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Reminder: Probability and Inferential Statistics

¢ For any known population it is possible to determine the probability of
obtaining any specific sample.

Typically a researcher begins with a sample.

If the sample has a high probability of being obtained from a specific
population, then the researcher can conclude that the sample is likely to
have come from that population.

¢ If the sample has a very low probability of being obtained from a specific
population, then it is reasonable for the researcher to conclude that the
specific population is probably not the source for the sample.
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Error and power
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Confidence Intervals

¢ Type | error rate (or significance level): the probability of
finding an effect that isn’t real (false positive).

* If we require p-value<.05 for statistical significance, this means
that 1/20 times we will find a positive result just by chance.

¢ Type |l error rate: the probability of missing an effect
(false negative).

o Statistical power: the probability of finding an effect if it
is there (the probability of not making a type Il error).

* We can use a “confidence interval” to study the precision of an estimate.
* Example:

¢ Consider I-Beams used to construct buildings
— Brand 1 and Brand 2 happen to have identical yield
strengths ..‘
— However, when we look at distributions of data, we
find that 95% of samples of Brand 1 fall within a tighter
range than 95% of samples of Brand 2

Strength

. {
Brand 1: €

s

Strength

R
o

Brand 2:

— These represent the 95% confidence intervals of Brands 1 an 2
—  Which one would you pick, and why? How would this relate to the needs of
your construction?
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Sample Size and Confidence Intervals Confidence Intervals in normal distributions

* In most experiments, we don’t just take 1 sample... we take several samples, ¢ For the normal distribution

and the look at the mean and standard deviation. -
X—p
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< 1.96) =.95
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* If we want to determine our confidence in this result, we are effectively
doing “repeated sampling”, i.e., we are asking how confident we are that the
mean will fall within a certain range, we should follow our repeated
sampling methodology from Module 2.

* More generally:
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Confidence Intervals and experiments Example: Asterix

Astérix
We use confidence intervals to check if an experimental factor affects a
measured response

Population Panoramix’s

Potion magique

Normal Middle

High probabll
(scores near 1) = 40
indicating

) = 400
o =20

=40 . Obélix

Treated

Sample sample

503400~~~
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Weightlifting population data

Does the potion work?

Male Bodyweight vs, Deadiift

Male Bodywaight (Kg) Histogram

Male Deadiitt

§rom
Scenario 1:
Pre-potion deadlift: 100kg n o
Post-potion deadlift: 150kg ThIS is oﬂgn the snuatlyon in real
experiments, since we don’t have access
Scenario 2: to pre- and post- treatment data on an

Pre-potion deadlift: ? individual sample

Post-potion deadlift: 150kg

Scenario 3:
Pre-potion deadlift: ?
Post-potion deadlift: 250kg

. -
H ﬁ,\.
. . E— w0 = = ™ Sotpwnitity, = =
£ & ouest .
“ uestions to consider:
« Are body weight and deadlift weight
- Mok Dl independent?
= + Assuming normality, sketch an expected
- deadlift histogram for an Asterix-like human
. (pre-potion)
i + Repeat for an Obelix-like human (pre-potion)
- « What conclusions might you draw regarding
- bodyweight vs. deadlift weight?
U - [=rr— -
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Does the potion work?

[T — 10

Does the potion work?

Assurancetourix

Male Deadlift

25000
Post-potion

300 400
t in Kilograms

Assurancetourix

Male Deadlift

25000
Post-potion

0 200 300 400
Weight in Kilograms

[T J— &
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What can you say about the effectiveness of the potion?

Did not fall in
potion when he 7 - Male Deadif
was a baby 7

Post-pation

Fell in potion when
he was a baby . Male Doactt

s Post-potion

wieght n Kicgrams.

Types of Measures / Variables

e Nominal / categorical

— Gender, major, blood type, eye color

e Ordinal

— Rank-order of favorite films

o Interval / scale

— Time, money, age, GPA

I cro 110 sping 2025

Overview of common statistical tests

14
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Main Analysis Techniques
Variable Type Example Commonly-used
Statistical
Method
Nominal by Nominal blood type by gender | Chi-square
Scale by Nominal GPA by gender t-test
GPA by major Analysis of Variance
Scale by Scale weight by height Regression
GPA by SAT Correlation
I o0 spng 225 15

Are the observations correlated?

(e.g. blood pressure,
age, pain score)

Linear correlation
Linear regression

. independent correlated .
Outcome Variable Assumptions
Continuous Ttest Paired ttest Outcome is normally
ANOVA Repeated-measures ANOVA | distributed (important

Mixed models/GEE modeling

for small samples).
Outcome and predictor
have a linear
relationship.

Binary or
categorical

(e.g. breast cancer
yes/no)

Chi-square test
Relative risks
Logistic regression

McNemar’s test
Conditional logistic regression
GEE modeling

Chi-square test
assumes sufficient
numbers in each cell
(>=5)

Time-to-event
(e.g. time-to-death,
time-to-fracture)

Kaplan-Meier statistics
Cox regression

n/a

Cox regression
assumes proportional
hazards between
groups

LT R eeem——
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Continuous outcome (means)

A general methodology for hypothesis testing

Are the observations correlated?

Outcome |-
Variable | independent

correlated

Alternatives if the
normality assumption is
violated (and small n):

Continuous | Ttest: compares means
(e.g. blood between two independent

pressure, groups
age, pain
score) ANOVA: compares means

between more than two
independent groups

Pearson’s correlation
coefficient (linear
correlation): shows linear
correlation between two
continuous variables

Linear regression:
multivariate regression technique
when the outcome is continuous;
gives slopes or adjusted means

Paired ttest: compares means
between two related groups (e.g.,
the same subjects before and
after)

Repeated-measures
ANOVA: compares changes
over time in the means of two or
more groups (repeated
measurements)

Mixed models/GEE
modeling: multivariate
regression techniques to compare
changes over time between two
or more groups

Non-parametric statistics
Wilcoxon sign-rank test:
non-parametric alternative to
paired ttest

Wilcoxon sum-rank test
(=Mann-Whitney U test): non-
parametric alternative to the ttest
Kruskal-Wallis test: non-
parametric alternative to ANOVA
Spearman rank correlation
coefficient: non-parametric
alternative to Pearson’s correlation
coefficient

¢ Hypothesis to test: The potion works
¢ Null hypothesis: The potion doesn’t work, so there is no association between
the pre- and post- data, i.e.,
— we would expect that the samples came from the same population
— Any differences in sample means, etc. were purely due to dispersion

The test:
— Assuming we have access to the population central tendency and dispersion
— Calculate probability that the post-treatment sample came from that
population
o If yes: Null hypothesis is probably correct
o If no: Null hypothesis is probably incorrect

¢ What do we do if we don’t have the population information?

[T
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The Basics

U 001105 s 17
Reminder: Normal Distribution
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* Develop an experimental hypothesis
— HO = null hypothesis
— H1 = alternative hypothesis

* Statistically significant result
- PValue=.05

o
Narmal Probatstty
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P-Value

¢ Probability that observed result is true
¢ Level=.05o0r5%
* 95% certain our experimental effect is genuine

IEHI vicro-110 /spring 2025 21
Tests that do not make the NIID assumption
* Empirical past data
— Calculate p value based on comparisons to past data
¢ Randomization test
— Generate a fake data set by assuming the null hypothesis is true, which means
that switching treatments should have no impact on the data and we can
generate a large data set using computational means
IEHI o110 / spring 2025 23

Logic of Statistical Inference

¢ What is the probability of drawing the observed sample from a universe with no
differences?

If probability very low, then differences in sample likely reflect differences in
universe

Then null hypothesis can be rejected; difference in sample is statistically significant

MICRO-110 / Spring 2025 22

Z-test

* Population

* Problems
— Cost
— Not able to include everyone
— Too time consuming
— Ethical right to privacy

Realistically researchers can only do sample based studies

MICRO-110 / Spring 2025 24



Z-test and P-values

N

\, Povalue = area s

Poralie

Calnlated -
umptions: A | populati tion with known val

3. Two-taied test
H, contains the inesqulity #

Cakeulated =, 2

Note: We find the probability in the shades regions since we would “at
least” reach the calculated z value in these regions

[T e — 25
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Sidewalk Example (cont’d)
1. p = true average DCP value
2. Hyp=30
3. H,: p < 30 (so the pavement will not be used unless the null hypothesis is
rejected)
¥-30
4 z=———
s/NVn
5. Withn = 52,X =28.76, and s = 12.2647,
28.76 — 3 2
Lo 876-30 _-124
12.2647/\/3
6. The P-value for this lower-tailed z test is &(—.73) = .2327.
* So, we don’t use the pavement since there is not clear evidence that the
concrete will deliver DCP < 30.
MICRO-110 / Spring 2025 27

Example: Concrete for sidewalk

¢ A dynamic cone penetrometer (DCP) is used for measuring material resistance to
penetration (in mm) as a cone is driven into sidewalk concrete. Suppose it is
required that the true average DCP value less than 30. The concrete will not be
used unless there is conclusive evidence that the specification has been met.

e DCP Data:

4.1 145 155 160 160 167 169 170 175 178
178181182 183 183 190 192 194 200 200
08 208 20 215 235 275 25 280 W3 W00
00 36 AT 3T 25 B NI 380 B0 350
367 00 400 43 47 95 500 S0 SIS S44
ss0 S0

¢ Generated distribution:

* Does this look normal to you? How should we proceed?

[T e p— 26

The t-test

* Used when we don’t have access to population standard deviation

X—p
=
s/vVa
o There are a few different types of t-tests: ' !y

— If we know the population mean, and
want to see if a sample set is “different”,
we use a 1-sample t-test

— If we have pre- and post- treatment
independent samples, we use a
2-sample t-test Fnabe

— If the pre- and post-samples are not
independent, then we use a paired
t-test

Povsue = ameainlowersad /7

MICRO-110 / Spring 2025 28




T-test

* To test a sample vs. a population (i.e., is the sample part of the population)
X=JL
t=Xt

* 2 Sample t-test

¢ Paired t-test

1. Calculate the difference (d; = y; — x;) between the two observations on each pair,
making sure you distinguish between positive and negative differences.

~

. Calculate the mean difference, d.

. Calculate the standard deviation of the differences, sq4, and use this to calculate the

standard error of the mean difference, SE(d) = 24
vn

. Calculate the t-statistic, which is given by T = H'IJ'I ik Under the null hypothesis,
SE(q

this statistic follows a t-distribution with n — 1 degrees of freedom

[T e — 29
An Example: Yield improvement
* Here is pre- and post-change data from a process that is modified with the
goal of improving yield
Table 3.1. Yield Data from an Industrisl Experiment
Process A Process B
Time Order Method Yield
s2f- .
1 A 897
2 A Bl4
90r o 3 A 845
. n A 848
. s A 813
1 . M A 797
T A 851
- . 8 A 817
2 8 . b A 837
.* . - - 10 A B4S
Ba 0 . u 13 847
- 12 B 6.1
. 13 B 832
B2 . 14 B 919
* 15 B 86.3
- 16 B 79.3
% - 17 B 826
* 18 B 89.1
I T W [ I | 1 I W T T T T 19 B 8.7
12345678810 111213 141516171819 20 20 B 885
Time order Fa=8424 B5.54
Fa=Fa=130
* Do you think the process improvement works? What type of t-test should
we use?
MICRO-110 / Spring 2025 31

Some online p value calculators

¢ https://www.graphpad.com/quickcalcs/pvaluel.cfm

¢ https://www.socscistatistics.com/pvalues

¢ https://goodcalculators.com/student-t-value-calculator

[T

Tp—

2 sample t-test

30

* Wehave: ¥y 30" 75784
gt 7P 2T lsa
na—1 9
, 2on-F" 119924
R

* Since we assumed similar variances, we can
combine these as:

2 0TS e T 757844 119924
ny+ng—2 18
¢ Next, we can write the t distribution (replace
the o with s in the z distribution):

10.87

¢ We also have yg —y, = 1.30 and

sy/Tfng +1/nx =1.47,50t=0.88,50  Ppr(r > 0.88) = 19.5%.

Therefore, process B is not a statistical improvement on process A

Table 3.1. Yicld Data from an Industrial Experiment

Time Onder Method Yield
1 A 897
2 A 814
3 A 345
4 A 848
s A 813
6 A 71
1 A 851
3 A 817
9 A £7
10 A 845
1 B 87
12 B 6.1
13 B 832
14 B 919
15 B 86.3
16 B 793
17 B 826
18 B 89.1
19 B 87
20 B 885

MICRO-110 / Spring 2025
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https://www.graphpad.com/quickcalcs/pvalue1.cfm
https://www.socscistatistics.com/pvalues/
https://goodcalculators.com/student-t-value-calculator/

But what if | have access to the population data

Comparing the external reference with the t test

¢ Yield over the last approx. 200 runs

Yield

L [ L T PR P
20 40 60 80 100 120 140 180 180 200 220

Time order

¢ |generate a relative reference set of data by plotting the changeiny for
adjacent set of 10 observations

Only 9/147 observations support the null hypothesis
(4.7% significance level), so the process probably works.

00
28
11

Note: to generate this reference set, | needed a lot of

15 -1.0 05 prior data, which isn't always available

-20

Observed difference
Fa-Ya=130

o0
1 oo o © | -] 1
-3.0 -2.0 -1.0 0 1.0 20 3.0

The difference is due to breakdown in NIID assumptions.

[T — 3

So what do we do in that case?

A cro 110/ sping 2025 &
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Randomization test

* The t-test starts producing errors if the NIID (normal, independent and
identically distributed) assumption breaks

* We often don’t have external reference data.

* What do we do? Answer: we can test for significant by creating a fake set of
random data... this is known as the randomization test.

e Example: Consider the test on a possible “improved” tomato fertilizer

Tuble 3.3, Results from a Randomized Experiment (Tomato Yields in Pounds)

Pasition in row 1 2 3 4 5 6 7 8 9 won

Fentilizer A A & a A B B A A B

Pounds of 292 114 266 237 253 285 142 179 165 211 M43
1omatoes

Standard Modified
Fertilizer A Fenilizer &

299 266
14 n7
253 285
165 142
. 179

243

=5 ng=6

4=
Fp=20.84 ¥5=2253
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If the null hypothesis is true, we should be able to mix up the A and B labels
and it shouldn’t change the population
* In the actual data, there are 5 “A” fertilizers and 6 “B” fertilizers. Therefore, if

) 11! L
were to randomize the labels, there would be a total ofﬁ = 462 variations
4 5 6 7 8 9 [ [

2 3
A B a A B B B A A a
14 266 237 253 285 142 179 165 200 243

Pasition in row I

Fentilizer A

Pounds of 22
1omatoes

¢ These can then be used plot the distribution
of faked yg — y, results.

¢ Recall the real yg —y, =1.69

e We see that 154/462 = 33%, equal or exceed
that value, which means that the fertilizer
improvement likely meets the null hypothesis,
i.e., it doesn’t actually improve anything!

[T
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t-test on the tomato experiment

T~ Fa=2253-20.84 = 1.69

2
2 .
c Zh(Ew) m s a9
5= =2 =52.50
na—1 Yy 4
2
. Ln-(Tn)ime s, s
5= === =295l
np—1 Vg 4
The pooled variance estimate is
o SatSs vasi +vash _ 4(52.50) +5(29.51) oy

va+va va+va 4+5
with v = ny +ng—2=w, + vg =9 degrees of freedom

The estimated varfance of ¥y — ¥, is s2(Lfng + 1/na) = 39.73(1/6 + 1/5) = 14.57.
The standard error of ¥, — 73, is +/14.57 = 3.82,

_ Ga-TF _(2253-208%) 169
0T iU ne + g | YDN[6E 115 382

=044 with v =9 degrees of freedom
Prir > 1) = Pr(r > 0.44) = 0.34

Similar to randomization experiment, so the fertilizer doesn’t offer any improvement

Paired Experiments

* Many experiments result in pairs (e.g., we have before and after dataon a
specific sample, or we ran two “identical” samples through highly correlated
processes other than the treatment in question)

IEHI vicro-110 /spring 2025 37
paired t test
1. Calculate the difference (d, yi — x;) between the two observations on each pair,
making sure you distinguish between positive and negative differences.
2. Calculate the mean difference, d.
3. Calculate the standard deviation of the differences, sy, and use this to calculate the
standard error of the mean difference, SE(d) s
vn
1. Calculate the t-statistic, which is given by T \."_I‘ 7 Under the null hypothesis,
SE(c

this statistic follows a t-distribution with n — 1 degrees of freedom.

5. Use tables of the t-distribution to compare your value for T to the t,,_, distribution
This will give the p-value for the paired t-test

differences _between _sample _means

=
estimated _standard _error _af _differences _between _means

Compare to the
normal t test: _

[T
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Example: An improved shoe sole material?

MICRO-110 / Spring 2025 39

¢ Put a shoe with the old sole material on one foot of each boy

¢ Put a shoe with the new sole material on the other foot

* The soles are now paired, under the assumption that they will see similar
conditions

* Left and Right foot assignments are randomly assigned using a coin toss

¢ Measure the wear on the soles for 10 boys

Table 3.5. Boys" Shoes Example: Data on the Wear of 1k o 8
Shoe Soles Made of Two Different Materials A and B o
L e L
Boy Material A Material B Difference d = B— A
2= o
113 14.0(R) U8 o o
2 8.2(L) BE(R) 06 . . . . {' Materiat 4
3 109(R) 11.2(L) 0.3 5 O Material 8
4 143 14.2(R) -0. § or o L
5 103(R) 11.8(L) [N] . o
3 6.6(L) 6.4(R) -0.2 o .
7 950) 98(R) 03 M
8 10.8(L) 1L3(R) 0.s
9 B8(R) 9.3(L) 0.5 L
10 1330L) 13.6(R) 0.3 > ¢
Average difference @ = 0.41 e A T
Boys
MICRO-110 / Spring 2025 40
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Paired t-test

Randomization test on the shoe wear data

e The sample variance is:

\ Z(d —d)?

5 =0.149
¢ n—1

* Assuming random sampling, we can say:

s¢=v0149=0386 and s5= -+ =—"—"=0.22

¢ For the null hypothesis:

_3-50_041—0_34
Ty 012 T Pr(r > 3.4) = 0.4%

o

* So, we conclude that B wears faster than A

¢ CoinToss
— Heads: Material A on right foot
— Tails: Material B on right foot
e Actual coin toss

TTHTHTTTHT

« Total number of toss possibilities: 21°=1024

¢ If the null hypothesis is true, the actual choice of H or T shouldn’t matter

+0.8+0.6%.--£03

d=
10

[T —

Results

a I cro 110 sping 2025 42

A note about 1-sided vs. 2-sided tests

¢ The randomized distribution vs the actual sample

Table 3.5, Boys' Shoes Exumple: Data on the Wear of
Shoe Soles Made of Twa Different Materials A and B

Boy Moterial A Mutcrial B Difference f = 8- A

1BAL R 03
2 B2l S.8(R) 06
3109R) 120y 03
4 4L 2R -0l
S 107R)  LLEL) LI
6 66 BAR) -02
1 s 9.5(R) 03
B 108L) 11.3R) a5
9 BB(R) 9.3(L) 05
10 1330L)  136R) 03

Averuge difference d = 0.41

Diterance means

e 0.41is actually extremely unlikely in the null hypothesis (5/1024 = 0.5%)

* Therefore, we conclude that the soles are actually different and material A is
better than B (i.e., B has more wear than A)

* All our probabilities have looked at the one-sided values, since we have
assumed that the modification would either improve or degrade the same
(or do nothing, i.e., the null hypothesis)

* If your modification can do either, it is appropriate to use the two-sided
probability tables, which account for both sides of the distribution

[T J—
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ANOVA: Analysis of Variance

¢ The difference between ANOVA and the t tests is that ANOVA can be
used in situations where there are two or more means being
compared, whereas the t tests are limited to situations where only
two means are involved.

Analysis of variance is necessary to protect researchers from
excessive risk of a Type | error in situations where a study is
comparing more than two population means.

¢ ANOVA allows researcher to evaluate all of the mean differences in a
single hypothesis test, keeps the risk of a Type | error under control
no matter how many different means are being compared.

MICRO-110 / Spring 2025 45

How would we solve this problem using a t-test?

Why not use multiple t tests?

¢ These situations would require a series of several t tests
to evaluate all of the mean differences. (Remember, at
test can compare only 2 means at a time.)

¢ Errors can also accumulate over the multiple t tests

;

ANOVA methodology

46

Population 1 Population 2 Population 3
(Treatment 1) (Treatment 2) (Treatment 3)
Sample 1 Sample 2 Sample 3
n=15 n=15 n=15
y =231 y =285 y =208
s =114 s =130 s =101
[T e — 47

The test statistic for ANOVA is an F-ratio, which is a ratio of two
sample variances. In the context of ANOVA, the sample variances
are called mean squares, or MS values.

The top of the F-ratio MS, .., measures the size of mean
differences between samples. The bottom of the ratio MS, ;1
measures the magnitude of differences that would be expected
without any treatment effects.

obtained mean differences (including treatment effects) MS, ctween
F = =

differences expected by chance (without treatment effects) MS.ithin

¢ Alarge value for the F-ratio indicates that the obtained sample mean
differences are greater than would be expected if the treatments
had no effect.

[T enp——
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Why are these values important?

Total
variability
Between- Within-
treatments tfreatments
variance variance
Measures differences Measures differences
due to due to

1. Systematic tfreatment effects 1. Random, unsystematic factors
2. Random, unsystematic factors

ANOVA Example: Blood coagulation based on diet

I yicro.110 / spng 2025 a9

ANOVA table generation

* We consider the effect of 4 different diets on blood coagulation time

D., .....‘ . ; .
= : 1ed o
8 — %0 00w .
.
N )
A-T |.‘ T T
] * 66 kAl

Diets (Treatments)

A 8 C D
62 63 68 56
60 67 66 62
63 7 71 60
59 64 67 61
63 65 68 63
59 66 68 64
Treatment average 61 66 68 6l
Grand average 64 64 64 64
Difference -3 +2 +4 -3
IEFH vicro-110 / spring 2025 50

Reminder: Degrees of freedom

¢ We create the following table Diets (Treatments)
A B (o D
Treatment average 61 66 68 61
Grand average 64 64 64 64
Difference -3 +2 +4 -3
Deviations Residuals within-
from Grand Treatment Treatment
Observations Average of 64 Deviations Deviations
i ni =¥ =¥ Y =5y
62 63 68 56 -2 -1 4 -8 -3 2 4 3 1 -3 0 -5
60 67 66 62 -4 3 2 =2 -3 2 4 -3 -1 1 =2 1
63 71 7L 60 -1 7 7 -4 -3 2 4 -3 2 5 3 -1
59 64 67 6l -5 0 3 =3 -3 2 4 -3 -2 =2 -1 0
63 65 68 63 -1 1 4 -1 -3 2 4 -3 2 -1 0 2
59 66 68 64 5 2 4 0 -3 2 4 -3 -2 0 0 3
Y D=Y-64 = T + R
Sum of squares 340 = 228 + 12 Explained
degrees of freedom 23 = 3 + 20 ‘—next
IEHI o110 / spring 2025 51

¢ Degrees of freedom are important in ANOVA
* For example, if we fix the overall mean, the residuals from the overall mean
have 23 degrees of freedom since there are 24 data points, and knowing 23
allows us to determine the last 1 from the overall mean
¢ So, we see that:
- Mi—3 has 23 degrees of freedom (since there are 24
residuals from the overall mean
- ¥ -7 has 3 degrees of freedom (since there are 4
treatment mean residuals from the overall mean)
- Yi — ¥ has 20 degrees of freedom (there are 24 values,
but columns must total to zero, and the overall
sum most be zero, so 24-1-3)

T — 52



The sum of squares

Mean squares and F value

Deviations Residuals within-
from Grand Trcatment ‘Treatment
Observations Average of 64 Deviations Deviations
Y w7y ¥-F yu =¥y
626368 56 | =2 -1 4 -8 -3 2 4 -3 1 -3 0 -5
60 67 66 62 -4 3 2 =2 -3 2 4 -3 =1 1=2 1
63 71 71 60 -1 7 -4 -3 2 4 -3 2 5 3 -1
59 64 67 61 -5 0 3 -3 -3 2 4 =3 -2 =2 -1 0
63 65 68 63 -1 1 4 =1 -3 2 4 -3 2 -1 0 2
59 66 68 64 5 2 4 0 -3 2 4 -3 -2 0 0 3
Y D=Y-64 = T + R
Sum of squares 340 = 228 + 112
degrees of freedom 23 = 3 + 20

Sp=(2+ (=12 + @+ -+ (0 =340
Sr=(=3+@ + @+ + (-3 =228
Se=(P 4+ (=3 + 0 +---+ @ =112

How to interpret F-ratio values

We have:

Degrees of
Source of Variation Sum of Squares  Freedom  Mean Square
Berween treatments Sr =228 ur= 3 my =760 Fiap = 13.63
Within treatments Sp =112 vg =20 mg= 5.6 3.20 = 140
Total about the Sp =340 vp =123

grand average

Where S; and S; and v; and vg have been calculated as before
m;=S;/viand mg =S,/ vy
F=m;/mg

Looking up tables for F; 5o, we find:  F3 3 > 13.6 is less than 0.001.

In other words, the null hypothesis is strongly rejected

53

¢ When the null hypothesis is true and there are no differences between
treatments, the F-ratio is balanced.

* Thatis, when the "treatment effect" is zero, the top and bottom of the F-
ratio are measuring the same variance.

* In this case, you should expect an F-ratio near 1.00. When the sample data
produce an F-ratio near 1.00, we will conclude that there is no significant
treatment effect.

* On the other hand, a large treatment effect will produce a large value for the
F-ratio. Thus, when the sample data produce a large F-ratio we will reject
the null hypothesis and conclude that there are significant differences
between treatments.
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Analysis of Variance and Post Tests

55

The null hypothesis for ANOVA states that for the general population there
are no mean differences among the treatments being compared; Hy: m; =1,
=M3= ...

When the null hypothesis is rejected, the conclusion is that there are
significant mean differences.

However, the ANOVA simply establishes that differences exist, it does not
indicate exactly which treatments are different.

With more than two treatments, this creates a problem. Specifically, you
must follow the ANOVA with additional tests, called post tests, to determine
exactly which treatments are different and which are not.

The Scheffe test and Tukey=s HSD are examples of post tests.

These tests are done after an ANOVA where H, is rejected with more than
two treatment conditions. The tests compare the treatments, two at a time,
to test the significance of the mean differences.
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Extensions to ANOVA

* There are also blocked ANOVA methodologies, etc. (analogous to the t-test
blocking we looked at previously)

* However, we will not study them by hand but will examine them by
computer in exercises.

Pitfalls to consider with significance testing

[T —

Estimation

57

e Statistical significance does not guarantee experimental significance.

e Statistical significance does not imply a cause-effect relationship.

¢ Lack of statistical significance is not proof of the absence of an effect.

Presence of statistical significance in one group and lack of statistical
significance in another group # a significant difference between the
groups.

In general terms, estimation uses a sample statistic as the basis for
estimating the value of the corresponding population parameter.

Although estimation and hypothesis testing are similar in many
respects, they are complementary inferential processes.

¢ A hypothesis test is used to determine whether or not a treatment
has an effect, while estimation is used to determine how much
effect.

This complementary nature is demonstrated when estimation is used
after a hypothesis test that resulted in rejecting the null hypothesis.

In this situation, the hypothesis test has established that a treatment
effect exists and the next logical step is to determine how much
effect.

I —

Estimation

58

[T J—
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Known Unknown
population population
before treatment =~~~ > T 77 > after treatment
n=30 r n="?

e

a 7
t i
m i
e I
= \ 4
t Treated
&l ¢l sample
Sample =i compute
y and S
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Correlations: Measuring and Describing Relationships

* A correlation is a statistical method used to measure and describe the
relationship between two variables.

* Arelationship exists when changes in one variable tend to be accompanied
by consistent and predictable changes in the other variable.

100+

90

80+

704

60—

Grade (percentage correct)

T T
20 30

T
40

T T T
50 60 70

Time to complete exam (in minutes)

[T —
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Various Types of Associations

Engine Displacement (cu. inches)

Positive Relationship between X and Y

Vente weight(bs)

Namerof Chiren

Strong negative
Relationship
between X and
Y; points tightly
clustered
around line;
nonlinear trend
at lower weights

Essentially no
relationship
between X and
Y; points
loosely
clustered
around line

[T J—
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Correlation

* A correlation typically evaluates three aspects of the relationship:

— thedirection
— theform
— the degree

¢ The direction of the relationship is measured by the sign of the correlation (+or -). A
positive correlation means that the two variables tend to change in the same
direction; as one increases, the other also tends to increase. A negative correlation
means that the two variables tend to change in opposite directions; as one increases,

the other tends to decrease.

¢ The most common form of relationship is a straight line or linear relationship which is

measured by the Pearson correlation.

¢ The degree of relationship (the strength or consistency of the relationship) is
measured by the numerical value of the correlation. A value of 1.00 indicates a
perfect relationship and a value of zero indicates no relationship.

T e 62
What degree of correlation to you expect for these data sets?
H Y|y
L ] e
® e
. o ® L ]
L ]
\® & * ~
X
Y| © Y| @)/ * o
2 ° Y 2
e o @
° o ® ° ‘. "
e
@
X
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The Pearson Correlation

The Pearson coefficient

* The Pearson correlation measures the direction and degree of linear (straight
line) relationship between two variables.

* To compute the Pearson correlation, you first measure the variability of X
and Y scores separately by computing S for the scores of each variable (Sy

and Sy).

Then, the covariability (tendency for X and Y to vary together) is measured
by the sum of products (SP).

The Pearson correlation is found by computing the ratio,

S(X=-X)(Y-Y)
r=
\[[z(x_i)z] [5(Y-9)2]

» The value of r ranges between (-1) and ( +1)

» The value of r denotes the strength of the association as
illustrated
by the following diagram.

strong intermediate weak weak intermediate strong
| | | | | | |
‘ f f ‘ f f ‘
-1 -0.75 -0.25 0 0.25 0.75 1
U indirect Direct \ I
perfect T perfect
correlation . correlation
no relation
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Related Measures of Association

65 It

An example: relation between shyness and speaking experience

¢ The correlation coefficient is related to other types of measures of
association:

— The partial correlation, which measures the degree of association
between two variables when the effects on them of a third variable is
removed: what is the relationship between student achievement and
dollars per student spent by the school district when the effect of
parents’ SES is removed

— The multiple correlation, which measures the degree to which one
variable is correlated with two or more other variables: how well can |
predict student achievement knowing mean school district expenditure
per pupil and parent SES

The formula can be re-written as:

N By -DX Y _

[N DX - (ZXF] [N 2¥ - (2Y)7] 0 8 0 0 | 64
= 2 10 20 | 4 | 100
3 4 12 9 16
(6 X 107) - 30 (32) 6 6 36 | 36 | 36
9 1 9 81 1
6 (230) — 307] [6 (226) — 322
\/[( ) 16@20) ] 10 3 30 [100| 9
30 32 107 [230| 226
68
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Introduction to Linear Regression

The least-squares regression line

* The Pearson correlation measures the degree to which a set of data points
form a straight line relationship.

* Regression is a statistical procedure that determines the equation for the
straight line that best fits a specific set of data.

* How well a set of data points fits a straight line can be measured by
calculating the distance between the data points and the line.

* The total error between the data points and the line is obtained by squaring
each distance and then summing the squared values.

* The regression equation is designed to produce the minimum sum of
squared errors. |

The least-squares regression line is the unique line such that the sum of the vertical
distances between the data points and the line is zero, and the sum of the squared
vertical distances is the smallest possible.

Observed y = 0.070;

distance o line =
y-§=0032

Predicted = 0.048

distance to line =
y-y=-0028
Observed y = 0.020

Blood Alcohol Content in mg/ml

Number of Beers

[T —

Finding the least-squares regression line

69 il’F
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The coefficient of determination, r?

wn

The slope of the regression line, b, b = r—y
equals: S,

r is the correlation coefficient between x and y
sy is the standard deviation of the response variable y
s, is the standard deviation of the explanatory variable x

a=y-bx

The intercept, a, equals:

x and y are the respective means of the x and y variables

r2, the coefficient of determination, is the Vi .. 4
square of the correlation coefficient. !
. ' e

3 v

|

by '

i '
r2 represents the fraction of the e

variance in y that can be explained
by the regression model.

N of Beers

[T J—

r=0.87,s0r2=0.76
This model explains 76% of individual variations in BAC
7 T ey — 72
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Considering what r means

r=-0.3,r2=0.09, or 9%

The regression model explains not even 10% of the

variations in y.

r=-0.7,r2=0.49, or 49%

-~ 1
_5-:"'3 § The regression model explains nearly half of the
S
K2 s s variations iny.
T,
& r=-0.99, r2=0.9801, or ~98%

The regression model explains almost all of the

variations in y.

Outliers and influential points

Outlier: An observation that lies outside the overall pattern.

“Influential individual”: An observation that markedly changes the
regression if removed. This is often an isolated point.

120 4

100

80 4

Gesell Adaptive Score

60 4

Child 19is an outlier of
the relationship (it is
unusually far from the
regression line,
vertically).

Child 18 is isolated from
the rest of the points, and

[T —

Recognizing bad regression
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1. Create scatterplot. Approximately linear?
2. Calculate r?, the square of the correlation coefficient

3. Examine residual plot

[T J—
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Al . : : . might be an influential
0 10 20 30 40 50 point_
Age at first word (months)
IEFHI cro-110 1 sprng 2025 74
Garbage In Garbage Out
GIGO
60
*
0 y=4x +11
40 4 .
> 30
20 1 *
* *
%, ¢
T & T T T
-4 -2 0 2 4 6 8
X
76
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