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Reminder: Probability and Inferential Statistics

e For any known population it is possible to determine the probability of
obtaining any specific sample.
e Typically a researcher begins with a sample.

e |[f the sample has a high probability of being obtained from a specific
population, then the researcher can conclude that the sample is likely to
have come from that population.

e |f the sample has a very low probability of being obtained from a specific
population, then it is reasonable for the researcher to conclude that the
specific population is probably not the source for the sample.
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Error and power

e Type | error rate (or significance level): the probability of

finding an effect that isn’t real (false positive).

e If we require p-value<.05 for statistical significance, this means
that 1/20 times we will find a positive result just by chance.

e Type Il error rate: the probability of missing an effect
(false negative).

e Statistical power: the probability of finding an effect if it
is there (the probability of not making a type Il error).
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Confidence Intervals

e We can use a “confidence interval” to study the precision of an estimate.

e Example:

e Consider I-Beams used to construct buildings
— Brand 1 and Brand 2 happen to have identical yield
strengths

— However, when we look at distributions of data, we
find that 95% of samples of Brand 1 fall within a tighter
range than 95% of samples of Brand 2

Brand 1: Strength

ot
S’

Strength

-
o

Brand 2:

— These represent the 95% confidence intervals of Brands 1 an 2

— Which one would you pick, and why? How would this relate to the needs of
your construction?
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Sample Size and Confidence Intervals

* In most experiments, we don’t just take 1 sample... we take several samples,
and the look at the mean and standard deviation.

e If we want to determine our confidence in this result, we are effectively
doing “repeated sampling”, i.e., we are asking how confident we are that the
mean will fall within a certain range, we should follow our repeated
sampling methodology from Module 2.

parent distribution
ofy
Parent Distribution Sampling Distribution 2[: o , (normal)
. . - B e oo
for Observations ¥y for Averages y N | . | * e ®* oale s
I L ] I BT
Mean n n 2 ®
Variance a? o?/n - ¢
Standard deviation o o/Jn sampling
Form of parent Any* More nearly normal than o‘g’;t(':f;“r‘r"‘“:n
distribution the parent distribution . '
— L] [ ]
*This statement applies to all parent distributions commonly mel in practice, It is not true for certain I * *
mathematical toys (e.g., the Cauchy distribution), which need not concern us here. -2

e So, the resulting normalization for the distribution will be:

_X-—n
o/Vn

Z
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Confidence Intervals in normal distributions

¢ For the normal distribution

X—p
Pl —1.96 < <1.96|= .05

—

o/N'n

e More generally:

Zcurve

4
| — « Shaded area = a/2

, Y
| s

]
“all

A 100(1 — a)% confidence interval for the me
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Confidence Intervals and experiments

We use confidence intervals to check if an experimental factor affects a
measured response

Population

Middle 95%

High probability values
(scores near 1 = 400)
indicating that the treatment
has no effect

Normal
T = 400
=20

to be obtained from the original population
and therefore provide evidence of a freatment effect

T u
\ 4 r = 400
e z=-196 n z=+1.96
T— N ? Treated
m scmple Extreme 5%
ﬁ Scores that are very unlikely
.I,
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Example: Asterix

Astérix

Panoramix’s
Potion magique
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Weightlifting population data

Male Bodyweight (Kg) Histogram
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Count
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Bodyweight

Male Bodyweight vs. Deadlift
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BestDeadliftKg
N
(=]
o

=
=]
]
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BodyweightKg

Questions to consider:

[

Male Deadlift
30000
25000

20000

15000

Count

10000

5000

0 100 200 300 400
Weight in Kilograms

Are body weight and deadlift weight
independent?

Assuming normality, sketch an expected
deadlift histogram for an Asterix-like human
(pre-potion)

Repeat for an Obelix-like human (pre-potion)
What conclusions might you draw regarding
bodyweight vs. deadlift weight?
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Does the potion work?

Male Deadlift

gﬁOOO
Scenario 1.
Pre-potion deadlift: 100kg o S
Post-potion deadlift: 150kg This is often the situation in real

experiments, since we don’t have access
Scenario 2: / to pre- and post- treatment data on an
Pre-potion deadlift: ? individual sample
Post-potion deadlift: 150kg

Scenario 3:
Pre-potion deadlift; ?
Post-potion deadlift: 250kg
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Does the potion work?

Assurancetourix

100

Male Deadlift

Post-potion

200 300
Weight in Kilograms

400
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Does the potion work?

Assurancetourix

100

Male Deadlift

Post-potion

200 300
Weight in Kilograms

400
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What can you say about the effectiveness of the potion?

Did not fall in
potion when he
was a baby

Fell in potion when
he was a baby

=

Male Deadlift

Post-potion

200 300 400
Weight in Kilograms

Male Deadlift

Post-potion

100 200 300 400
Weight in Kilograms
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Types of Measures / Variables

e Nominal / categorical

— Gender, major, blood type, eye color

e Ordinal

— Rank-order of favorite films

e Interval / scale

— Time, money, age, GPA

Pﬂ- MICRO-110 / Spring 2025

14



Main Analysis Techniques

Variable Type Example Commonly-used
Statistical
Method
Nominal by Nominal blood type by gender | Chi-square

Scale by Nominal GPA by gender t-test

GPA by major Analysis of Variance
Scale by Scale weight by height Regression

GPA by SAT Correlation

)
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Overview of common statistical tests

Are the observations correlated?

(e.g. blood pressure,
age, pain score)

Linear correlation
Linear regression

_ independent correlated _
Outcome Variable Assumptions
Continuous Ttest Paired ttest Outcome is normally
ANOVA Repeated-measures ANOVA | distributed (important

Mixed models/GEE modeling

for small samples).

Outcome and predictor
have a linear
relationship.

Binary or
categorical

(e.qg. breast cancer
yes/no)

Chi-square test
Relative risks
Logistic regression

McNemar’s test
Conditional logistic regression
GEE modeling

Chi-square test
assumes sufficient
numbers in each cell
(>=5)

Time-to-event

(e.g. time-to-death,
time-to-fracture)

Kaplan-Meier statistics
Cox regression

n/a

Cox regression
assumes proportional
hazards between
groups
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Continuous outcome (means)

Are the observations correlated?

Alternatives if the

between more than two
independent groups

Pearson’s correlation
coefficient (linear
correlation): shows linear
correlation between two
continuous variables

Linear regression:
multivariate regression technique
when the outcome is continuous;
gives slopes or adjusted means

Repeated-measures
ANOVA: compares changes
over time in the means of two or
more groups (repeated
measurements)

Mixed models/GEE
modeling: multivariate
regression techniques to compare
changes over time between two
or more groups

Outcome normality assumption is
Variable | independent correlated violated (and small n):
Continuous Ttest: compares means Paired ttest: compares means | Non-parametric statistics

(e.g. blood between two independent between two related groups (e.9., | Wilcoxon sign-rank test:
pressure, groups the same subjects before and non-parametric alternative to

age, pain after) paired ttest

score) ANOVA: compares means Wilcoxon sum-rank test

(=Mann-Whitney U test): non-
parametric alternative to the ttest

Kruskal-Wallis test: non-
parametric alternative to ANOVA
Spearman rank correlation

coefficient: non-parametric
alternative to Pearson’s correlation
coefficient
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A general methodology for hypothesis testing

e Hypothesis to test: The potion works

e Null hypothesis: The potion doesn’t work, so there is no association between
the pre- and post- data, i.e.,
— we would expect that the samples came from the same population

— Any differences in sample means, etc. were purely due to dispersion

The test:
— Assuming we have access to the population central tendency and dispersion

— Calculate probability that the post-treatment sample came from that
population

e If yes: Null hypothesis is probably correct
e [If no: Null hypothesis is probably incorrect

e What do we do if we don’t have the population information?
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Reminder: Normal Distribution

-(l)fl! MICRO-110 / Spring 2025

19



The Basics

e Develop an experimental hypothesis
— HO = null hypothesis
— H1 = alternative hypothesis

e Statistically significant result
— P Value =.05

lhis et area shaded
dark blue iz 025

ofthe total area
under the curwe.

Thiz right area shaded

dark blueis 023
of the total area
under the curve.

-1.86 0 1.96
Marmal Probakility

[Thiz right area shaded
datk blue iz .05
of the total area

under the curve.

0
M armal Probability

T
1643
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P-Value

e Probability that observed result is true
e Level=.050r5%
e 95% certain our experimental effect is genuine

Pﬂ- MICRO-110 / Spring 2025

21



Logic of Statistical Inference

e What is the probability of drawing the observed sample from a universe with no
differences?

e If probability very low, then differences in sample likely reflect differences in
universe

e Then null hypothesis can be rejected; difference in sample is statistically significant

Pﬂ- MICRO-110 / Spring 2025
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Tests that do not make the NIID assumption

e Empirical past data
— Calculate p value based on comparisons to past data
e Randomization test

— Generate a fake data set by assuming the null hypothesis is true, which means
that switching treatments should have no impact on the data and we can
generate a large data set using computational means
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Z-test

« Population

* Problems
— Cost
— Not able to include everyone
— Too time consuming
— Ethical right to privacy

Realistically researchers can only do sample based studies

Pﬂ- MICRO-110 / Spring 2025
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Z-test and P-values

Icurve

P-value = area in upper tail
1. Upper-tailed test =1- dz)

H, contains the inequality = : .
! ’ I Null hypothesis: Hy;: 0 = u,

|
L —
0 o X—p
T Test statistic: Z = —
Calculated z a/N'n

Alternative Hypothesis P-Value Determination

I curve

) P-value = area in lower tail H:p>=p, Area under the standard normal curve to the right of z
2. Lower-tailed test = d(z) ’
H, contains the inequality < H:p<p Area under the standard normal curve to the left of z
| H:p#p 2 - (area under the standard normal curve to the
0 ; . .
right of |z |)

Calculated z

- . 1ptic : ormal population distrib n Wi oW L > of o.
P-value = sum of arca in two tails= 2[1 - ()] Assumptions: A normal population distribution with known value of o

3. Two-tailed test

a1 - M aly , 2=
H, contains the inequality #

Calculated z, —z

Note: We find the probability in the shades regions since we would “at
least” reach the calculated z value in these regions
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Example: Concrete for sidewalk

e A dynamic cone penetrometer (DCP) is used for measuring material resistance to
penetration (in mm) as a cone is driven into sidewalk concrete. Suppose it is
required that the true average DCP value less than 30. The concrete will not be
used unless there is conclusive evidence that the specification has been met.

e DCP Data:

141 145 155 160 16.0 167 169 171 175 178
17.8  18.1 182 183 183 190 192 194 200 20.0
208 208 210 215 235 275 275 280 283 300
300 316 317 317 325 335 339 350 350 350
36.7 400 400 413 417 475 500 510 518 544
55.0 57.0

e Generated distribution:

e Does this look normal to you? How should we proceed?
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Sidewalk Example (cont’d)

1. p = true average DCP value
2. Hy p=30
3. H,;: p < 30 (so the pavement will not be used unless the null hypothesis is
rejected)

x—30
4. z=

s/Nn
5. With n = 52,x = 28.76, and 5 = 12.2647,

28.76 — 30 —1.24
z= = = —.73

122647/7/52 1701

6. The P-value for this lower-tailed z test is ®(—.73) = .2327.

e So, we don’t use the pavement since there is not clear evidence that the
concrete will deliver DCP < 30.
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The t-test

e Used when we don’t have access to population standard deviation

X —
r=—2F
S‘H‘ \\;"r” t curve for re]eQnLd[
. P-value = area in upper tail
o There are a few different types of t-tests: ' tmuiciis /\\/ .
a contains the Inequal ]l)' =
— If we know the population mean, and —

Calculated ¢

want to see if a sample set is “different”, e

weusea 1-Samp|e t-teSt P-value = area in lower tail /
2. Lower-tailed test
- If we have pre‘ and pOSt- treatment H, contains the inequality < \>/\

independent samples, we use a P
Calculated ¢

Z'Sa mple t-teSt P-value = sum of area in two tails
[

[N t curve for relevant df
\ . L~

— If the pre- and post-samples are not
. . 3. Two-tailed test
Independent’ then we use a pHIFEd H, contains the inequality #

t-test t 0 ]

Calculated r, —t
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T-test

e To test a sample vs. a population (i.e., is the sample part of the population)

_X—-M
(= S
yn-
e 2 Sample t-test
t — Xl o X2 =
X1 =X,

¢ Paired t-test

1. Calculate the difference (d; = y; — ;) between the two observations on each pair,
making sure you distinguish between positive and negative differences.

2. Calculate the mean difference, d.

3. Calculate the standard deviation of the differences, s4, and use this to calculate the
7 Sd

standard error of the mean difference, SE(d) = /n

4. Calculate the t-statistic, which is given by 7' = STd(dr) Under the null hypothesis,

this statistic follows a t-distribution with n — 1 degrees of freedom.
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Some online p value calculators

e https://www.graphpad.com/quickcalcs/pvaluel.cfm

e https://www.socscistatistics.com/pvalues/

e https://goodcalculators.com/student-t-value-calculator/

Pﬂ- MICRO-110 / Spring 2025
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An Example: Yield improvement

e Here is pre- and post-change data from a process that is modified with the
goal of improving yield

92

90".

86 -

Yield

Process A

Process B

84

82

80}

L
1 it 1§ t t v 1

| S T U N A |
1 23 45678 910 111213 14 15161718 19 20

Time order

Table 3.1. Yield Data from an Industrial Experiment

Time Order Method Yield
1 A 89.7
2 A 81.4
3 A 84.5
4 A 84.8
5 A 87.3
6 A 797
7 A 85.1
8 A 81.7
9 A 83.7

10 A 845

11 B 84,7

12 B 86.1

13 B 83.2

14 B 91.9

15 B 86.3

16 B 79.3

17 B 82.6

18 B 89.1

19 B 83.7

20 B 88.5

¥, =8424 J,=8554
Fa =T =130

e Do you think the process improvement works? What type of t-test should

we use?
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2 sample t-test

Table 3.1. Yield Data from an Industrial Experiment

e We have: 4 Z_(J‘A ”"_-}'-,q)l 75.784 Time Order Method Yield
Sa = e —1 = 9 =842 i A 89.7
A 2 A gl4
— 12 3 A 84.5
L 2. s =¥ 119924 : A oy
Sp = = = 13.32 5 A 87.3
ng—1 9 6 A 79.7
. .. . 7 A B5.1
e Since we assumed similar variances, we can 8 A 81.7
H 9 A 83.7
combine these as: 10 A 84.5
11 B 84.7
=2 — \2 B 86.1
2 2. 04A=F’+) (vs o) 757844119924 07 15 B 832
na+ng—2 18 :g ﬁ gég
e Next, we can write the t distribution (replace 16 p e
the o with s in the z distribution): s : b
- 20 B 88.5

t = O — ¥a) F,=8424  J,=85.54

s/1/ng +1/ny Fa—TFp =130

e We also have yg —y, = 1.30 and

s{/1fng+1/na =1.47,50t=0.88,50  pr(r > 0.88) = 19.5%.

Therefore, process B is not a statistical improvement on process A
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But what if | have access to the population data

e Yield over the last approx. 200 runs

92.0 ~
9001 -*
- .
8Bo[" ¢ “*
BGC'- . . . ..'.o. e *"N* . :.' ve * .ul-'
Rl LY S . . st & e .
% 340_... o* . o % .J‘. e ee, ., o’
O . .
= i :-..o 0....‘ .ta-. e . - . . o ..'..‘ ... ™ o
820 s .o .® [ . . e '.0. .. e & _ 0 o? L]
. [ L I T
80.0 - e e "y ® * * : . * .. & **
mof T . ] . .
TEG-ll PO I T O A N U Y T O TR W N O A A LlliJgJ o o oeoe gy gl
Y] 20 40 60 80 100 120 140 160 180 200 220
Time order

e | generate a relative reference set of data by plotting the change iny for
adjacent set of 10 observations

]
o —
§ Only 9/147 observations support the null hypothesis
00 00 (4.7% significance level), so the process probably works.
0 ooogggo 3] gg 0
Q Q000000 o0 oo ©
Q 0 000000C QDO O00 00
00000000000 COO00QO0 QO o
o0 00000000000 OOQO0000Q000 O .
000060000600060000000 6060000 O Note: to generate this reference set, | needed a lot of
——loo__d oocdocoodocoodoonoolocoodogoool o I o . . ., .
20 -15 1.0 -05 0 05 10 |15 20 - prior data, which isn’t always available
1.30
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Comparing the external reference with the t test

a Observed difference
n 37 -
3 Va4~ Vg=1.30
o0 o
oo o0
000 Q0
O 000000 o o0 O
O Cco00000 oo o0 o0 u 04?
Qo o 9000000 Q00 00O 00 "
09000000000 0000000 OO0 “##f”f##‘—
oo 50000000000 0000000000

o0 0000000000 000000000000
00000000 000000000000000000
| oo _0 000400000000 00RC00000C0000000 o] ] |

-3.0 -2.0 -1.0 0 1.0 2.0 3.0
(@)

Yo~ Ya=1.30

The difference is due to breakdown in NIID assumptions.
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So what do we do in that case?

e The t-test starts producing errors if the NIID (normal, independent and
identically distributed) assumption breaks

e We often don’t have external reference data.

e What do we do? Answer: we can test for significant by creating a fake set of
random data... this is known as the randomization test.

e Example: Consider the test on a possible “improved” tomato fertilizer

Table 3.3. Results from a Randomized Experiment (Tomato Yields in Pounds)

Position in row | 2 3 4 5 6 7 8 9 10 11

Fertilizer A A B B A B B B A A B

Pounds of 292 114 266 237 253 285 142 179 165 2I.1 243
tomaloes

Standard Modified
Fertilizer A Ferilizer B

29.9 26.6
1.4 23.7
253 285
16.5 14.2
21.1 17.9
243
nyp=>5 ng =6

T, =20.84 Fp=22.53
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Randomization test

e [f the null hypothesis is true, we should be able to mix up the A and B labels
and it shouldn’t change the population

e |nthe actual data, there are 5 “A” fertilizers and 6 “B” fertilizers. Therefore, if

. 11! .
were to randomize the labels, there would be a total ofﬁ = 462 variations

4 5 6 7 8 9 10 11
B A B B B A A B
37 253 285 142 179 165 211 243

Position in row | 2

Fertilizer A A

Pounds of 292 |1
tomatogs

e These can then be used plot the distribution
of faked y5 — y, results. AN

~ N
e Recall the real y5 — 3, = 1.69 / 552
e We see that 154/462 = 33%, equal or exceed I i
that value, which means that the fertilizer / \

improvement likely meets the null hypothesis,
i.e., it doesn’t actually improve anything!

1]
— T . I 1
-10 -5 o & 5 10

Difference means
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t-test on the tomato experiment

T — Fa =22.53 — 20.84 = 1.69

p.
2 Z-’"i‘(zﬂ) /na s 209.9920

e e
s XA (En) sy _wsm
b ng— 1 v 4 |

The pooled variance cstimate is

2 Sat+Se  vasi+vpsp  452.50)+5(29.51)
st= = = =39.73
Vo + Vg vy + Vg 4+5

with v =n4 +ng—2=v,y + vg =9 degrees of freedom

The estimated variance of Yz — ¥4 is s2(I/ng + 1/n4) = 39.73(1/6 + 1/5) = 14.57.
The standard error of Y5 ~ ¥, is v 14.57 = 3.82,

_ g —¥5) _(22.53 - 20.84) _ 169
g+ 1/ng)  3973(1/6 + 1/5) 3.82

=044 with v =9 degrees of frecdom
Pr(t = 1y) = Pr(t = 0.44) = 0.34

Similar to randomization experiment, so the fertilizer doesn’t offer any improvement
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Paired Experiments

e Many experiments result in pairs (e.g., we have before and after data on a
specific sample, or we ran two “identical” samples through highly correlated
processes other than the treatment in question)

Pﬂ- MICRO-110 / Spring 2025
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paired t test

at

. Calculate the difference (d; = y; — x;) between the two observations on each pair,

making sure you distinguish between positive and negative differences.

Calculate the mean difference, d.

Calculate the standard deviation of the differences, s4, and use this to calculate the
1) — _Sd_

standard error of the mean difference, SFE(d) = /n

d
SE(d)

this statistic follows a t-distribution with n — 1 degrees of freedom.

Calculate the t-statistic, which is given by 7" = . Under the null hypothesis,

Use tables of the t-distribution to compare your value for T to the ¢,,_; distribution.
This will give the p-value for the paired t-test.

differences _between _sample means

~ estimated _standard _error _of _differences _between _means

Compare to the
normal t test: _ _

[ = o = 312+822

N

§_ _ *non
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Example: An improved shoe sole material?

e Put a shoe with the old sole material on one foot of each boy
e Put a shoe with the new sole material on the other foot

e The soles are now paired, under the assumption that they will see similar
conditions

e Left and Right foot assignments are randomly assigned using a coin toss
e Measure the wear on the soles for 10 boys

Table 3.5. Boys’ Shoes Example: Data on the Wear of 1k o 2 E
Shoe Soles Made of Two Different Materials A and B ‘ o
® ®
Boy Material A Material B Dilferenced = B - A
2 le) o)
1 13.2(L) 14.0(R) 0.8 o o -
2 8.2(L) 8.8(R) 0.6 i ° ° ° f. {' Material A
3 109(R) 11.2(L) 0.3 5 O Material 5
4 14.3(L) 14.2(R) ~0.1 £ 10F o o)
5  10.7(R) 11.8(L) 1.1 d o)
6 6.6(L) 6.4(R) —-0.2 i o °
7 9.5(L) 9.8(R) 0.3 °
8 108(L)  113(R) 0.5 8
9 8.8(R) 9.3(L) 0.5 i
10 13.3(L) 13.6(R) 0.3 ¢
. - | | | 1 | | L | |
Average difference d = 0.41 i’l/ 1T 2 3 4 5 6 7 8 9 10
Boys |
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Paired t-test

The sample variance is:

(d — d)?
s = Z = 0.149
a n—1

Assuming random sampling, we can say:

sq = v/0.149 = 0.386 and

For the null hypothesis:

d—8 041-=0
Ip = = =34
’ 57 0.12 ’

So, we conclude that B wears faster than A

. 8
_ﬁ__93_§=0122

Jno V10

Pr(t > 3.4) =2 0.4%

.(l)ﬂ- MICRO-110 / Spring 2025
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Randomization test on the shoe wear data

e CoinToss
— Heads: Material A on right foot
— Tails: Material B on right foot

e Actual coin toss

T TH THTTTMHT

e Total number of toss possibilities: 21°=1024

e [f the null hypothesis is true, the actual choice of H or T shouldn’t matter

+08+06+£---+£03
10

d=

Pﬂ- MICRO-110 / Spring 2025
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Results

e The randomized distribution vs the actual sample

R
Table 3.5. Boys’ Shoes Example: Data on the Wear of
1 /,_,\ - Shoe Scles Made of Two Different Materials A and B
- N | -
/7 TN Boy Material A Material B Differenced = B - A
) \

YTHITTHTIN 1 13.2(L) 14.0(R) 0.8

/ \ 2 s2L) 8.8(R) 0.6

i 1IN 3 109R)  112(L) 0.3

n /- N 4 143(L) 14.2(R) -0.1

) \ 5 107R)  118(L) 1.1

/ 6 6.6(L) 6.4(R) ~02

7 9.5(L.) 9.8(R) 03

8 10.8(L.) 11.3(R) 03

9 8.8(R) 9.3(L) 0.5

10 13.3(L) 13.6(R) 03

Average difference d = 0.41
i ) 1] T
0.4 -0.2 0.0 02

Ditference means

e 0.41 is actually extremely unlikely in the null hypothesis (5/1024 = 0.5%)

e Therefore, we conclude that the soles are actually different and material A is
better than B (i.e., B has more wear than A)
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A note about 1-sided vs. 2-sided tests

e All our probabilities have looked at the one-sided values, since we have
assumed that the modification would either improve or degrade the same
(or do nothing, i.e., the null hypothesis)

e If your modification can do either, it is appropriate to use the two-sided
probability tables, which account for both sides of the distribution
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~ANOVA: Analysis of Variance

* The difference between ANOVA and the t tests is that ANOVA can be
used in situations where there are two or more means being
compared, whereas the t tests are limited to situations where only
two means are involved.

e Analysis of variance is necessary to protect researchers from
excessive risk of a Type | error in situations where a study is
comparing more than two population means.

e ANOVA allows researcher to evaluate all of the mean differences in a
single hypothesis test, keeps the risk of a Type | error under control
no matter how many different means are being compared.
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“Why not use multiple t tests?

e These situations would require a series of several t tests
to evaluate all of the mean differences. (Remember, a t
test can compare only 2 means at a time.)

e Errors can also accumulate over the multiple t tests
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How would we solve this problem using a t-test?

Population 1 Population 2
(Treatment 1) (Treatment 2)
Sample 1 Sample 2
n=15 n=15%

y =231 y =285
s =114 s = 130

Population 3
(Treatment 3)

Sample 3
n=15
y =208
¢ = 101

a7



~ANOVA methodology

* The test statistic for ANOVA is an F-ratio, which is a ratio of two
sample variances. In the context of ANOVA, the sample variances
are called mean squares, or MS values.

e The top of the F-ratio MS,,,,.., measures the size of mean
differences between samples. The bottom of the ratio MS, ;..
measures the magnitude of differences that would be expected
without any treatment effects.

obtained mean differences (including treatment effects) MS,ctween
F = =

differences expected by chance (without treatment effects) MS,ithin

e A large value for the F-ratio indicates that the obtained sample mean
differences are greater than would be expected if the treatments
had no effect.

Pﬂ- MICRO-110 / Spring 2025

48



Why are these values important?

Total
variabpility

Between-
freatments
variance

Measures differences

due to
1. Systematic treatment effects
2. Random, unsystematic factors

Within-
freatments
variance

Measures differences
due to
1. Random, unsystematic factors
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ANOVA Example: Blood coagulation based on diet

e We consider the effect of 4 different diets on blood coagulation time

D. ® 9o 00
¥ ] T i 1
€ T *o ®-
B— : Q_._'_?_.—?_
]
o0 [ )
A-T ; $ T |
56 61 ‘' 66 71

Diets (Treatments)

A B C D
62 63 68 56
60 67 66 62
63 71 71 60
59 64 67 61
63 65 68 63
59 66 68 64
Treatment average 61 66 68 61
Grand average 64 64 64 64

Difference -3 +2 +4 -3
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ANOVA table generation

e We create the following table Diets (Treatments)
A B C D
Treatment average 61 66 68 6l
Grand average 64 64 64 64
Difference -3 +2 +4 -3
- Deviations Residuals within-
from Grand Treatment Treatment
Observations Average of 64 Deviations Deviations
¥ Vi —Y 3’-; = Yei — E
62 63 68 56 -2 -1 4 -8 -3 2 4 -3 1 -3 0 -5
60 67 66 62 -4 3 2 =2 -3 2 4 -3 - 1 =2 1
63 71 71 60 -1 7 7 -4 -3 2 4 -3 2 5 3 -1
59 64 67 61 -5 0 3 =3 -3 2 4 -3 -2 -2 -1 0
63 65 68 63 -1 1 4 -1 -3 2 4 -3 2 -1 0 2
59 66 68 64 5 2 4 0 -3 2 4 -3 -2 0 0 3
Y D=Y-64 = T + R
Sum of squares 340 = 228 + 112 Explained
degrees of freedom 23 = 3 + 20 ————

next

[
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Reminder: Degrees of freedom

e Degrees of freedom are important in ANOVA

* For example, if we fix the overall mean, the residuals from the overall mean
have 23 degrees of freedom since there are 24 data points, and knowing 23
allows us to determine the last 1 from the overall mean

e So, we see that:

- V=Y has 23 degrees of freedom (since there are 24
residuals from the overall mean
- =y has 3 degrees of freedom (since there are 4

treatment mean residuals from the overall mean)

- Yei — ¥, has 20 degrees of freedom (there are 24 values,
but columns must total to zero, and the overall
sum most be zero, so 24-1-3)
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The sum of squares

Residuals within-

Deviations
from Grand Treatment Treatment
Observations Average of 64 Deviations Deviations
Yei Mi—Y Y -7 Yei — ¥
62 63 68 56 -2 -1 4 -8 -3 2 4 -3 1 -3 0 -5
60 67 66 62 -4 3 2 =2 -3 2 4 -3 -1 1 =2 1
63 71 71 60 -1 7 7 -4 -3 2 4 -3 2 5 3 -1
59 64 67 61 -5 0 3 =3 -3 2 4 =3 -2 =2 -1 0
63 65 68 63 -1 1 4 -1 -3 2 4 -3 2 -1 0 2
59 66 68 64 5 2 4 0 -3 2 4 -3 -2 0 0 3
Y D=Y~-64 = T + R
Sum of squares 340 = 228 + 112
degrees of freedom 23 = 3 + 20
2 2
Sp = (=2 + (1)  + #*+ -+ (0)* =340
2
St = (=3 + Q2 + @+ +(-3)* =228

Se=(1P+ (=32 + (0P +---+(3)* =112

[
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Mean squares and F value

e We have:

Degrees of
Source of Variation Sum of Squares ~ Freedom  Mean Square
Between treatments Sy =228 vr= 3 mr =760 Fr o = 13.63
Within treatments Sg =112 vg=20 mp= 56 N7 "
Total about the §,, = 340 vp =23

grand average

e Where S; and S; and v; and v have been calculated as before

e m;=S;/v;andmg=S; / vg

e F=m;/mg

* Looking up tables for F; ,,, we find:

F32 > 13.6 is less than 0.001.

e In other words, the null hypothesis is strongly rejected
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How to interpret F-ratio values

e When the null hypothesis is true and there are no differences between
treatments, the F-ratio is balanced.

e That is, when the "treatment effect" is zero, the top and bottom of the F-
ratio are measuring the same variance.

e In this case, you should expect an F-ratio near 1.00. When the sample data
produce an F-ratio near 1.00, we will conclude that there is no significant
treatment effect.

e On the other hand, a large treatment effect will produce a large value for the
F-ratio. Thus, when the sample data produce a large F-ratio we will reject
the null hypothesis and conclude that there are significant differences
between treatments.

Pﬂ- MICRO-110 / Spring 2025

55



_Analysis of Variance and Post Tests

e The null hypothesis for ANOVA states that for the general population there
are no mean differences among the treatments being compared; H,: n, =n,

=M= ...

e When the null hypothesis is rejected, the conclusion is that there are
significant mean differences.

e However, the ANOVA simply establishes that differences exist, it does not
indicate exactly which treatments are different.

e With more than two treatments, this creates a problem. Specifically, you
must follow the ANOVA with additional tests, called post tests, to determine
exactly which treatments are different and which are not.

e The Scheffe test and Tukey=s HSD are examples of post tests.

e These tests are done after an ANOVA where H, is rejected with more than
two treatment conditions. The tests compare the treatments, two at a time,
to test the significance of the mean differences.
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Extensions to ANOVA

e There are also blocked ANOVA methodologies, etc. (analogous to the t-test
blocking we looked at previously)

e However, we will not study them by hand but will examine them by
computer in exercises.
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Pitfalls to consider with significance testing

e Statistical significance does not guarantee experimental significance.

e Statistical significance does not imply a cause-effect relationship.

e Lack of statistical significance is not proof of the absence of an effect.

e Presence of statistical significance in one group and lack of statistical
significance in another group # a significant difference between the
groups.
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Estimation

e |n general terms, estimation uses a sample statistic as the basis for
estimating the value of the corresponding population parameter.

e Although estimation and hypothesis testing are similar in many
respects, they are complementary inferential processes.

* A hypothesis test is used to determine whether or not a treatment
has an effect, while estimation is used to determine how much
effect.

* This complementary nature is demonstrated when estimation is used
after a hypothesis test that resulted in rejecting the null hypothesis.

e |n this situation, the hypothesis test has established that a treatment
effect exists and the next logical step is to determine how much
effect.
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Estimation

Known
population
pefore treatmen
N =30

Sample

+32J30 3 +Q0 ® =~ -

Unknown
population
after freatment

Treated
sample

compute
yand S
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Correlations: Measuring and Describing Relationships

e A correlation is a statistical method used to measure and describe the
relationship between two variables.

e A relationship exists when changes in one variable tend to be accompanied
by consistent and predictable changes in the other variable.

100 H

Q0 —

80

70 1

60

50

Grade (percentage correct)

40 H

L

T T | T | |
20 30 40 50 60 70

Time to complete exam (in minutes)
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Correlation

A correlation typically evaluates three aspects of the relationship:
— thedirection
— the form
— the degree

e The direction of the relationship is measured by the sign of the correlation (+ or-). A
positive correlation means that the two variables tend to change in the same
direction; as one increases, the other also tends to increase. A negative correlation
means that the two variables tend to change in opposite directions; as one increases,
the other tends to decrease.

e The most common form of relationship is a straight line or linear relationship which is
measured by the Pearson correlation.

e The degree of relationship (the strength or consistency of the relationship) is
measured by the numerical value of the correlation. A value of 1.00 indicates a
perfect relationship and a value of zero indicates no relationship.
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Various Types of Associations

300

200 *

100

-100 0 100 200 300 400 500

Engine Displacement (cu. inches)

Positive Relationship between X and Y

50

40

30

20

0

0 1000 2000

Vehicle Weight (Ibs.)

-2 0

Number of Children

Strong negative
Relationship
between X and
Y; points tightly
clustered
around line;
nonlinear trend
at lower weights

Essentially no
relationship
between X and
Y; points
loosely
clustered
around line

.(l)ﬂ- MICRO-110 / Spring 2025

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANN

63



What degree of correlation to you expect for these data sets?

(@)

(o)

(d)

)
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The Pearson Correlation

e The Pearson correlation measures the direction and degree of linear (straight
line) relationship between two variables.

e To compute the Pearson correlation, you first measure the variability of X
and Y scores separately by computing S for the scores of each variable (S,
and S,).

e Then, the covariability (tendency for X and Y to vary together) is measured
by the sum of products (SP).

e The Pearson correlation is found by computing the ratio,

S(X=-X)(Y-Y)

\‘ [3 (X =X)27 [3(Y-Y)2]
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The Pearson coefficient

» The value of r ranges between (-1) and ( +1)

» The value of r denotes the strength of the association as
Illustrated
by the following diagram.

strong intermediate weak weak intermediate strong
| | | | | | |
| | |
-1 -0.75 -0.25 0 0.25 0.75 1
[ Indirect Direct I
perfect T perfect
correlation . correlation
no relation
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Related Measures of Association

 The correlation coefficient is related to other types of measures of
association:

— The partial correlation, which measures the degree of association
between two variables when the effects on them of a third variable is
removed: what is the relationship between student achievement and
dollars per student spent by the school district when the effect of
parents’ SES is removed

— The multiple correlation, which measures the degree to which one
variable is correlated with two or more other variables: how well can |
predict student achievement knowing mean school district expenditure
per pupil and parent SES
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An example: relation between shyness and speaking experience

The formula can be re-written as:

r =

N 2XY - 2X 2Y

\} [N 2X2-(ZX)2]1 [N Y2 - (2Y)?]

(6 X 107) - 30 (32)

e

(230) — 302] [6 (226) — 322]

0 8 0 0 64
2 10 20 | 4 | 100
3 4 12 | 9 16
6 6 36 | 36 | 36
9 1 9 | 81 1

10 3 30 {100 9

30 32 107 | 230| 226

.
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
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_Introduction to Linear Regression

e The Pearson correlation measures the degree to which a set of data points
form a straight line relationship.

e Regression is a statistical procedure that determines the equation for the
straight line that best fits a specific set of data.

e How well a set of data points fits a straight line can be measured by
calculating the distance between the data points and the line.

e The total error between the data points and the line is obtained by squaring
each distance and then summing the squared values.

e The regression equation is designed to produce the minimum sum of

squared errors. e

3.50 —
3.00 —
2.50 —
2.00 —
1.50 —

Grade point average

1.00 —
0.50 —

/2 B B e E— e — —
420 460 500 540 580 620 660 700
SAT scores
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The least-squares regression line

The least-squares regression line is the unique line such that the sum of the vertical
distances between the data points and the line is zero, and the sum of the squared
vertical distances is the smallest possible.

0.14

0.12 1

E
N
3
c 0.10 ?
% 0.08 Observed y = 0.070@@)
p= [ ) distance > Lo line =
8 0,06 | y-y=0.032
- N
0 Predicted y = 0.048
S 004 yd ’ | .
8 ' distance /{0 line =
. y-y=-0.028
3 0.02 - [ )
o) Observed y =0.020
0
o 0.00 ‘ ‘ : :

0 1 2 3 4 5 b ! 8 9

Number of Beers

|
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Finding the least-squares regression line

S
The slope of the regression line, b, b=r-

equals: Sx

r is the correlation coefficient between x and y
s, Is the standard deviation of the response variable y
s, Is the standard deviation of the explanatory variable x

The intercept, a, equals: d = y —bx

x and y are the respective means of the x and y variables
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The coefficient of determination, r?2

r2, the coefficient of determination, is the
square of the correlation coefficient.

r 2 represents the fraction of the

variance in y that can be explained
by the regression model.

r=0.87,so0r2=0.76

This model explains 76% of individual variations in BAC

Blood Alcohol Content in mg/ml

Blood Alcohol Content in mg/ml

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.14

0.12

0.10

0.08

0.06

0.04

0.2

0.00

Number of Beers

[
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Considering what r means

AR r=-0.3,r2=0.09, or 9%
:. . The regression model explains not even 10% of the

variations iny.

r=-=0.7,r2=0.49, or 49%

o 0
% . .
P’ The regression model explains nearly half of the
o ° :'. >
-°.": g variations iny.

°==§_:‘ =-0.99, r2=0.9801, or ~98%
Yo The regression model explains almost all of the

variations iny.

Correlationr = -0.99

[
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Outliers and influential points

Outlier: An observation that lies outside the overall pattern.

“Influential individual”: An observation that markedly changes the
regression if removed. This is often an isolated point.

A : Child 19 is an outlier of
) the relationship (it is
unusually far from the
regression line,
vertically).

100 -

80

Gesell Adaptive Score

60 -

Child 18 is isolated from
the rest of the points, and
il might be an influential

0 10 20 30 40 50 pOi nt.
Age at first word (months)
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“Recognizing bad regression

1. Create scatterplot. Approximately linear?
2. Calculate r?, the square of the correlation coefficient
3. Examine residual plot
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Garbage In Garbage Out

GIGO
60—
507 y =4x + 11
40 -
30 -
20 - *
¢ ¢
it SR
-2 0 2 4
X
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