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Course Syllabus

Topic Key material

Probability |e Sample spaces and events
e Properties of probability
e Discrete Random Variables and Probability
e Binomial and Poisson Distributions
e Continuous Random Variables and Probability
e Normal and other continuous distributions
e Joint Probability Distributions
e Covariance and Correlation
e Point Estimation
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Probability

e the study of randomness and uncertainty.

e In any situation in which one of a number of possible outcomes may occur,

the discipline of probability provides methods for quantifying the chances, or
likelihoods, associated with the various outcomes.
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Sample Spaces

e The sample space of an experiment, denoted by S, is the set of all possible
outcomes of that experiment.
e Example: Suppose | have a factory that produces screws, which may be:
— Defective (Denoted here by D)
— Free of defects (Denoted here by N)
e Then, the sample space for seeing whether a single screw is defective or not
is:
- S={N, D}
e Similarly, the sample space for examining 3 successive screws for defects is:
— S ={NNN, NND, NDN, DNN, NDD, DND, DDN, DDD}

See python code in module2_sample _spaces_permutations_combinations.ipynb
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Permutations and combinations in Python

e Asyou saw, permutations and combinations are useful to determine sample
spaces, which will soon be useful in determining probability

e Python makes generating lists of permutations and combinations easy
import itertools

elements - [IIAII, IIBII, IICII]
permutations = list(itertools.permutations(elements))
print(permutations)

[(IAI’ lBl' ICI), (IAI’ ICI' IBI)’ (IB', lAl, ICI)’ (IBI’ lCl, IAI)I (ICII 'A" IBI)’ (ICI’ IBI’ IAI)]

combinations = list(itertools.combinations(elements, 2))
print(combinations)

[(‘'A%,'B'), (A, 'C), ('B, 'C')]
Inspection_outcome =['N','D’]
Sample_Space 3 screws=list(itertools.product(Inspection_outcome,repeat=3))

print(Sample_Space)

[('N','N', 'N'), ('N', 'N', 'D"), ('N', 'D', 'N"), ('N', 'D', 'D"), ('D', 'N', 'N'), ('D', 'N', 'D'), ('D', 'D', 'N"), ('D', 'D', 'D")]

https://docs.python.org/3/library/itertools.htmi
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Events

e An event is any collection (subset) of outcomes contained in the sample space S
— An event is simple if it consists of exactly one outcome
— An event is compound if it consists of more than one outcome.
e When an experiment is performed, a particular event A is said to occur if the
resulting experimental outcome is contained in A.
— In general, exactly one simple event will occur,

— but many compound events will occur simultaneously.
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Example: leaving the CO Building

Upon exiting the CO Building, you can go left or right. Suppose 3 of you leave the
building, the possible outcomes are:

('L, 'L, '), ('L, 'L, RY), ('L, R L), ('L 'R RY), (RY 'L L), (RY 'L 'RY), (RY 'RY LY, (R 'R, 'RY)]
See python code in module2_sample spaces_permutations_combinations.ipynb

There are 8 simple events

Some example compound events are:
— A ={RLL, LRL, LLR} ; the event that exactly one student turns right
— B ={LLL, RLL, LRL, LLR}; the event that at most student turns right
— C={LLL, RRR}: the event that all three students turn in the same direction

Suppose that when the experiment is performed, the outcome is LLL. Then the
simple event E1 has occurred and so also have the events B and C (but not A).

Question: What is the “probability” that if 3 students exit the class:
— They will all turn left?

— They will all turn in the same direction?

e What assumptions did you make in your answer?
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Example: Gas station pump usage

e Two gas stations are located at a certain intersection. Each one has six gas
pumps. Consider the experiment in which the number of pumps in use at a
particular time of day is determined for each of the stations. An experimental
outcome specifies how many pumps are in use at the first station and how many
are in use at the second one. One possible outcome is (2, 2), another is (4, 1),
and yet another is (1, 4).

e How many outcomes exist in the sample space?

See python code in module2_sample _spaces_permutations_combinations.ipynb
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Example: Gas station pump usage

Second Station

0 1 2 3 4 5 6

(0, 0) 00D 02 03 04 035 06
(1,0 (L (L2 (L3 (L4 (L35 (1,86
(2,0 2,10 @2 &3 &4 &5 (2,6
(3, 0) 3.0 G2y (.3 (3.4 (3.5 (3,6
(4, 0) 4.1 &2) &3 44 45 46
(5,00 5,0 3,2y (5,3 5.4 (5,5 (5,6
(6, 0) 6,1 (62 (63 (6,4 (6,3 (66)

First Station

= b =S

e What is the event that the number of pumps in use is the same for both stations?

e What is the event that the total number of pumps in use is 4?

e What is the event that at most one pump is in use at each station?

See python code in module2_sample _spaces_permutations_combinations.ipynb
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Some definitions

e The complement of an event A, denoted by A’, is the set of all outcomes in S that
are not contained in A.

e The union of two events A and B, denoted by A U B and read “A or B,” is the
event consisting of all outcomes that are either in A or in B or in both events (so
that the union includes outcomes for which both A and B occur as well as
outcomes for which exactly one occurs)—that is, all outcomes in at least one of
the events.

e The intersection of two events A and B, denoted by A m B and read “A and B,” is
the event consisting of all outcomes that are in both A and B.

e Let J denote the null event (the event consisting of no outcomes whatsoever).
When A N B =, A and B are said to be mutually exclusive or disjoint events.
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Venn Diagrams

A s, B ~, B A . B o A~— B
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(a) Venn diagram of (b} Shaded region {c) Shaded region {(d) Shaded region (e) Mutually exclusive
events A and B isAUB 154" events
AL w D & AT g
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(f) Shaded region (g) Shaded region
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Axioms and Properties of Probability

A ", B A~~~ B A B A~—~ B
(0 ) 0 ) 0 ) A () ()
B e M e A

& & & & &
(a) Venn diagram of (b) Shaded region {c) Shaded region (d) Shaded region (e) Mutually exclusive
events A and B sANB isAURB 15 A" events

AXIOM 1
AXIOM 2
AXIOM 3

For any event A, P(A) = 0.
P(&) =1

[f A, A,, A,.... 1s an infinite collection of disjoint events, then

P(A;UA, UAsU =) = D P(A)

i=1

for a finite collection of disjoint events.

P(©) = 0 where O is the null event (the event containing no outcomes what-
soever). This in turn implies that the property contained in Axiom 3 is valid
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Example: Testing to find a working battery

e Consider testing batteries one by one until you find one having a voltage within a
desired range. A success is called S and the failure is called F.

e The simple events are
- E1={S},
~ E2={FS}
— E3 ={FFS}
— E4 = {FFFS},....
e Suppose the probability of any particular battery being satisfactory is .99.

e Then it can be shown that
— P(E1)=.99
— P(E2) = (.01)(.99)
— P(E3) =(.01)%(.99),...
e |n particular, because the Ei’s are disjoint and S=E1 U E2 U E3 U..., it must be
the case that
— 1=P(S)=P(E1) + P(E2) + P(E3) +...
=.99[1 +.01 +(.01)%2 + (.01)3 +..]]

Also provableby: . 2 3. —_9
|l —r
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More Properties of Probability

A~ B A~ B A e, B - A~~~ B
Lol o Loy | A A
A A S M b L

& & 5 & &
(a) Venn diagram of (b) Shaded region {c) Shaded region (d) Shaded region (e) Mutually exclusive
events A and B sANB isAURB 15 A" events

For any event A, P(A) + P(A") = 1, from which P(A) =1 — P(A"),

For any event A, P(A) = 1.

For any two events A and B,

PAUB)=PA) + P(B)—PANB)

—y
~ 3

For any three events A, B, and (
PAUBUC)=PA)+ PB)+PC)—P(ANB)— PAN C)
—PBNC)+PANBNCO)
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Example: Sitting in a train

e During off-peak hours a commuter train has five cars. Suppose a commuter is
twice as likely to select the middle car (Car3) as to select either adjacent car
(Car2 or Car4), and is twice as likely to select either adjacent car as to select
either end car (Carl or Car5).

e Letp,5P(cariisselected) = P(E).
e Then we have

— P3=2p,=2p,

— P2=2p;=2ps =P,

1 = D> P(E)=p, +2p, +4p, +2p, + p, = 10p,

e What is the probability of picking the first car?
e What is the probability of picking an end car (i.e., first or last)?

e What is the probability of picking one of the intermediate cars?
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Equally Likely Outcomes

* In many experiments consisting of N outcomes, it is reasonable to assign equal
probabilities to all N simple events. With p = P(E;) for every i,

N ]

N
= ZP(EI-) = E;) =p-N sop= N

1=1 i=1

e Now consider an event A, with N(A) denoting the number of outcomes contained
in A. Then
] N(A)

P(A)= > P(E) = 2 ==

E.inA mA

e Thus when outcomes are equally likely, computing probabilities reduces to
counting: determine both the number of outcomes N(A) in A and the number of
outcomes N in S, and determine their ratio.
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The Product Rule: Useful while counting to determine probabilities

Product Rule for k-Tuples

Suppose a set consists of ordered collections of k elements (k-tuples) and that
there are n, possible choices for the first element; for each choice of the first
element, there are n, possible choices of the second element;...; for each pos-
sible choice of the first Kk — 1 elements, there are n, choices of the kth element.
Then there are nn, - --- - n, possible k-tuples.

e You may have seen this done graphically using a tree diagram
P

.(Pﬂ- MICRO-110 / Spring 2024
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Permutations and Combinations

size k that can be formed from the »n individuals or objects in a group will be
denoted by P,,. An unordered subset is called a combination. One way to
denote the number of combinations 1s C, . but we shall instead use notation
that is quite common in probability books: (%), read “n choose k.”

An ordered subset is called a permutation. The number of permutations of

n P, n!

k K kl(n— k)
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Example: Shuffling a playlist

e Suppose | have a spotify playlist with 100 songs. Assume no song is repeated

when shuffling the list, and suppose exactly 10 of the songs are by the Beatles.

e What is the probability that the first Beatles song played is the 5t song played
while shuffling?

e Song 1 must be non-Beatles (NB) ... 90/100

e Song 2, 3, and 4 must also be NB... what are the probabilities for each of these
events?

e Song 5 must be Beatles (B). What is the probability for this event?

90 - 89 - 88 - 87 - 10
100 - 99 - 98 - 97 - 96

=0.0679

P(1' B is the 5" song played) =

Pﬂ- MICRO-110 / Spring 2024
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Example: Shuffling a playlist

Doing this using permutations:
e The number of permutations for the first 5 songs is simply Py ;,

e The number permutations by which we can select 4 NB songs out of the 90 NB
songs is P, o9

e The number of permutations by which we can select 1 B song out of the 10 B
songs is 10

e Therefore, we can also write this as:

90 - 89 - 88 -87-10 P, o - (10)

P(1*' B is the 5" song played) = -
(1" B 1s the 5% song played) =~ == 0= 0™ 0= 06 Ps 100

= .0679

See python code in module2_sample _spaces_permutations_combinations.ipynb
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Example: Shuffling a playlist

Doing this using combinations:
e Remember, combinations are about “choosing”, without worrying about order.

* The number of ways to choose 10 of 100 songs is simply C,,4,, . Effectively, we
are choosing to give those slots to B songs.
* The number of ways to choose 9 of the last 95 songs to be B songs is simply Cq; g

e |f we do that, then then that means that the first 5 songs are necessarily 4 NBs
and 1 B. There is only 1 way to order it so that we start with 4 NBs and then play

a B, which means that
95
9

P(15' B is the 5™ song played) = ———  =0.0679
100
10

See python code in module2_sample _spaces_permutations_combinations.ipynb
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Example: Shuffling a playlist

Interestingly, if we ask what is the probability of one of the first 5 songs played
being a B, the probability is:

P(1%' B is the 1% or 2" or 3" or 4" or 5 song played)

o), (), (), () (%)

= + + + + = 4162
100\ (100\ [(100\ [(100) (100
10 10 10 10 10

Which is pretty high, considering that only 10 out of 100 songs are B songs... why is
this the case?
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Conditional Probability

e We will use the notation P(A|B) to represent the conditional probability of A
given that the event B has occurred. B is the “conditioning event.”

For any two events A and B with P(B) > 0, the conditional probability of A
given that B has occurred is defined by

P(A N B)

P(A|B) =
(A] P(B)

The Multiplication Rule
P(AN B) = P(A|B) - P(B)

.(Pﬂ- MICRO-110 / Spring 2024
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Example: Reading habits

e A news magazine publishes three columns entitled “Art” (A), “Books” (B), and
“Cinema” (C). Reading habits of a randomly selected reader with respect to

these columns are

Read regularly A B C ANB ANC BNC ANBNC
Probability 14 23 37 .08 .09 13 .05

e Whatis P(A|B) and what does it mean

PANB) 08
P(B) .23

P(A|B) =
reads “Books” also reads “Arts”

A

g

Sl

= .348 ; this gives us the likelihood that a reader who

e The probability that the selected individual regularly reads the Art column
given that he or she regularly reads at least one of the other two columns is

PANBUC) 04+ .05+.03 .12

P(A|B =
AlBu o P(BU C) 47 47

= .255

e The probability that the selected individual reads at least one of the first two

columns given that he or she reads the Cinema column is

P(AUBYNC) .04+ .05+ .08
P(C) 37

P(AUB|C) = = 459
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Example: Phone comparison

e An electronics store sells three different brands of phones. Of its phones sales,
50% are brand 1 (the least expensive), 30% are brand 2, and 20% are brand 3.

e Each manufacturer offers a 1-year warranty on parts and labor. It is known
that 25% of brand 1’s phones require warranty repair work, whereas the
corresponding percentages for brands 2 and 3 are 20% and 10%, respectively.

e What is the probability that a randomly selected purchaser has bought a
brand 1 Phone that will need repair while under warranty?

e What is the probability that a randomly selected purchaser has a phone that
will need repair while under warranty?

e |f a customer returns to the store with a phone that needs warranty repair
work, what is the probability that it is a brand 1 phone ? A brand 2 phone? A
brand 3 phone?

Pﬂ- MICRO-110 / Spring 2024
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Example: Phone comparison

e An electronics store sells three different brands of phones. Of its phones sales,
50% are brand 1 (the least expensive), 30% are brand 2, and 20% are brand 3.

e Each manufacturer offers a 1-year warranty on parts and labor. It is known
that 25% of brand 1’s phones require warranty repair work, whereas the
corresponding percentages for brands 2 and 3 are 20% and 10%, respectively

e Let A be the probability of purchasing a brand i, then:
- P(A)=05
- P(A,)=03
~ P(A;)=0.2
e Let B be the probability that a phone needs repair. Then:
— P(B|A,)=0.25
— P(B|A,)=0.2
— P(B|A;)=0.1
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Example: Phone comparison

Of its phones sales, 50% are brand 1 30% are brand 2, and 20% are brand 3

P(A,) = 0.5
P(A,) = 0.3
P(A,) = 0.2

25% of brand 1’s phones require warranty
repair work, whereas the corresponding 7
percentages for brands 2 and 3 are o™

20% and 10%, respectively. o B 20

P(BJA;) = 0.25 P(A,) = 30 gt

P(BlAZ) - 0.2 Brand 2 .

P(B|A;) = 0.1 ,
)
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Example: Phone comparison

e What is the probability that a randomly selected purchaser has bought a
brand 1 Phone that will need repair while under warranty?

P(A, N B) = P(B|A,)) - P(A,) = .125.

P(A,) = 30

Brand 2

Reminder:

The Multiplication Rule
P(AN B) = P(A|B) - P(B)
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Example: Phone comparison

e What is the probability that a randomly selected purchaser has a phone that
will need repair while under warranty?

P(B) = P[(brand 1 and repair) or (brand 2 and repair) or (brand 3 and repair)]
=P(A, NB)+ P(A,NB) + P(A; N B)
= .125 + .060 + .020 = .205

P(B|A))-P(A) =P(BNA) =.125

P(B|A,)-P(Ay) = P(BNA,) = .060

P(A,) = 30

Brand 2

P(B| Ay)-P(A3) = P(BNA3) = .020

P(B) = 205

.(Pﬂ- MICRO-110 / Spring 2024 29



Example: Phone comparison

e |f a customer returns to the store with a phone that needs warranty repair
work, what is the probability that it is a brand 1 phone ? A brand 2 phone? A

brand 3 phone?

P(A, N B) 125

P(A,|B) = B) 205 = 0!
P(A, M B)  .060
P(A,|B) = P2(3) =05 =¥

P(A|B) =1 — P(A,|B) — P(A,|B) = .10

Reminder:

The Multiplication Rule
P(A N B) = P(A|B) - P(B)

Pﬂ- MICRO-110 / Spring 2024
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Some more theorems

The Law of Total Probability

LetA,...., A, be mutually exclusive and exhaustive events. Then for any other

event B,

P(B) = P(B|A )P(A,) + -
= EP(B|A)P(A)

-+ P(B|A)P(A)

31



Some more theorems

Bayes' Theorem

P(A,|B) =

LetA,, A,...., A, be a collection of kK mutually exclusive and exhaustive events
with prior probabilities P(A) (i = 1,..., k). Then for any other event B for

? E

which P(B) > 0, the posterior probability of A; given that B has occurred is

P(A;NB)  P(B|A)P(A)

PB) & J= bk
| P(B|A) - P(A)
|

i=

32



Example: Disease Testing

e Only 1in 1000 adults is afflicted with a rare disease for which a diagnostic test
has been developed. The test is such that when an individual actually has the
disease, a positive result will occur 99% of the time, whereas an individual
without the disease will show a positive test result only 2% of the time (i.e.,
the sensitivity of this test is 99% and the specificity is 98%). Let A; = individual
has the disease.

e Let A, =individual does not have the disease.
e Let B = positive test result
e Then:

— P(A,)=0.001

— P(A,) =0.999

— P(B|A,) =0.99

— P(B|A,) =0.02

Pﬂ- MICRO-110 / Spring 2024
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Example: Disease Testing

e |f arandomly selected individual is tested and the result is positive, what is the
probability that the individual has the disease?

e Let A; =individual has the disease. P(A, N B) = .00099

e Let A, =individual does not have the disease.

e Let B = positive test result

e Then:
- P(A,)=0.001
— P(A,)=0.999
— P(B|A,) =0.99
— P(B|A,) =0.02

P(A, N B) = 01998

— P(B) = 0.00099+0.01998 = 0.02097
— Then, P(A, N B) 00099
P(B) 02097

— In other words, the likelihood that a positive test actually is indicative of a disease
is really low! Why? Because the rarity of the disease means that most positives
are due to errors. To detect rare diseases, we need tests with REALLY low false
positive rates

P(A1|B) -

= .047

Pﬂ- MICRO-110 / Spring 2024 34




Independence

Two events A and B are independent if P(A|B) = P(A) and are dependent
otherwise.

e Additionally, if A an B are independent, then so are
- A’andB
- AandPB’
- A’and B’

A and B are independent if and only if (iff)
P(A N B) = P(A) - P(B)

—  Proof:
P(A N B) = P(A|B) - P(B) = P(A) - P(B)

Since P(A|B) =P (A) if independent

.(l)fl- MICRO-110 / Spring 2024
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Example exploiting independence: Testing of supplier batches

e Each weekday, a batch of components sent by a supplier A arrives at a certain
inspection facility. Two days a week, a batch also arrives from a Supplier B.
Eighty percent of all supplier A’s batches pass inspection, and 90% of supplier
B’s do likewise. What is the probability that, on a randomly selected day, two
batches pass inspection?

Test A
%

4 X (8 X .9)

Since testing of A and B don’t affect each < fy),
other, we can chain them up by dealing with
A and then B

Pﬂ- MICRO-110 / Spring 2024
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Extending to multiple probabilities

e Consider 2 solar cell string configurations

P(AUB)=PA)+ P(B)— P(Ar

{ooal Lol
4516 44516 P(A M B) = P(A) - P(B)

(a) (b)

e We want to know if the each system will work for 10 years. The systemis
assumed to “work” if power is available. Assuming the probability of any cell
last 10 years is 0.9, and assuming cell failure is independent, which system has
a higher probability of working for 10 years.

— System (a): 1, 2, & 3 are in series, so all must work for the string to work. On the
other hand, the stings are in parallel.

— Let A, be the probability that any cell i lasts 10 years. Then, the P of the system
working for 10 years is:
=P(A;NA,NA;)+P(A/N AN AL )-P(AIN A, N A )NP(A,N AN AL)
=0.9*0.9*0.9+0.9*0.9*0.9-0.9*0.9*0.9*0.9*0.9*0.9=0.927

1 B)

Pﬂ_ MICRO-110 / Spring 2024
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Extending to multiple probabilities

e Consider 2 solar cell string configurations

{ 1 H2H13 } { 1 :|: 2 :|: 3 } PAUB) =PA + P(B—P(AN B
6 4 5 6

415 P(A N B)=P(A) - P(B)
(a) (b)

— System (b): 1 and 4 are in parallel, which are in series with 2 and 5...
= P(Agstem) = PIIAL U AL) N (AU A) N (AU Ag)]
=[P(A})+ P(A; )-P (A, ADIIP(A,)+ P(As )-P (A, N A)I[P(A5)+ P(Ag )-P (As M Ag)]
=[P(A)+ P(A; )-P (A))P( Ay)I[P(A,)+ P(A5 )-P (A,)P( As)I[P(A3)+ P(Ag )-P (A3)P( Ag) ]
=(0.9+0.9-0.81)"3
=0.97
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Random variables

For a given sample space & of some experiment, a random variable (rv) is
any rule that associates a number with each outcome in &. In mathematical
language, a random variable is a function whose domain is the sample space
and whose range is the set of real numbers.

Any random variable whose only possible values are 0 and 1 is called a
Bernoulli random variable.

§

Example:

e When a student calls a university help desk for technical support, he/she will
either immediately be able to speak to someone (S, for success) or will be
placed on hold (F, for failure). With S = {S, F}, define an rv X by X(S) =1 X(F) =0

.(Pﬂ- MICRO-110 / Spring 2024
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Reminder: 2 gas pumps

e Two gas stations are located at a certain intersection. Each one has six gas
pumps. Consider the experiment in which the number of pumps in use at a
particular time of day is determined for each of the stations.

Second Station
] 1 2 3 4 5 i3
0 (0,0 0, 1 (0, 2) (0, 3) (0, 4) (0, 5 (0, 6)
| (1,0 (1, 1) (1,2 (1, 3) (1, 4) i1, 5) (1, 6)
2 2,0 (2, 1) (2,2 (2, 3) (2, 4) (2, 5) (2, 6)
First Station 3 3.0 (3. 1) (3.2 (3.3 (3, 4) (3.5 (3, 6)
4 4,0 4, 1) 4,2 (4, 3) (4, 4) (4, 5) (4, 6)
5 (5,0) (5 1) (52 (5, 3) (5, 4) (5, 5) (5, 6)
[ (6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

e Definerv's X, Y, and U by
— X =the total number of pumps in use at the two stations

— Y =the difference between the number of pumps in use at station 1 and the number
in use at station 2

— U =the maximum of the numbers of pumps in use at the two stations

— If this experiment is performed and (2, 3) results, then X((2, 3)) =2 + 3 =5, so the
observed value of X was x = 5.

— Similarly, the observed value of Ywouldbey=2-3=-1,

— and the observed value of U would be u =max (2, 3) = 3.
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Types of Random Variables

A discrete random variable is an rv whose possible values either constitute a
finite set or else can be listed in an infinite sequence in which there is a first
element, a second element, and so on (“‘countably” infinite).

A random variable is continuous if both of the following apply:

1. Tts set of possible values consists either of all numbers in a single interval
on the number line (possibly infinite in extent, e.g., from —o to %) or all
numbers in a disjoint union of such intervals (e.g., [0, 10] U [20, 30]).

2. No possible value of the variable has positive probability, that is,
P(X = ¢) = 0 for any possible value c.

e This second point may seem counter-intuitive, but it makes sense when we
consider that this references a single value, not an interval. Since we are
continuous, intervals will have non-zero probability.
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Probability Distribution Functions of a discrete RV

The probability distribution or probability mass function (pmf) of a discrete rv
1s defined for every number x by p(x) = P(X = x) = P(all w € & X(w) = x).

Example:

e Six boxes of components are ready to be shipped by a certain supplier. The
number of defective components in each box is as follows:

Box

1 2 3 4 5 6
Number of defectives 0 2 0 1 0

o

e One of these boxes is to be randomly selected for shipment to a particular

customer. Let X be the number of defectives in the selected box. The three
possible X values are 0, 1, and 2. Then

3
p(0) = P(X=0)=Pox |l or3or6issent) = g =.500
|
p(l1)=P(X=1) = P(box 4 is sent) = P = .167

2
p(2) = P(X=2) = P(box 2 or 5 is sent) = g = .333

Pﬂ! MICRO-110 / Spring 2024



Plotting probability distribution functions

e We can generate histograms of such distribution functions, such as:

3
p(0) = P(X=0)=Pox |l or3or6issent) = g = .500
. |
p(l1)=P(X=1) = P(box 4 is sent) = P = .167
) 2
p(2) = P(X=2) = P(box 2 or 5 is sent) = g = .333

Frequency Probability

0.5 A

0.4 1

0.3 A1

0.2 1

0.1 A

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 4

0.0 0.5 1.0 15 2.0 2.5 3.0

e Similarly, we can generate cumulative distribution functions, etc.

See python code in module2_discrete RVs.ipynb
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Plotting probability distribution functions

e We can generate histograms of such distribution functions, such as:

3
p(0) = P(X=0)=Pox |l or3or6issent) = g = .500

|
p(l1)=P(X=1) = P(box 4 is sent) = P = .167

2
p(2) = P(X=2) = P(box 2 or 5 is sent) = g = .333

Cumulative Probability

The cumulative distribution function (cdf) F(x) of a discrete rv variable X
with pmf p(x) is defined for every number x by

Fx)=PX=x)= > py)

For any number x, F(x) is the probability that the observed value of X will be
at most x.
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Expected Value

Let X be a discrete rv with set of possible values D and pmf p(x). The expected
value or mean value of X, denoted by E(X) or w, or just w, 1s

E(X) = py = EJ{ - p(x)

xeD

If the rv X has a set of possible values D and pmf p(x), then the expected value
of any function h(X), denoted by E[h(X)] or w,,, is computed by

E[h(X)] = D h(x) - p(x)
D

Example: For a linear function

EaX+b)=a-EX)+ b

(Or, using alternative notation, p ., = a * py, + b)
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Let X have pmf p(x) and expected value w. Then the variance of X, denoted
by V(X) or %, or just o2, is

VIX) = D (x — w)? - p(x) = E[(X — )]
D

The standard deviation (SD) of X is

Ux:\/‘g{




Python Example:

from scipy.stats import rv_discrete

x = [10, 20, 30]

p =[0.2, 0.3, 0.5]

distribution = rv_discrete(values=(x, p))
print("Expected value: ", distribution.expect())
print("Variance: ", distribution.var())
print("Standard Deviation: ", distribution.std())

Expected value: 23.0
Variance: 61.0
Standard Deviation: 7.810249675906654

See python code in module2_discrete RVs.ipynb
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The binomial distribution

e There are many experiments that conform either exactly or approximately to
the following list of requirements:

1. The experiment consists of a sequence of n smaller experiments called trials,
where n is fixed in advance of the experiment.

2. Each trial can result in one of the same two possible outcomes (dichotomous
trials), which we generically denote by success (S) and failure (F). The
assignment of the S and F labels to the two sides of the dichotomy is
arbitrary.

3. The trials are independent, so that the outcome on any particular trial does
not influence the outcome on any other trial.

4. The probability of success P(S) is constant from trial to trial; we denote this
probability by p.

An experiment for which Conditions 14 (a fixed number of dichotomous,
independent, homogenous trials) are satisfied is called a binomial experiment.
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The binomial random variable

The binomial random variable X associated with a binomial experiment
consisting of n trials 1s defined as

X = the number of S’s among the #n trials

e Suppose, for example, that n = 3. Then there are eight possible outcomes for
the experiment:
— SSS SSF SFS SFF FSS FSF FFS FFF
* From the definition of X, X(SSF) = 2, X(SFF) = 1, and so on.
e Possible values for X in an n-trial experimentare x=0, 1, 2,..., n.
e We will often write X,Bin(n, p) to indicate that X is a binomial rv based on n
trials with success probability p.
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Probability of x in a binomial experiment

e Consider an n=4 binomial experiment

Outcome X Probability Outcome X Probability
SSSS 4 p? FSSS 3 p(1 = p)
SSSF 3 Pl —p) FSSF 2 Pl — p)?
SSES 3 p(1 —p) FSFES 2 Pl — p)?
SSFF 2 pA(1 — p)? FSFF I p(l —p)?
SFSS 3 Pl —p) FFSS 2 pH1l — p)?
SFSF 2 pH1 — p)? FFSF I p(1 —p)?
SFFS 2 Pl — p)? FFFS I p(1 —p)?
SFFF 1 p(1 = p)? FFFF 0 (1 — py

e |f we wanted to determine the probability of a particular number of successes,
i.e., a particular binomial random variable value, we would sum the
probabilities of the individual occurences. For example, for x=3, we have:

b(3; 4, p) = P(FSSS) + P(SESS) + P(SSES) + P(SSSF) = 4p3(1 — p)

e More generally: my . .
‘._,\'_]/"'[-1 —pY x=0,1,2,..., n

b(x;n, p) =

0 otherwise
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Binomial Distribution as a function of n

0.375
g ] -E 0.2500 -
Q o)
8 0.250 8 0.1875
o Il &)
K % 0.1250 -
0.125 4
] 0.0625 -
[
0 1 2 3 4 0 1 2 3 4 5 6
Number of heads Number of heads
S in 4 coin tosses in 6 coin fosses
- —
= 0.50 Y
5 A1)
= \
0 025 /
0 -
0 1 2 - =

[ [ | | [ | [ | [
Number of heads 01234567891
in 2 coin tosses

[f X ~ Bin(n, p), then E(X) = np, V(X) = np(1 — p) = npq, and oy = Vnpq
(where g = 1 — p).
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Binomial distributions in Python

from scipy.stats import binom

# Parameters
n = 10 # number of trials
x = 7 # number of successes

p = 0.2 # probability of success

print("Mean: ", binom.mean(n, p))

print("Variance: ", binom.var(n, p))

print("Probability mass function: ", binom.pmf(x, n, p))
print("Cumulative distribution function: ", binom.cdf(x,n,p))

Mean: 2.0

Variance: 1.6

Probability mass function: 0.000786432
Cumulative distribution function: 0.9999220736

See python code in module2_discrete RVs.ipynb
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The Dishonest Gambler Problem

e Consider a dishonest gambler, Denis Bloodnok, who makes money betting
with a biased penny that he knows comes up heads, on the average, 8 times
out of 10.

e For his penny the probability p of a head is 0.8 and the probability g =1 - p of a
tail is 0.2.

e Suppose he bets at even money that of n = 5 tosses of his penny at least four
will come up heads. To make his bets appropriately, Bloodnok calculates the
probability, with five tosses, of no heads, one head. two heads, and so on.

e With y representing the number of heads, what he needs are the n + 1 = six
values: Pr(y=0), Pr(y=1),...

e Call the tossing of the penny five times a trial and denote the outcome by
listing the heads (H) and tails (T) in the order in which they occur. The
outcome y = O of getting no heads can occur in only one way, so

— Prly=0)=Pr(TTTTT)=gxgxgxqgxqg=g°=0.2>=0.00032
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The Dishonest Gambler Problem

e Find Pr(y=1)
Pri(y=1)=Pr(HTTTT)+Pr(THTTT}+Pr(TTHTT)+Pr(TTTHT)+
Pr(TTTTH)

Pr(y=1) = 5pg*=5x0.8 x 0.24 =5 x 0.000128 = 0.00640.

e Find Pr(y=2)

— Write out the possibilities
(HHTTT)

— Write out the equation
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The overall result

5!
C ) = Yo n—y

Number of Heads y G — ! Py Pr(y)
0 1 0.00032 0.00032
1 5 0.00128 0.00640
2 10 0.00512 0.05120
3 10 0.02048 0.20480
4 5 0.08192 0.40960
5 ! 0.32768 0.3276%

1.00000
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Graphically

n=4
¢ n=2.5
marey '
=0.89
04t -
T - 1.12
s
o
0.2 0.2
3
i I
0 1 2 4 5 0 2
y —> y —*
_ Fair penny
Biased penny
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How does he make money?

e |n this way Bloodnok calculates that using his biased penny the probability of
at least four heads [given by Pr(4) + Pr(5)] is about 0.74. For the fair penny
Pr(4) + Pr(5) yields a probability of only 0.19.

e For the fair penny a wager at even money that he can throw at least four
heads appears unfavorable to him.

e By using his biased penny he can make an average of 48 cents for every dollar
bet. (If he bets a single dollar on this basis 100 times, in 74 cases he will make
a dollar and in 26 cases he will lose a dollar. His overall net gain is thus 74-26 =
48 dollars per 100 bet.)
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The Poisson distribution

A discrete random variable X is said to have a Poisson distribution with
parameter w (u > 0) if the pmf of X is

e H -t |
plx; p) = BT x=0,1,2,3,...

Suppose that in the binomial pmf b(x; n, p), we let n — % and p — 0 in such
a way that np approaches a value u > 0. Then b(x; n, p) — p(x; ).

e According to this result, in any binomial experiment in which n is large and p is
small, b(x; n, p) < p(x; 1), where 11 =np. As a rule of thumb, this approximation
can safely be applied if n >50 and np < 5.
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Poisson distribution in Python

from scipy.stats import poisson

# Parameters
X = 1 # number of events
Lambda = 2/3 # lambda parameter

print("Mean: ", poisson.mean(Lambda))
print("Variance: ", poisson.var(Lambda))
print("Probability mass function: ", poisson.pmf(x, Lambda))

print("Cumulative distribution function: ", poisson.cdf(x, Lambda))

Mean: 0.6666666666666666

Variance: 0.6666666666666666

Probability mass function: 0.3422780793550613
Cumulative distribution function: 0.8556951983876534

See python code in module2_discrete RVs.ipynb
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PDF of Continuous random variables

Let X be a continuous rv. Then a probability distribution or probability den-
sity function (pdf) of X is a function f(x) such that for any two numbers a and
b with a = b,

b
Pa=X=0b)= J]‘(.\‘}d.x'

a
That is, the probability that X takes on a value in the interval [a, D] is the area
above this interval and under the graph of the density function, as illustrated in
Figure 4.2. The graph of f(x) is often referred to as the density curve.

For f(x) to be a legitimate pdf, it must satisfy the following two conditions:

1. f(x)=0 forall x

fix) 4 2. J‘ f(x)dx = area under the entire graph of f(x)

/ |

da b
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CDF of Continuous random variables

The cumulative distribution function F(x) for a continuous rv X is defined
for every number x by

Fx)=PX=x)=| f(ydy

o — 00
For each x, F(x) is the area under the density curve to the left of x. This is illus-
trated in F1g1.11e 4.5, where F(x) increases smoothly as x increases.
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Computing probabilities for CDFs

Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a,
PX>a)=1— Fla)
and for any two numbers a and b with a < b,

Pla=X=b)=Fb) — Fla)

f(x) /\i ) I _ lf /\

a b b a

o
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Expected value and variance

The expected or mean value of a continuous rv X with pdf f(x) is
oo

py = EX) = | x-fx)dx

The variance of a continuous random variable X with pdf f(x) and mean value
ML 1S
" OC

o =VX)=| (x—p?-flx)dx=EX—- p?

The standard deviation (SD) of X is oy = V V(X).
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Normal Distribution

l

fx: u, 0) = —— e~ (x—w?/(20?)

\V2mwo

A continuous rv X is said to have a normal distribution with parameters w
and o (or w and o?), where —o0 < u < o and 0 < ¢, if the pdf of X is

—o < x <@

flx)
0.09

0.08 -
0.07 - I\
0.06 p=100,0=35
0.05 - .

0.04 S
0.03
0.02 - '
0.01 -
0.00
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Normal distributions in Python

from scipy.stats import norm
# Parameters

x = 1.3 # value to look for

mu = 0 # mean

sigma = 1 # standard deviation

print("Mean: ", norm.mean(loc = mu, scale = sigma))

print("Variance: ", norm.var(loc = mu, scale = sigma))

print("Probability mass function: ", norm.pdf(x, loc = mu, scale = sigma))
print("Cumulative distribution function: ", norm.cdf(x, loc = mu, scale = sigma))

print("Survival function (1-cdf): ", norm.sf(x, loc = mu, scale = sigma))

Mean: 0.0
Variance: 1.0
Probability mass function: 0.17136859204780736
Cumulative distribution function: 0.9031995154143897
Survival function (1-cdf): 0.09680048458561036
See python code in module2_continuous_RVs.ipynb
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The normal distribution

e |n the real-world, random variations often result in the “normal” distribution

04

p(y) = constant _} gty -niz0?)

i | 1 ]
n=-30 n-20 np-o n n+c¢ np+20 7+30
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Characteristics of the normal distribution

e Symmetric, bell shaped

e Continuous for all values of X between -o= and o= so that each conceivable
interval of real numbers has a probability other than zero.
~00 < X < 00

e o Two parameters, 1 and o. Note that the normal distribution is actually a
family of distributions, since 1 and o determine the shape of the distribution.

e ¢ The rule for a normal density function (normalized to have an area of 1) is
féz) .
g.igqi—------——‘-.---- )

7 -I ) oy 2
flx Mo’ )=———=™V""

i
2o _T —
+1

_x-N
I M

2 -1
|. L—éﬂ 264, —,l |
} 05447, | ‘

99,74,

e About 2/3 of all cases fall within one standard deviation of the mean, that is
P(n-o<X<n+o)=.6826.

e About 95% of cases lie within 2 standard deviations of the mean, that is
P(M-20<X<n+20)=.9544
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Why is the normal distribution important?

The central limit effect

e Any measurement in a set of replicates is subject to numerous sources of
error or “noise”.

e Typically, in a well-designed experiment, the effect of these individual errors
is small. As such, the overall error can then be approximated as a linear
combination of the individual errors:

e=ue)+aze;+ -+ anep
e The central limit theorem states that the resulting distribution will tend to

normality if:

— There are several sources of error, such that the distribution of the individual
error sources becomes unimportant

— No individual error source dominates

Robustness to assumption of normality

e The techniques used here work well even if the fit to normality is only
approximate.
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Example: Dice throwing

1 die thrown repeatedly

1 2 3 4 5 6

(a)
: | | | ! ‘ ! I l | L Average of 2 dice thrown repeatedly

®) (i.e., sum of values / 2)

| | | ‘ I | I '| Average of 3 dice thrown repeatedly

e T L SRR (i.e., sum of values / 3)

(c)
5 .1||||| l | |||]| ..... Average of 4 dice thrown repeatedly
' 2 o 5 ¢ (i.e., sum of values / 4)

,,11|||| H } ’H “ln.,“ Average 5 dice thrown repeatedly

1 2 3 4 5 6

(@ (i.e., sum of values / 5)
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Normal Distribution Characteristics

N(n,o?) 02

i {\ N{ab, 6.25)

20T N(-5, 25)

N(30, 25)

1 l
n =30 n—2c n-o

P )

—

+

[~

4 |}
o o
Sl =
=

+
(]

~
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Z-scores

e Populations are sometimes presented as z-scores to normalize with respect
to the standard deviation

Population of scores Population of z-scores
(X values) (z values)
Transform Xto z /
c=10_ o=1 |
X Z
80 0 100 110 120 -2 ~1 0 +1 +2
n n

y—=1

. Pr(y>n+0)=Pr[(y—n)>0c]=Pr [(

)> 1]=Pr{z> 1) =
0.1587

a

Pr(z < —2) = 0.0228
Pr(|z] > 2) = 0.0455

2. Pr(z < —1) =0.1587
, = Y- 3. Pr(|z] > 1) = 0.3174
- 4. Pr(z > 2) = 0.0228
5.
6.
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Back to our Camipro example

See python code in module2_continuous_RVs.ipynb
e Here is some idealized data of an ASK 10110 stream

| TAATERERTERRTRE

e Consider the effect of noise

| Ir
drhlrey v

noise = np.random.normal(0,0.1,500)
modulated_signal noisy=modulated_signal+noise
plot_signal(tc,modulated_signal_noisy)
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Demodulation

e To extract the 1’s and 0’s, a demodulator on the reader rectifies the input

signal
Diode
* 45 T
IR lvilie,
|V ; Output
Input Half wave : Low pass filter

rectifier section ! section

Envelop Detector

Figure |
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Rectification in python

rectified_signal=np.zeros(500)

for counter in range(500):
rectified_signal[counter]=modulated_signal _noisy[counter]
if modulated_signal _noisy[counter] < O:

rectified_signal[counter]=0

plot_signal(tc,rectified_signal)

Diode

' Jl H F | lJ —>t
| \H

'H I o kg
Il J
m} \‘W‘

‘JMH M H\

“‘H‘ | WIH } 'WM»
MV

J ﬂ

LJJ\*J_UMMM

|
J L‘JML\JMWJ;

Half wave
rectifier section
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Data extraction

e Let’s assume the data extraction uses the peaks of the half-waves.

e Python allows us to easily extract peaks of waveforms

from scipy.signal import find_peaks

peaksarray,
peakvalues=np.zeros(len(peaksarray))

for counter in range(len(peaksarray)):

_=find_peaks(rectified_signal)

peakvalues[counter]=rectified_signal[peaksarray[counter]]

9.97753125 1.11%96718 1.88207663 1.05038563 1.12597234 0.96720406
8,93322268 ©.99352721 9.911%65%99 1.851468782 @.08275545 0.@3121158
B.96734725% €.131176659 @.85734183 ©.085319574 9.04%11876 ©.98776536
B.84323852 @.82658191 9.11451536 ©.258986106 @.87803861 0©.83735488
“ F’ﬂh { B,13423521 @.8342736 0.17340812 ©.05406554 @.83341722 0.@74397a8
‘ ~‘ ‘ ﬂ / ”‘ H r ‘“ B.@868927%6 8.15926613 @.8528218%5 ©.02208455 2.18826486 6.15882391
‘\{‘ \ ‘ ‘ ' B.@9687562 8.88486772 0.94952447 1.104558566 2.94189156 1.8121353%
’ “ H “ B,9938272 @.97959991 a.98274087 2.5438953 2.93245599 0,85583584
‘ L ‘ U } 5.99286036 1.87124819 1.15121215 1.82795644 @.91%74752 &.965604
Jh{‘tjl tﬁmmjﬁhwﬂd U\ J U HLﬁ%LJJMJJm B.79342024 @.99521486 9.92938227 ©.2485021 @.0@5377397 0.9732902%
: i L 8,17116832 &.221047659 @.88531527 ©.092427434 8.11%57632 0.9851005%
B.1297811 @.11775567 9.838753841 ©.1584259437 @.11457815 0.396%2513
8.11185234 @.1115888°2 9.83362144 ©.2157835 @.13201835 ©.175332132
B.12456165% @.B620643 ©.13531726]
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Data extraction

e Infact, in reality, the 1’s and 0’s look like normal distibutions

plt.hist(peakvalues,bins=50)

X_axis = np.arange(0,1.5,0.001)

plt.plot(x_axis, 2*norm.pdf(x_axis, 0.05, 0.1)+norm.pdf(x_axis,1,0.08))
plt.show

0.6

1.4
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How would we estimate error rate probabilities?

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.4
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Probability and Inferential Statistics

* Probability is important because it establishes a link between samples and
populations.

e For any known population it is possible to determine the probability of
obtaining any specific sample.

e We will use this link as the foundation for inferential statistics.

e The general goal of inferential statistics is to use the information from a

sample to reach a general conclusion (inference) about an unknown
population.

e Typically a researcher begins with a sample.
e |If the sample has a high probability of being obtained from a specific

population, then the researcher can conclude that the sample is likely to
have come from that population.

e |f the sample has a very low probability of being obtained from a specific
population, then it is reasonable for the researcher to conclude that the
specific population is probably not the source for the sample.
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Checking if an experimental factor affects a measured response

Population

Middle 95%

High probability values
(scores near 1 = 400)
indicating that the treatment
has no effect

Normal
T = 400
=20

to be obtained from the original population
and therefore provide evidence of a freatment effect

T u
\ 4 r = 400
e z=-196 n z=+1.96
T— N ? Treated
m scmple Extreme 5%
ﬁ Scores that are very unlikely
.I,

ECOLE
FEDER

.,ﬂ)ﬂ-,\ MICRO-110 / Spring 2024
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The missing information in samples

e We may know the mean of the population, but we rarely know the variance

Definition Population: a hypothetical set of ¥ Sample: a set of n available
observations from which the sample of observations (typically n is

observations actually obtained can be small)
imagined to come (typically N is very
large)
Parameters Statistics
Measure of  Population mean n = 3 y/N Sample average ¥ = Y v/n
location _
Measure of  Population variance Sample variance
SprEild 7 - 3 2
o =3 (y—n)IN 7=y =V —1)
Population standard deviation Sample standard deviation
o=+ (y—n)/N s=+/Y (=7 n-1)

e This means that we cannot easily determine the z score of a measurement.

We define a new term, t, which is determined from the population mean and

the sample variance g Yo = 1
Y1 s =
o

—
—
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Effect of sample size

e As we increase the number of samples, the distribution of the samples
approaches the normal distribution if the sampling is random

e This sample distribution is called the student’s t distribution.

— The original discoverer was W. S. Gosset, who wrote under the pseudonym
“student”.
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Repeated sampling

* In many experiments, we draw repeated independent samples from a general
population
- E.g.,
e take a bucket full of numbered balls (the population)
e Extract n random balls, calculate the sample mean y, and put the balls back
e Repeat multiple times
e This is called independent identically distributed observations.

e The distribution of the sample means have several interesting properties
2

o
EM=n VO =—

Parent Distribution Sampling Distribution

for Observations y for Averages y
Mean n n
Variance o? o?/n
Standard deviation o a/Jn
Form of parent Any* More ncarly normal than

distribution the parent distribution

S

*This statement applies to all parent distributions commonly mel in practice. It is not true for certain
mathematical woys (e.g., the Cauchy distribution), which need not concern us here.
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The central limit theorem and normality

The Central Limit Theorem (CLT)

Let X, X5, ..., X, be a random sample from a distribution with mean u and
variance 2. Then if n is sufficiently large, X has approximately a normal dis-
tribution with uy = w and o3 = */n, and T, also has approximately a normal
distribution with p, = nu, (,f%-} = no?. The larger the value of n, the better the
approximation. r ,

X distribution for
large n (approximately normal)
X distribution for
small to moderate n

Population \
distribution
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Special case: random sampling from a normal distribution

(
parent population A 2
of ¥'s random sample
{normal) n=>5values —»> 0
YieYa Vo Ya ¥s5
-2
]’ 2
calculate | 0
y=Zyin
-2
1 4
l‘:&llc:ul.':lte'2
2= Iy-9° L 2
n=1
0
1 2

calculate
t=(y-n)(shn)

-2

parent distribution
ofy
(normal)

sampling
distribution
of ¥ (normal)

T

T T 711

sampling

distribution
of 2

(scaled ¥?)

‘sampling
distribution
of t .

Notice that we could calculate a t-distribution of the y population purely from the s values of
the individual samples. This is only possible because we are sampling from a normal
distribution.. This is a useful fact since we often don’t have access to the population o, etc.
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Other continuous distributions: The exponential distribution

X is said to have an exponential distribution with (scale) parameter A (A > 0)
if the pdf of X is

0 otherwise
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Other continuous distributions: The chi-squared distribution

X is said to have an exponential distribution with (scale) parameter A (A > 0)
if the pdf of X is

e x=0

f(x;A) = - ‘
' I 0 otherwise
flA)
2_
_A=2
l —

Others that are important: Chi-squared, Weibull, etc.
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Joint Probability: Discrete Random Variables

e Joint probability deals with determination of probabilities for 2 or more
random variables

e Reminder: 2 gas station example

— Two gas stations are located at a certain intersection. Each one has six gas pumps.
An experimental outcome specifies how many pumps are in use at the first
station and how many are in use at the second one.

— The sample space was

Second Station

0 1 2 3 4 5 6

(0, 0) (0, 1) (0, 2) (0,3 (0, 4) (0, 5) (0, &)
(1,0) (1L, 1) (1,2) (1,3 (.L4y (1.5 (1,6)
(2,0 (2, 1) (2,2) (2,3 (24 (2.5 (2,6)
(3,0 (3, 1) (3,2 (3,3 (3.4 (3.5 (3,6)
(4,0) 4, 1) 4, 2) 4,3 4.4 @45 (4,6
(5,0) (5 1 (5.2) (5.3 5.4y (5.5 (5 6)
(6,0) 6, 1) (6,2) 6, 3) 6,4y (6,5 (6 6)

First Station

= b =S

— These are discrete random variables, since we cannot have a fractional pump use,
and we could calculate probabilities of outcomes.
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Joint Probability: Discrete Random Variables

e Joint probability deals with determination of probabilities for 2 or more
random variables

Let X and Y be two discrete rv’s defined on the sample space & of an experi-
ment. The joint probability mass function p(x, v) is defined for each pair of
numbers (x, y) by

px,y) =PX=xand Y =y)

[t must be the case that p(x, v) = 0 and 2 2 px,y) = 1.

X y
Now let A be any particular set consisting of pairs of (x, y) values (e.g.,
A={(x, v):x+y=35} or {(x, ¥y): max(x, y) = 3}). Then the probability
P[(X, Y) € A] that the random pair (X, Y) lies in the set A is obtained by sum-
ming the joint pmf over pairs in A:

PI(X, V) E Al = D) D p(x,y)

(x,y) EA
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Joint Probability: Discrete Random Variables

e Reminder: 2 gas station example

— Assuming equal probability of use for all pumps, we have:

Second Station

0 1 2 3 4

an

0.0204 0.0204 0.0204 0.0204 0.0204 0.0204
0.0204 0.0204 0.0204 0.0204 0.0204 0.0204
0.0204 0.0204 0.0204 0.0204 0.0204 0.0204
0.0204 0.0204 0.0204 0.0204 0.0204 0.0204
0.0204 0.0204 0.0204 0.0204 0.0204 0.0204
0.0204 0.0204 0.0204 0.0204 0.0204 0.0204

First Station

=LY | [ S SR

0.0204
0.0204
0.0204
0.0204
0.0204
0.0204

— What is the probability of 4 pumps being used in total?

— What is the probability of no pumps being available?

.(l)ﬂ- MICRO-110 / Spring 2024



Another example

e Consider the case of buying insurance. As you know, you can choose the
amount of the franchise.

e Suppose we look at the deductibles chosen by a random customer for health
(x) and automobile (y) insurance and we find:

\!

px, ) 500 100 5000
100 30 05 0
X 500 15 20 05
1000 10 10 05

e To proceed, we must (1) confirm this is a valid probability table:
— Allvaluesare >0
— Sumisl
e What is the probability that the auto insurance franchise is >= CHF500?

90
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Marginal Probability

e The marginal probability is simply the probability function for one variable for
the particular condition of another variable

The marginal probability mass function of X, denoted by p,(x), is given by

Px(x) = 2 p(x,v) for each possible value x

y: plx, )y ) =>()

Similarly, the marginal probability mass function of Y is

py(y) = 2 p(x,y) for each possible value y.
v p(x, v)=>0
Y
* For example: p(x, y) 500 100 5000
100 .30 .05 0
X 500 15 .20 .05
1000 10 .10 .05

e p,(x)=0.35 @ x=100, 0.4 @ x=500, 0.25 @ x=1000, 0 otherwise.

.(l)ﬂ- MICRO-110 / Spring 2024

91



Joint Probability: Continuous Random Variables

e Joint probability deals with determination of probabilities for 2 or more
continuous variables

Let X and Y be continuous rv’s. A joint probability density function
f(x,y) for these two variables is a function satisfying f(x,y) =0 and

7 7. f(x,y)dxdy = 1. Then for any two-dimensional set A

Pl(X.Y)EA] = ‘ (j'(.\'. v)dx dy
)
In particular, if A is the two-dimensional rectangle {(x,y):a = x =b,c =y = d},
then
"d

b [
PIX,Y)EAl=Pa=X=b,c=Y=d) = ( ( f(x, y)dy dx

ST

e y)

Surface f(x, v)

A = Shaded
rectangle

X
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Marginal Probability: Continuous Random Variables

The marginal probability density functions of X and Y, denoted by fy(x) and

f(v), respectively, are given by
9
) =] fl.ydy for—o<xy<ox
i
.

Jy(v) = f(x, y)dx for —oo <y <

J —00
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Example: Visiting McDonald’s

e Suppose you go to the McDonald’s in Villeneuve, which has both a walk-in
(y) and drive-through (x) service. Suppose the joint PDF that X,Y are in use

is: |
9(,\chyz) 0=x=1,0=y=1

fx,y) =15

0 otherwise

e First, verify that this is a legitimate PDF:

— Never negative

— Total:

(1 “6

- —(x + y)dx dy
Jo Jo 5
! “6 Il 6

= —x dx dy +J J — vy dx dy
Jo Jo S 0 J0 S
rl | 6

= —xclx+J—\3(l)=—+—=l
Jo 5 ) S 10 15
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Example: Visiting McDonald’s

9(x+y2) 0=x=1,0=y=1

fy) =15

0 otherwise

e What is the probability that neither walk-up or drive-through is busy more
than % of the time?

) ) 4 (14 g
P(OSXSZ,OSYS Z):Jo JO g(XJF}-‘z)dXd)’

6 (14 (14 6 [14 (14
= — J J xdx dy + —J J v dx dy
5 5)y o

0 0 0
6 y2 =14 6 V3 y=14 7
_ - . 4+ — . _
20 2 | x=0 20 3 |y=0 640
= .0109
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Statistical dependence

In many experiments, we need to examine multiple responses and how they
vary with each other. For example:

e Suppose you were considering two characteristics, for example, the height
vl in cm and the weight y2 in kg of the population

distribution of heights p(y1); Distribution of weights p(y2)

the probability distribution of the weights of all people who were 150 cm tall.

This distribution is written as p(y2|yl = 150).

You would expect the conditional distribution p(y2 | y1 = 150) to be quite
different from p(y2 | Y1 = 175)

Y1 and Y2 would be said therefore to be statistically dependent.

The likelihood of finding someone with a specific weight and height would be:

PO Y = pn) x pOya | ) =ply2) x p(yi | v2)

* Now suppose that y3 was a measure of the IQ of the recruit. Y3 would be
statistically independent of Y1, such that

p(ysly) = p(y3)

* For statistically, independent variables, the probability of achieving some

specific combination of y1 and y2 values is

P, y2) = p(n) X p(x2)
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Independence of RVs

Two random variables X and Y are said to be independent if for every pair of
x and y values

px,y) = px(x) - py(y) when X and Y are discrete
or

fx,v) = fxy(x) - fy(y¥)  when X and Y are continuous

If (5.1) is not satisfied for all (x, y), then X and Y are said to be dependent.

. . y
e Going back to the insurance example: pery) | 500 100 5000
100 30 .05 0
e Are x andy independent? X 1388 13 ?8 -82

e Ifindependent, then for all values of x and y, we should see that p(x,y)= p,(x)* p,(
Check:
— p(100,500) = 0.3, p,(100)=0.35, p,(500) = 0.55
— p(100,500) # p,(100)*p,(500), so therefore, not independent
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Conditional Probability

Let X and Y be two continuous rv’s with joint pdf f(x, y) and marginal X pdf
fx(x). Then for any X value x for which f,(x) > 0, the conditional probability
density function of Y given that X = x is
f(x,y)
Jx(X)

If X and Y are discrete, replacing pdf’s by pmif’s in this definition gives the
conditional probability mass function of ¥ when X = x.

Frx) = —e <y <o

e Going back to the McDonald’s example: Q(x +3y) 0=x=1,0=y=1

ey =

0 otherwise
e |f we want to find the probability that the walk-up is busy at most half the

time given that the drive-through is 0.8 is:

9) _f(8y) L2843y 1
T A8 12(8)+.4 34

Jyx (¥ (24 +30v*) 0<y<I1

S 5 1
P(Y= 5|X=.8) = J frix ].8)dy = f —; 24+ 30¥)dy = 390
o 0

.(l)fl- MICRO-110 / Spring 2024

98



Expected values and Covariance

Let X and Y be jointly distributed rv’s with pmf p(x, y) or pdf f(x, y) according
to whether the variables are discrete or continuous. Then the expected value of
a function A(X, Y), denoted by E[h(X, Y)] or w,y 4. 1S given by

2 E h(x,y) - p(x,y) if X and Y are discrete
E[h(X,Y)] = J J

h(x,vy) - f(x,y)dxdy if X and Y are continuous

Covariance is used to estimate the degree of linear independence of two variables:

The covariance between two rv’s X and Y is

Cov(X, Y) = E[(X — u)(Y — uyp]
> D= (v — ppp(x, ) X, Y discrete

J J (X — p(y — py)f(x, v)dxdy X, Y continuous

Cov(X, ¥Y) = E(XY) — uy - py
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Covariance and correlation

VvV A
- | +
I o ®
|'. @
e
® .l
o0 |
+ -
Mx
(a)

Positive covariance

My

- | +
[ I
e

T

+

Y

Mx
(b)

Negative Covariance

My

approx. zero covariance

is defined by

Cov(X.Y)

Px.y —
Oy * Oy

The correlation coefficient of X and Y, denoted by Corr(X, Y), py . or just p,
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Covariance and correlation in Python

e Python has built-in functions to calculate covariance and correlation.

np.cov(x,y))
np.corrcoef(x, y))

e The output is a matrix of form [i,j] where the i,i terms are variances or self-
correlations and the i,j terms are covariances and correlations

See python code in module2_covariance.ipynb
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Estimation

e So far, we have discussed the probability of finding specific outcomes.

e Estimation is a complementary concept, where we have a specific outcome
(e.g., a particular data set) and we want to find a distribution that from
which that data set could have been obtained.

* Formally:

A point estimate of a parameter 6 is a single number that can be regarded as
a sensible value for 6. It is obtained by selecting a suitable statistic and com-
puting its value from the given sample data. The selected statistic 1s called the
point estimator of 6.

e We will introduce 2 methods:
— Method of moments

— Maximum likelihood estimation
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Likelihood vs Probability

e Consider a distribution of the weights of screws. The weights are normally
distributed as below

...and a standard
deviation of 2.5.

—l

32 g‘rams

e Why is this normally distributed?
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Review: Probability

e The probability of finding a screw with a weight between 32 and 34 grams

...Is the area under
the curve between
32 and 34 grams.

24 grams | 32 g‘rams 40 grams

e whichis in fact, 0.29

e Wae can write this as:

pr(weight between 32 and 34 grams | mean = 32 and standard deviation = 2.5)

\

This symbol means «given»
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Likelihood

e Suppose we measure a screw and find its weight to be 32 grams

e Then, the likelihood of measuring a 32 gram screw is the corresponding y-
axis value for that date point

0.15 | ...and that value is 0.12

<
0.1 |
05 I
24 grams 32 grams 40 grams

e We can write this as:

[ (mean = 32 and standard deviation = 2.5 | screw weighs 34 grams)
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Likelihood vs Probability

In summary...
Probabilities are the areas

under a fixed distribution...

pr( data | distribution)

Likelihoods are the y-axis

values for fixed data points
with distributions that can be
moved... |

T

In estimation, we know the data and want to find the distribution. Our goal
then, is to maximize the likelihood that the data is from the distribution by
picking the appropriate distribution parameters
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Method of Moments

¢ |In the Method of Moments, we calculate “moments” from the known data
and equate those to “moments” from the theoretical distribution.

e We then solve for the distribution parameters to obtain a distribution that is
an estimate based on the data

e For example, consider a normal distribution:

. 1
f{ﬂﬁi;ﬂrgz} : eXp |:

Ir
a\ 27

202

! L
(@i — ) ]

e The parameters of this distribution are  and pu. We will use the method of
moments to find values of these so that we have an estimate for these
values that correspond to a known data set
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Definition: Moments

e Moments are defined for both the distribution and the sample data:

1. B(X ”"‘) is the k** (theoretical) moment of the distribution (about the origin), fork =1,2,...
2. E [(X — p)*] is the k** (theoretical) moment of the distribution (about the mean), for k =1,2,...

A

L}
3. M =—Y Xf‘ is the k** sample moment, fork =1,2,...
n =1

T
4. MF = — > (X; — X)¥is the k** sample moment about the mean, fork=1,2,...
' L

* In the method of moments, we just equate the theoretical moments to the
sample moments. We need as many moments as there are paramteres in
the distribution equation (for example, in the normal distribution we need 2
moments, since there are two parameters, ¢ and p.

e This gives us a set of simultaneous equations, which we solve for the
unknown parameters

e We denote these parameter estimates with the “hat” (*) symbol, to indicate
that they are estimates, i.e., 6 and i
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MoM Example 1: Bernoulli random variables

e Consider a set of n data points taken from a Bernoulli distribution. As a
reminder, these take the form:

flk;p) =p* (1 —p)" " for ke {0,1}
— Where p is the probability of obtaining 1.
e Suppose we have obtained the following data set from 10 samples:

-01,131,01,1,1,0,1,0
e There is only 1 parameter to this distribution (p), so we only need the first

theoretical and sample moment, which, for this distribution is: E(X;) =p
A a.
* We can calculate the sample momentas: 7= 2 X

=0.6

e Therefore, the MoM estimate p = 0. 6 , which we can use in the f equation
above to identify the MoM-derived distribution from which the data likely
came.
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MoM Example 2: Normal random variables

Consider a set of n data points taken from a Normal distribution:

1 Exp[ \J-e_.f-‘”]
Jx.-‘ﬂ 202

. Suppose we have obtained the following data set from 3 samples:
— X, =-2.321,%,=1.112, and x, = -5.221

e For the normal distribution, the 15t and 2" theoretical moments are:

f{.mu Ly ETE}

E(X;)=p E(X}])=0"+p?

e The experimental moments are:

EX,

_ | L . . .
E{\_X-jl = U= T— Z X E{\_{Tg} — g 4 Pr,g =
;

1
i=1 n

B

=-2.143 =11.29
e Which means, the estimatorsare: i = —2.143 and o = 2.588

e Note that this standard deviation is biased, which is a limitation of this

estimation method
See python code in module2_MoM.ipynb
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Maximum likelihood estimation (IMLE)

e In MLE, we maximize the likelihood of the known data occurring, by
adjusting the parameters of the distribution. For example, in a normal
distribution, we would use MLE:

...to find the optimal values for p (the
mean) and o (the standard deviation)
given some data, x

V

1

\/ 27062

L{u, o|x) = e~ (@—H)120°
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Maximum likelihood estimation (MLE) — single data point

e Given the known data point in red, which of the curves has the maximum
likelihood for varying u?

e And for varying c?
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Maximum likelihood estimation (MLE) — multiple data points

e We can individually calculate the likelihood for each of the data points

Lp =28, 0 =2|x = 32) Lp =28, 0 =2|x, =34)

...but what’s the likelihood of this
normal curve given both x1 and x2?

e HINT: The samples are assumed to be independent.

L(u =28, 6 =2|x, =32 and x, = 34)

=L(u=28,0=2|x = 32]}(/4 =28, 06=2|x =34)
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Maximum likelihood estimation (MLE) — multiple data points

e Extending to n data points, we:

Ly, o|x;, %5, ..., x,) = Ly, 6|x)) X ... X L(u, 6|x,)

l é,—()cl—‘u)E/ZU2 % X e—(x”—,u)z/Zaz

\/ 27062 - \ 270

...then multiply together all n individual
likelihood functions.
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Maximum likelihood estimation (MLE)

e More generally, if we several data points, we can calculate the overall
likelihood and plot it

p— — We want the location that
Liksiificoad of ® “maximizes the likelihood” of
observing the (- ® observing the weights we
datas - ® measured.
-
® -

JESRASRS
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Maximum likelihood estimation (MLE)

e More generally, if we several data points, we can calculate the overall
likelihood and plot it

Now we’ve found the standard
- @ € deviation that maximizes the
'-'ke“h?Od of ® - likelihood of observing the
observing the - weights that we measured.
data: - -
® -
-

Standard Deviation
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Maximum likelihood estimation (MLE) - methodology

e Define the likelihood function (e.g., for a normal distribution)

L, o | %, %50 n09 %)

l e—(xl—y)ZIZJZ X X e—(x”—y)zf’Zaz

\/ 2762 \/ 2762

e And find derivatives of the function for each parameter (e.g, p and o),
assuming other parameters are constant

e Then, we find the maximum by finding the point where the derivative goes
to zero (technically, we should then verify it is a maximum and not a
minimum by taking the 2"d derivative, if the function could have both
maxima and minima) maximum likelihood estimate

for u by finding where this
derivative = 0.

Likelihood

Potential values for y
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Maximum likelihood estimation (MLE) - methodology

e Commonly, we actually take the log of the likelihood function since the math
is often much easier

...and the likelihood function and the
log of the likelihood function both peak
at the same values for gy and o.

Likelihood

Log(Likelihood)
4 A\

Potential values for y Potential values for o
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Detailed example: Normal Distribution Log Transformation

e Using the log converts the Il into X

ln[L(y,¢7|xl,...,Xﬁﬂ

= ln 1 e_(-\‘|_/l)2/2(72 X ... X l e_(x”_'u)Z/zo_Z
\/ 2762 A/ 27102

- ln l e—(.\'l—;l)z/ZO'2 + - + ln l e_('\.”_y)l/zo.l
\/ 2702 i Do

...into addition.
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Detailed example: Normal Distribution Log Transformation

e We will go through the first term in detail, but every term is similar:

In l % ?—(.\']—/1)3/203
\/ 2n6?

1

\/ 2762

2
ln[(Zsz)_'/z] - (xlz_zﬂ) In(e)
1%

In (———)|+In (-2

_ (%)= /vl)2
262

11(2 2)
—— IN(Z7TO
)

_ (X — /4)2
202

11(2) 11(2)
—— &) — — IO
2 2

(X, — ﬂ)2
-,

) —% In(27) — In(6) —
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Detailed example: Normal Distribution Log Transformation

e So, we have:

h)U(y,alxh ”.,%)]

— In I e—(.\‘,—;1)3/2o"2 X .. X l e—(.\‘,,—;1)2/2(72
\/ 2r6? \/ 2762

__ % In(27) — In(e) — (x'z;f y
S % il (x"’z; - )’
2 2
n (x; — ) (X, — 1)
— — —In(27) — nln(o) — — el
2 20% 2062

)
E MICRO-110 / Spring 2024
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Detailed example: Normal Distribution Log Transformation

e So, we have:

In [L(,u, clxy, ... x”)]

SRR v Al
=—gln(2ﬂ')—nln(g)—u_ M

202 o 202

e We take derivatives with respect to p and 6. The math is involved, but the
answer is:

0 1
—ln[L(,u, olx, ..., x,l)] = g[(x, £ .+ %) — n,u]

ou

0 n 1

—ln[L(,u, o|x, ...,x”)] =——+—3[(x| —/,t)2+...+(x;-;_ﬂ)2]
do o O

e Set these to zero to find the maxima

— In fact, for normal distributions, the answer is simply u and
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Detailed example: Normal Distribution Log Transformation

e To find the maxima, we set to zero

a] L = :
a 1’1[ (44, Ul-xh '°°’xn)] _E[(x]—l_ '”+x”)_nﬂ]

iln[L(M olxy, ... x)] =—£+i[(x —u)2+...+(x —ﬂ)z]
ag 3 IE s “n P 0_3 ] n
g+t x)
K n
.5 _ (X — )+ ... + (x, — p)?
()Cl + ... +Xn) H“l;" \‘ \/(x] _M)2 T s P (X” _/’1)2
#= n \’

Again, the ¢ estimator
IS biased

123
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MLE in Python

e We can generate some synthetic normal data:

data = norm.rvs(loc=100,scale=15,size=1000,random_state=1)

e We can use the log pdf of the normal distribution and plot for the mean and SD:

def likelihood(params,data):
return norm.logpdf(data,loc=params[0],scale=params[1]).sum()

X = np.linspace(70,130,1000)
. y = [likelihood([val,15],data) for val in Xx]
plt.plotx,y) / T
ol X = np.linspace(5,40,1000) f/
/ y = [likelihood([100,val],data) for val in Xx] f’
o = = pltplot(xy) o |

e We can use the “minimize” function (actually, negative of it to maximize) to find

the MLE values
def neglikelihood(params,data):
return -1*likelihood(params,data)
result = minimize(neglikelihood,[90,10],args=(data))
print(result)

See python code in module2_MLE.ipynb
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Other estimators

* Exponential function: - {icﬂxp{—icx,f) ifx; € Ry

otherwise

e Estimator: ; __ =
Z_j_lx.f

e Other examples can be found at:

https://www.statlect.com/fundamentals-of-statistics/normal-distribution-
maximum-likelihood
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https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood

