype.

Remark 4.2. The sag and stiffness variation of the 2-DOF oscillator in
Fig. 12 are no longer of cosine shape, showing that we have reached the
limits of this analytical model.

5. Preliminary experimental validation

In this section, we present the first experimental results concerning
the shaking force balancing of the titanium Wattwins oscillator proto-
type. These results are limited to the first order shaking force balancing
characterized by the sag of the oscillator under different gravity orien-
tations, see Eq. (36). The experimental validation of the second order
shaking force balancing and frequency matching requires the develop-
ment of dedicated experimental setups and frequency extraction algo-
rithms that are beyond the scope of this article. The preliminary results
should however reassure the reader that the theory presented here will
not be invalidated by these subsequent experiments.

5.1. Stiffness measurement

As in the numerical validation (Section 4.1.1), the sag of the oscil-
lator for a given level of balancing depends on the stiffness of the
oscillator. We hence start by measuring the stiffnesses of the x and y axes
of our prototype. These values will then be used for the analytical results
in Section 5.2, so as to compare sag results that are independent from
stiffness discrepancies.

The setup for measuring the x and y axes stiffnesses of the prototype
is shown in Fig. 13. A force sensor (Kistler type 9207) with a sensitivity
of approximately —115 pC N™! mounted on a translating micrometric
table imposes a displacement to either the middle bar 3 or 8. This
displacement is measured by a linear laser distance sensor (Keyence type
LK-HO082) with a repeatability of 0.1 pm. The stiffness is then estimated
from the slope of a linear regression of the measured force-displacement
data, see Fig. 14.

Table 3 compares the expected analytical stiffness and the measured
one. Note that the expected stiffness is based on the dimensions specified
before manufacturing. The differences are within the limits determined
by the tolerances on the flexure dimensions and can hence be attributed
to manufacturing defects.

5.2. Shaking force balancing measurement

The experimental setup for the shaking force balancing measurement
is shown in Fig. 15. The prototype is mounted on a vertical rotating table
whose orientation with respect to gravity is measured by an inclinom-
eter. Two laser displacement sensors measure the sag of the oscillator
along the x and the y directions.

Fig. 16 shows the sag of the oscillator for twelve equal angular po-
sition increments adding up to a full rotation. The orientation with
respect to gravity is defined by the angle ¢, between the gravity vector
and the x-direction of the oscillator. Error bars indicate the repeatability
for five measurements performed in each position.

In order to validate the first order shaking force balancing, two set-
tings are compared: Setting 9 that is not balanced and has large sags
(equivalent to Setting 3 in Fig. 10) and Setting 10 that is shaking force

4 See the requirements for the “Chronometer” certificate of the Official Swiss
Chronometer Testing Institute (COSC) at www.cosc.swiss/en/certification/m
echanical-movements.
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balanced according to our analytical model. Fig. 16a shows that the
analytical model well predicts the prototype’s behavior for large defects,
with a difference within 5% for the x-axis sag and 10% for the y-axis sag.
In the balanced setting (Fig. 16b), the absolute difference between the
results stays of the same order, resulting in a residual sag of the proto-
type of about +10 pm. These differences can be attributed to the un-
certainty on the flexure dimensions and COM location of the different
parts composing the physical oscillator. In fact, only the weights of the
physical parts were measured and updated in the analytical model. It is
however important to notice that the sag of the prototype has been
reduced by almost one order of magnitude thanks to the tuning pre-
scribed by the analytical model: from +100 pm and +80 pm for the x
and y axes, respectively, to 15 pm and +10 pm. This shows that our
model provides an effective way of force shaking balancing the Watt-
wins oscillator up to the first order. We expect to be able to further
improve the balancing by using the fine-tuning method validated
numerically in Section 4.2.3.

Remark 5.1. Note that the analytical model predicts a non-zero sag for
Setting 10 (Fig. 16b). This is due to the fact that exact settings cannot be
physically implemented and that the analytical results have hence been
adapted to match the physical prototype.

Remark 5.2. Ideally, the numerical results would be compared
directly to the experimental ones. This is however complicated since all
results depend on the stiffness values, see Remark 4.1. The stiffnesses
can easily be adapted in the analytical model to match either the nu-
merical or experimental values. However, matching experimental and
numerical models would require artificially changing the dimensions or
material properties in the FEM model, which can have side effects. For
this reason, we consider that the fit between experimental and FEM
results can be indirectly confirmed by comparing them to the analytical
results, i.e., comparing Figs. 10 and 16.

6. Conclusion and contributions

In this article, we introduced the Wattwins horological time base, a
novel 2-DOF flexure oscillator based on the parallel coupling of two 1-
DOF Watt oscillators. For this time base to be compatible with a time-
keeper, we showed that we were able to tune independently and match
its two eigenfrequencies, as well as make them insensitive to linear ac-
celerations such as gravity, a major source of perturbation for portable
timekeepers. This was achieved by developing a new approach to
shaking force balancing based on the decomposition of perturbations
into effects corresponding to different orders of COM displacement. As a
result, the level of shaking force balancing can be tailored to the order of
precision required for the application, in our case the second order. This
approach is novel and particularly suited to the field of compliant
mechanisms, where perfect shaking force balancing significantly in-
creases the complexity of the mechanisms.

We developed a model of the oscillator based on its decomposition
into two independent 1-DOF oscillators (I and II) whose kinematics are
based on its two first mode shapes. This approach was validated by
numerical simulation where we showed that the analytical model
correctly predicts the behavior of the 2-DOF oscillator at first and second
order. The analytical model did not enable us to reach the desired level
of shaking force balancing for our application in a single step but, based
on the residual error, the analytical model was able to provide a setting
reaching our goal. With this setting, the remaining chronometric error
due to gravity is well within 10 s/day, which satisfies typical mechanical
watch specifications.

This fine tuning can also be performed on physical prototypes using
experimental results: a system of twelve eccentric masses was devised to
implement it. Two prototypes were built to validate our concepts: one in
titanium at the decimeter scale and one in silicon at the centimeter scale.
The silicon prototype served as proof-of-concept: we succeeded in
matching its eigenfrequencies and driving it using a watch movement.
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Fig. 12. Setting 8: (a) Residual sag (in pm) and (b) residual gravity stiffness variation (in s d™Y) of the x and y axes of the Wattwins oscillator versus the angle ¢, of

the gravity load in the xy-plane for the corrected setting.

Fig. 13. Stiffness measurement of the y-axis: the force sensor (on the left)
pushes the y-axis of the Wattwins oscillator by making contact with the back
side of the laser reflector while the Keyence Laser sensor (on the right) mea-
sures its displacement.
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Fig. 14. Experimental stiffness results for the x and y axes of the 2-DOF
physical oscillator. The data are fitted with linear regressions: F(A) =
24.023A and Fy(A) = 26.073A.
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Table 3
Stiffness comparison between the analytical model and the physical one.

Analytical Experimental Difference (%)
x-axis 27.067 Nm™! 24.023Nm™! 12.7
y-axis 27.234 Nm! 26.073 N m™* 4.5

The titanium prototype allowed to validate experimentally our analyt-
ical model for the shaking force balancing at first order and to demon-
strate the practicality of our tuning system. The experimental validation
of the second order shaking force balancing and frequency matching is
beyond the scope of this article and will hence be the topic of future
publications. Nevertheless, based on our preliminary results, we expect
these experiments to confirm our analytical and numerical results. Our
future research will also consist in studying the dynamic balancing of the
Wattwins and its isochronism defect, which is a major concern for
flexure time bases [2,28,29]. Finally, the out-of-plane gravity effects will
be investigated in order to minimize the differences in oscillator fre-
quencies between its horizontal and vertical positions.
To summarize, the main contributions of this article are:

. A novel Wattwins mechanism design for 2-DOF flexure horological
oscillator based on two coupled orthogonal Watt linkages.

. A new approach to shaking force balancing particularly suited for
compliant mechanisms based on the decomposition of perturbations
into effects corresponding to different orders of COM displacement.

. A numerically validated analytical model for the calculation of the
eigenfrequencies of the 2-DOF Wattwins oscillator based on two 1-
DOF oscillators allowing to independently tune the eigen-
frequencies and hence to make them match at a target absolute
frequency.

. A numerically validated analytical model for the shaking force
balancing of the Wattwins oscillator up to second order allowing to
reach typical mechanical watch chronometric specification.

. A tuning mechanism comprising twelve eccentric masses allowing to
independently tune gravity effects on the two eigenfrequencies of the
Wattwins oscillator while matching them to a target frequency.

. Two Wattwins prototypes at the decimeter and centimeter scales
ready for the experimental validation of our theory. They already
demonstrated the successful driving of the time base and the prac-
ticality of the tuning mechanism.

. An experimental method to measure the first order shaking force
balancing of a Wattwins prototype and the resulting preliminary
experimental validation of our theory.
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()

Fig. 15. Titanium Wattwins prototype positioned vertically on its balancing measurement test bench with (a) ¢, = 0° and (b) ¢g = 30°.
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Fig. 16. Sag of the x and y axes of the titanium Wattwins prototype for two different settings under varying orientations of gravity. The error bars are based on the

standard deviation for five measurements per position.

One should note that the Wattwins design is a generic 2-DOF
dynamically balanced translation mechanism. It can therefore be used
for other applications than horology such as XY high speed robotic
manipulators or embedded oscillators on aerospace or other vehicle
with high vibration levels.
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Appendix A. Details of the balancing coefficients a;, a;y, bix and b;y

H .
Uy =7—2 (e7mzsin ¢, + (—Ls +a)(my + my +ms +mg))
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Appendix B. Geometric and mass parameters for the titanium Wattwins prototype

Table B.4
Ideal Titanium Wattwins prototype: rigid bodies (j) and eccentric masses (ji) geometric and mass parameters.

J m; (kg) ¢j (m) ¢j (rad) Jj (kg m?)
1 5.25e-3 Tunable Tunable Tunable
2 5.25e-3 Tunable Tunable Tunable
3 2.10e-4 1.20e-2 —-3.05 3.44e-8

4 7.86e-5 9.32e-3 0.33 8.29%-9

5 8.29e-5 9.37e-3 0.31 8.81e-9

6 7.35e-5 4.42e-3 -1.59 1.75e-9

7 1.16e-4 9.24e-3 —-1.85 1.14e-8

8 2.54e-4 1.14e-2 1.44 3.82e-8

9 5.25e-3 Tunable Tunable Tunable
10 5.25e-3 Tunable Tunable Tunable
Jk mjx (kg) ek (m) bjx (rad) Jjk(kg m*)
11213 4.58e-4 1.43e-3 Tunable 1.85e-9
212525

9,9, 93

10, 10, 103
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Table B.5

Physical Titanium Wattwins prototype: rigid bodies (j) and eccentric masses (jx) geometric and mass parameters.
j m; (kg) ¢j (m) ¢j (rad) Jj (kg m?)
1 5.33e-3 Tunable Tunable Tunable
2 5.27e-3 Tunable Tunable Tunable
3 2.07e-4 1.19e-2 —3.04 3.3%-8
4 8.23e-5 9.32e-3 0.33 8.6%e-9
5 8.67e-5 9.37e-3 0.31 9.22e-9
6 7.67e-5 4.42e-3 -1.59 1.83e-9
7 1.19e-4 9.24e-3 -1.85 1.19e-8
8 2.53e-4 1.13e-2 1.43 3.79%-8
9 5.32e-3 Tunable Tunable Tunable
10 5.30e-3 Tunable Tunable Tunable
Jk mjx (kg) € (m) ¢jk (rad) Jij (kg m?)
1; 1513 4.60e-4 1.43e-3 Tunable 1.86e-9
272923
919293
10, 105 105

Table B.6

Titanium Wattwins prototype: gravity constant,

Young’s modulus, geometric and mass
parameters.

Parameter Value
G(ms?) 9.8066
Eq; (Pa) 114e9

Ly (m) 20.00e-3
Ly (m) 11.00e-3
L3 (m) 20.80e-3
a (m) 4.00e-3
¢ (m) 2.50e-3
f(m) 3.00e-3
H (m) 16.00e-3
1 (m) 3.00e-3
p (m) 0.90e-3
fi=1,2910 (kg mz) 1.8e-17
I _ 381114 (kg m?) 1.8e-17
L — 451213 (kg m?) 1.8e-17
Ij — 67 (kgm?) 3.52e-17
X1,1 (m) —5.45e-3
X1,2 (m) 7.87e-4
X1,3 (m) 4.39%e-3
X2, (m) —4.53e-3
X2 (m) 5.33e-3
X33 (m) —7.75e-4
Xo,1 (m) —3.17e-3
Xo,2 (m) 6.09e-3
Xo,3 (m) —1.73e-3
Xi10,1 (m) 6.10e-4
X102 (m) 1.94e-3
X10,3 (m) —7.27e-3
Y1, (m) 1.82e-3
Y12 (m) —5.95e-3
Y1,3 (m) 3.33e-3
Y1 (m) —1.93e-3
Y (m) —5.74¢-4
Y3 (m) 7.29¢-3
Yo,1 (m) —4.39%e-3
Yo,2 (m) —7.06e-4
Yo 3 (m) 5.47¢-3
Y10,1 (m) —5.35e-3
Y10,2 (m) 4.52e-3
Y10,3 (m) 7.41e-4
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Table C.7
Settings 1 to 6.
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Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6
¢11 () 338.77 158.77 270.10 158.77 271.77 82.77
$1,2() 98.77 278.77 270.10 —81.23 278.77 98.77
$13() 218.77 38.77 270.10 38.77 295.77 104.77
e; (m) 3.70e-04 3.70e-04 7.42e-04 3.70e-04 7.27e-04 8.59¢-05
¢1 () —97.90 —97.90 —93.88 —97.90 —87.94 179.44
2,1 () 37.84 217.84 89.58 29.37 —87.53 88.23
2,2 () 157.84 337.84 89.58 149.37 —63.98 108.59
¢2,3() 277.84 97.84 89.58 —90.63 277.83 89.62
ez (m) 1.17e-03 1.17e-03 1.55e-03 1.17e-03 8.15e-04 1.54e-03
P2 () 89.90 89.90 89.82 89.90 84.44 91.23
$o1 () 231.71 51.71 0.62 51.71 51.71 51.71
P2 () 351.71 171.71 0.62 171.71 171.71 171.71
$o3 () 111.71 291.71 0.62 291.71 291.71 291.71
eg (m) 4.51e-04 4.51e-04 8.23e-04 4.51e-04 4.51e-04 4.51e-04
$o () 9.07 9.07 5.24 9.07 9.07 9.07
101 () 292.30 112.30 179.94 -71.16 -71.16 -71.16
$102 () 52.30 232.30 179.94 48.84 48.84 48.84
103 () 172.30 352.30 179.94 168.84 168.84 168.84
e1o (m) 1.16e-03 1.16e-03 1.53e-03 1.16e-3 1.16e-03 1.16e-03
10 () —179.27 —-179.27 —179.46 —179.27 —179.27 —179.27
Table C.8
Settings 7 to 10.
Setting 7 Setting 8 Setting 9 Setting 10
$1,1 () 271.77 158.86 —90.57 93.24
¢1,2() 278.77 —142.49 —88.84 —154.84
$1,3() 295.77 15.82 —88.44 —18.55
e; (m) 7.27e-04 3.92e-04 7.45e-4 3.46e-4
¢ () —87.94 —111.89 —93.54 —98.71
21 () —87.53 98.00 89.92 —139.25
2,2 () —63.98 179.63 88.88 0.17
$2,3() 277.83 —68.37 87.70 103.37
e (m) 8.15e-04 1.18e-03 1.55e-3 1.21e-3
¢2() 84.44 94.56 89.65 89.85
$o1 () 307.62 210.00 —0.41 —128.89
o2 () 315.62 17.56 -2.07 —3.52
$o3 () 328.62 —69.93 0.18 119.48
eg (m) 7.39%-04 5.04e-04 8.25e-4 4.43e-4
¢o () —14.08 —8.07 4.58 9.70
101 () —54.00 173.90 184.19 —67.59
$102 () —32.96 —19.62 183.72 63.77
$103 () 318.75 —62.91 181.56 177.65
eqo (m) 9.25e-04 1.12e-03 1.53e-3 1.18e-3
P10 () —163.31 —172.07 —178.69 —179.38
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