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Course Syllabus

Topic Key material

Probability • Sample spaces and events

• Properties of probability

• Discrete Random Variables and Probability

• Binomial and Poisson Distributions

• Continuous Random Variables and Probability

• Normal and other continuous distributions

• Joint Probability Distributions

• Covariance and Correlation

• Point Estimation
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Probability

• the study of randomness and uncertainty. 

• In any situation in which one of a number of possible outcomes may occur, 

the discipline of probability provides methods for quantifying the chances, or 

likelihoods, associated with the various outcomes.
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Sample Spaces

• The sample space of an experiment, denoted by S, is the set of all possible 

outcomes of that experiment.

• Example:  Suppose I have a factory that produces screws, which may be:

– Defective (Denoted here by D)

– Free of defects (Denoted here by N)

• Then, the sample space for seeing whether a single screw is defective or not 

is:

– S = {N, D}

• Similarly, the sample space for examining 3 successive screws for defects is:

– S = {NNN, NND, NDN, DNN, NDD, DND, DDN, DDD}

See python code in module2_sample_spaces_permutations_combinations.ipynb
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Permutations and combinations in Python

• As you saw, permutations and combinations are useful to determine sample 

spaces, which will soon be useful in determining probability

• Python makes generating lists of permutations and combinations easy

import itertools

combinations = list(itertools.combinations(elements, 2))

print(combinations)

elements = ["A", "B", "C"]

permutations = list(itertools.permutations(elements))

print(permutations)

[('A', 'B', 'C'), ('A', 'C', 'B'), ('B', 'A', 'C'), ('B', 'C', 'A'), ('C', 'A', 'B'), ('C', 'B', 'A')]

[('A', 'B'), ('A', 'C'), ('B', 'C')]

Inspection_outcome = ['N','D']

Sample_Space_3_screws=list(itertools.product(Inspection_outcome,repeat=3))

print(Sample_Space)

[('N', 'N', 'N'), ('N', 'N', 'D'), ('N', 'D', 'N'), ('N', 'D', 'D'), ('D', 'N', 'N'), ('D', 'N', 'D'), ('D', 'D', 'N'), ('D', 'D', 'D')]

https://docs.python.org/3/library/itertools.html
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Events

• An event is any collection (subset) of outcomes contained in the sample space S 

– An event is simple if it consists of exactly one outcome 

– An event is compound if it consists of more than one outcome.

• When an experiment is performed, a particular event A is said to occur if the 

resulting experimental outcome is contained in A. 

– In general, exactly one simple event will occur, 

– but many compound events will occur simultaneously.
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Example: leaving the CO Building

• Upon exiting the CO Building, you can go left or right.  Suppose 3 of you leave the 

building, the possible outcomes are:

• There are 8 simple events

• Some example compound events are:

– A = {RLL, LRL, LLR} ; the event that exactly one student turns right

– B = {LLL, RLL, LRL, LLR} ; the event that at most student turns right

– C = {LLL, RRR} : the event that all three students turn in the same direction

• Suppose that when the experiment is performed, the outcome is LLL. Then the 

simple event E1 has occurred and so also have the events B and C (but not A).

• Question: What is the “probability” that if 3 students exit the class:

– They will all turn left?

– They will all turn in the same direction?

• What assumptions did you make in your answer?

[('L', 'L', 'L'), ('L', 'L', 'R'), ('L', 'R', 'L'), ('L', 'R', 'R'), ('R', 'L', 'L'), ('R', 'L', 'R'), ('R', 'R', 'L'), ('R', 'R', 'R')]

See python code in module2_sample_spaces_permutations_combinations.ipynb
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Example: Gas station pump usage

• Two gas stations are located at a certain intersection. Each one has six gas 

pumps. Consider the experiment in which the number of pumps in use at a 

particular time of day is determined for each of the stations. An experimental 

outcome specifies how many pumps are in use at the first station and how many 

are in use at the second one. One possible outcome is (2, 2), another is (4, 1), 

and yet another is (1, 4).

• How many outcomes exist in the sample space?

See python code in module2_sample_spaces_permutations_combinations.ipynb
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Example: Gas station pump usage

• What is the event that the number of pumps in use is the same for both stations?

• What is the event that the total number of pumps in use is 4?

• What is the event that at most one pump is in use at each station?

See python code in module2_sample_spaces_permutations_combinations.ipynb
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Some definitions

• The complement of an event A, denoted by A’, is the set of all outcomes in S that 

are not contained in A.

• The union of two events A and B, denoted by A   B and read “A or B,” is the 

event consisting of all outcomes that are either in A or in B or in both events (so 

that the union includes outcomes for which both A and B occur as well as 

outcomes for which exactly one occurs)—that is, all outcomes in at least one of 

the events.

• The intersection of two events A and B, denoted by A  B and read “A and B,” is 

the event consisting of all outcomes that are in both A and B.

• Let  denote the null event (the event consisting of no outcomes whatsoever).  

When A  B = , A and B are said to be mutually exclusive or disjoint events.

MICRO-110 / Spring 2024 11

Venn Diagrams
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Axioms and Properties of Probability
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Example: Testing to find a working battery

• Consider testing batteries one by one until you find one having a voltage within a 

desired range.   A success is called S and the failure is called F. 

• The simple events are 

– E1 = {S},

– E2 = {FS}

– E3 = {FFS}

– E4 = {FFFS},…. 

• Suppose the probability of any particular battery being satisfactory is .99. 

• Then it can be shown that 

– P(E1) = .99

– P(E2) = (.01)(.99)

– P(E3) = (.01)2(.99),…

• In particular, because the Ei’s are disjoint and S = E1  E2  E3 …, it must be 

the case that

– 1 = P(S) = P(E1) + P(E2) + P(E3) +…

= .99[1 + .01 + (.01)2 + (.01)3 +…]

• Also provable by:
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More Properties of Probability
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Example: Sitting in a train

• During off-peak hours a commuter train has five cars. Suppose a commuter is 

twice as likely to select the middle car (Car3) as to select either adjacent car 

(Car2 or Car4), and is twice as likely to select either adjacent car as to select 

either end car (Car1 or Car5).

• Let pi 5 P(car i is selected) = P(Ei). 

• Then we have 

– p3 = 2p2 = 2p4

– p2 = 2p1 = 2p5 = p4.

• What is the probability of picking the first car?

• What is the probability of picking an end car (i.e., first or last)?

• What is the probability of picking one of the intermediate cars?
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Equally Likely Outcomes

• In many experiments consisting of N outcomes, it is reasonable to assign equal 

probabilities to all N simple events. With p = P(Ei) for every i,

• Now consider an event A, with N(A) denoting the number of outcomes contained 

in A. Then

• Thus when outcomes are equally likely, computing probabilities reduces to 

counting: determine both the number of outcomes N(A) in A and the number of 

outcomes N in S, and determine their ratio.
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The Product Rule: Useful while counting to determine probabilities

• You may have seen this done graphically using a tree diagram
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Permutations and Combinations
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Example: Shuffling a playlist

• Suppose I have a spotify playlist with 100 songs.  Assume no song is repeated 

when shuffling the list, and suppose exactly 10 of the songs are by the Beatles.

• What is the probability that the first Beatles song played is the 5th song played 

while shuffling?

• Song 1 must be non-Beatles (NB) … 90/100

• Song 2, 3, and 4 must also be NB… what are the probabilities for each of these 

events?

• Song 5 must be Beatles (B).   What is the probability for this event?

• = 0.0679
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Example: Shuffling a playlist

Doing this using permutations:

• The number of permutations for the first 5 songs is simply P5,100

• The number permutations by which we can select 4 NB songs out of the 90 NB 

songs is P4,90

• The number of permutations by which we can select 1 B song out of the 10 B 

songs is 10

• Therefore, we can also write this as:

See python code in module2_sample_spaces_permutations_combinations.ipynb
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Example: Shuffling a playlist

Doing this using combinations:

• Remember, combinations are about “choosing”, without worrying about order.   

• The number of ways to choose 10 of 100 songs is simply C100,10 .  Effectively, we 

are choosing to give those slots to B songs.

• The number of ways to choose 9 of the last 95 songs to be B songs is simply C95,9

.  

• If we do that, then then that means that the first 5 songs are necessarily 4 NBs 

and 1 B.   There is only 1 way to order it so that we start with 4 NBs and then play 

a B, which means that 

• =0.0679

See python code in module2_sample_spaces_permutations_combinations.ipynb
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Example: Shuffling a playlist

Interestingly, if we ask what is the probability of one of the first 5 songs played 

being a B, the probability is: 

Which is pretty high, considering that only 10 out of 100 songs are B songs… why is 

this the case?
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Conditional Probability

• We will use the notation P(A|B) to represent the conditional probability of A 

given that the event B has occurred. B is the “conditioning event.”
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Example: Reading habits

• A news magazine publishes three columns entitled “Art” (A), “Books” (B), and 

“Cinema” (C). Reading habits of a randomly selected reader with respect to 

these columns are

• What is P(A|B) and what does it mean

• ; this gives us the likelihood that a reader who

reads “Books” also reads “Arts”

• The probability that the selected individual regularly reads the Art column 

given that he or she regularly reads at least one of the other two columns is 

• The probability that the selected individual reads at least one of the first two 

columns given that he or she reads the Cinema column is
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Example: Phone comparison

• An electronics store sells three different brands of phones. Of its phones sales, 

50% are brand 1 (the least expensive), 30% are brand 2, and 20% are brand 3.

• Each manufacturer offers a 1-year warranty on parts and labor. It is known 

that 25% of brand 1’s phones require warranty repair work, whereas the 

corresponding percentages for brands 2 and 3 are 20% and 10%, respectively.

• What is the probability that a randomly selected purchaser has bought a 

brand 1 Phone that will need repair while under warranty?

• What is the probability that a randomly selected purchaser has a phone that 

will need repair while under warranty?

• If a customer returns to the store with a phone that needs warranty repair 

work, what is the probability that it is a brand 1 phone ? A brand 2 phone? A 

brand 3 phone?
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Example: Phone comparison

• An electronics store sells three different brands of phones. Of its phones sales, 

50% are brand 1 (the least expensive), 30% are brand 2, and 20% are brand 3.

• Each manufacturer offers a 1-year warranty on parts and labor. It is known 

that 25% of brand 1’s phones require warranty repair work, whereas the 

corresponding percentages for brands 2 and 3 are 20% and 10%, respectively 

• Let Ai be the probability of purchasing a brand i,  then:

– P(A1) = 0.5

– P(A2) = 0.3

– P(A3) = 0.2

• Let B be the probability that a phone needs repair.   Then:

– P(B|A1) = 0.25

– P(B|A2) = 0.2

– P(B|A3) = 0.1
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Example: Phone comparison

Of its phones sales, 50% are brand 1 30% are brand 2, and 20% are brand 3

P(A1) = 0.5

P(A2) = 0.3

P(A3) = 0.2

25% of brand 1’s phones require warranty 

repair work, whereas the corresponding 

percentages for brands 2 and 3 are 

20% and 10%, respectively.

P(B|A1) = 0.25

P(B|A2) = 0.2

P(B|A3) = 0.1
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Example: Phone comparison

• What is the probability that a randomly selected purchaser has bought a 

brand 1 Phone that will need repair while under warranty?

Reminder:
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Example: Phone comparison

• What is the probability that a randomly selected purchaser has a phone that 

will need repair while under warranty?
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Example: Phone comparison

• If a customer returns to the store with a phone that needs warranty repair 

work, what is the probability that it is a brand 1 phone ? A brand 2 phone? A 

brand 3 phone?

Reminder:
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Some more theorems
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Some more theorems
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• Only 1 in 1000 adults is afflicted with a rare disease for which a diagnostic test 

has been developed. The test is such that when an individual actually has the 

disease, a positive result will occur 99% of the time, whereas an individual 

without the disease will show a positive test result only 2% of the time (i.e., 

the sensitivity of this test is 99% and the specificity is 98%). Let A1 = individual 

has the disease.

• Let A2 = individual does not have the disease.

• Let B = positive test result

• Then:

– P(A1) = 0.001

– P(A2) = 0.999

– P(B|A1) = 0.99

– P(B|A2) = 0.02

Example: Disease Testing
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• If a randomly selected individual is tested and the result is positive, what is the 

probability that the individual has the disease?

• Let A1 = individual has the disease.

• Let A2 = individual does not have the disease.

• Let B = positive test result

• Then:

– P(A1) = 0.001

– P(A2) = 0.999

– P(B|A1) = 0.99

– P(B|A2) = 0.02

– P(B) = 0.00099+0.01998 = 0.02097

– Then,

– In other words, the likelihood that a positive test actually is indicative of a disease 

is really low!  Why?   Because the rarity of the disease means that most positives 

are due to errors.  To detect rare diseases, we need tests with REALLY low false 

positive rates  

Example: Disease Testing
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• Additionally, if A an B are independent, then so are 

– A’ and B

– A and B’ 

– A’ and B’

– Proof: 

Since P(A|B) = P (A) if independent

Independence
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Example exploiting independence: Testing of supplier batches

• Each weekday, a batch of components sent by a supplier A arrives at a certain 

inspection facility. Two days a week, a batch also arrives from a Supplier B. 

Eighty percent of all supplier A’s batches pass inspection, and 90% of supplier 

B’s do likewise. What is the probability that, on a randomly selected day, two 

batches pass inspection? 

Only A

A+B

Since testing of A and B don’t affect each 

other, we can chain them up by dealing with 

A and then B

Test A

Test B

Test A
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Extending to multiple probabilities

• Consider 2 solar cell string configurations

• We want to know if the each system will work for 10 years.   The system is 

assumed to “work” if power is available.    Assuming the probability of any cell 

last 10 years is 0.9, and assuming cell failure is independent, which system has 

a higher probability of working for 10 years.

– System (a): 1, 2, & 3 are in series, so all must work for the string to work.  On the 

other hand, the stings are in parallel.

– Let Ai be the probability that any cell i lasts 10 years.   Then, the P of the system 

working for 10 years is:

– P(Asystem) = P[(A1 A2  A3 ) (A4 A5  A6 )]

= P(A1 A2  A3 ) + P(A4 A5  A6 )-P(A1 A2  A3 )P(A4 A5  A6 )

= 0.9*0.9*0.9+0.9*0.9*0.9-0.9*0.9*0.9*0.9*0.9*0.9=0.927
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Extending to multiple probabilities

• Consider 2 solar cell string configurations

– System (b): 1 and 4 are in parallel, which are in series with 2 and 5…

– P(Asystem) = P[(A1  A4 )  (A2  A5 )  (A3  A6 )]

=[P(A1)+ P(A4 )-P (A1  A4)][P(A2)+ P(A5 )-P (A2  A5)][P(A3)+ P(A6 )-P (A3  A6)]

=[P(A1)+ P(A4 )-P (A1)P( A4)][P(A2)+ P(A5 )-P (A2)P( A5)][P(A3)+ P(A6 )-P (A3)P( A6) ]

= (0.9+0.9-0.81)^3

= 0.97
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Random variables

Example: 

• When a student calls a university help desk for technical support, he/she will 

either immediately be able to speak to someone (S, for success) or will be 

placed on hold (F, for failure). With S = {S, F}, define an rv X by X(S) = 1 X(F) = 0
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Reminder: 2 gas pumps

• Two gas stations are located at a certain intersection. Each one has six gas 

pumps. Consider the experiment in which the number of pumps in use at a 

particular time of day is determined for each of the stations. 

• Define rv’s X, Y, and U by

– X = the total number of pumps in use at the two stations

– Y = the difference between the number of pumps in use at station 1 and the number 

in use at station 2

– U = the maximum of the numbers of pumps in use at the two stations

– If this experiment is performed and (2, 3) results, then X((2, 3)) = 2 + 3 = 5, so the 

observed value of X was x = 5. 

– Similarly, the observed value of Y would be y = 2 - 3 = -1, 

– and the observed value of U would be u = max (2, 3) = 3.
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Types of Random Variables

• This second point may seem counter-intuitive, but it makes sense when we 

consider that this references a single value, not an interval.  Since we are 

continuous, intervals will have non-zero probability.
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Probability Distribution Functions of a discrete RV

Example: 

• Six boxes of components are ready to be shipped by a certain supplier. The 

number of defective components in each box is as follows:

• One of these boxes is to be randomly selected for shipment to a particular 

customer. Let X be the number of defectives in the selected box. The three 

possible X values are 0, 1, and 2.  Then
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Plotting probability distribution functions

• We can generate histograms of such distribution functions, such as:

• Similarly, we can generate cumulative distribution functions, etc.

Frequency Probability

See python code in module2_discrete_RVs.ipynb
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Plotting probability distribution functions

• We can generate histograms of such distribution functions, such as:

• .

Cumulative Probability
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Expected Value

Example: For a linear function
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Variance
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Python Example:

from scipy.stats import rv_discrete

x = [10, 20, 30]

p = [0.2, 0.3, 0.5]

distribution = rv_discrete(values=(x, p))

print("Expected value: ", distribution.expect())

print("Variance: ", distribution.var())

print("Standard Deviation: ", distribution.std())

Expected value: 23.0 
Variance: 61.0 
Standard Deviation: 7.810249675906654

See python code in module2_discrete_RVs.ipynb
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The binomial distribution

• There are many experiments that conform either exactly or approximately to 

the following list of requirements:

1. The experiment consists of a sequence of n smaller experiments called trials, 

where n is fixed in advance of the experiment.

2. Each trial can result in one of the same two possible outcomes (dichotomous 

trials), which we generically denote by success (S) and failure (F).  The 

assignment of the S and F labels to the two sides of the dichotomy is 

arbitrary.

3. The trials are independent, so that the outcome on any particular trial does 

not influence the outcome on any other trial.

4. The probability of success P(S) is constant from trial to trial; we denote this 

probability by p.
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The binomial random variable

• Suppose, for example, that n = 3. Then there are eight possible outcomes for 

the experiment:

– SSS SSF SFS SFF FSS FSF FFS FFF

• From the definition of X, X(SSF) = 2, X(SFF) = 1, and so on. 

• Possible values for X in an n-trial experiment are x = 0, 1, 2,…, n. 

• We will often write X,Bin(n, p) to indicate that X is a binomial rv based on n 

trials with success probability p.
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Probability of x in a binomial experiment

• Consider an n=4 binomial experiment

• If we wanted to determine the probability of a particular number of successes, 

i.e., a particular binomial random variable value, we would sum the 

probabilities of the individual occurences.   For example, for x=3, we have:

• More generally:
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Binomial Distribution as a function of n
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Binomial distributions in Python

from scipy.stats import binom

# Parameters

n = 10 # number of trials

x = 7 # number of successes

p = 0.2 # probability of success

print("Mean: ", binom.mean(n, p))

print("Variance: ", binom.var(n, p))

print("Probability mass function: ", binom.pmf(x, n, p))

print("Cumulative distribution function: ", binom.cdf(x,n,p))

Mean: 2.0 
Variance: 1.6 
Probability mass function: 0.000786432 
Cumulative distribution function: 0.9999220736

See python code in module2_discrete_RVs.ipynb
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The Dishonest Gambler Problem

• Consider a dishonest gambler, Denis Bloodnok, who makes money betting 

with a biased penny that he knows comes up heads, on the average, 8 times 

out of 10. 

• For his penny the probability p of a head is 0.8 and the probability q = 1 - p of a 

tail is 0.2.

• Suppose he bets at even money that of n = 5 tosses of his penny at least four 

will come up heads. To make his bets appropriately, Bloodnok calculates the 

probability, with five tosses, of no heads, one head. two heads, and so on. 

• With y representing the number of heads, what he needs are the n + 1 = six 

values: Pr(y=0), Pr(y=1),…

• Call the tossing of the penny five times a trial and denote the outcome by 

listing the heads (H) and tails (T) in the order in which they occur. The 

outcome y = O of getting no heads can occur in only one way, so

– Pr(y = O) = Pr(T T T T T) = q x q x q x q x q = q5 = 0.25 = 0.00032
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The Dishonest Gambler Problem

• Find Pr(y=1)

Pr(y = 1) = Pr(H T T T T) + Pr(T H T T T} + Pr(T T H T T) + Pr(T T T H T) + 

Pr(T T T T H)

Pr(y = 1) = 5pq4 = 5 x 0.8 x 0.24 = 5 x 0.000128 = 0.00640.

• Find Pr(y=2)

– Write out the possibilities

(H H T T T)

– Write out the equation
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The overall result
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Graphically

Biased penny
Fair penny
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How does he make money?

• In this way Bloodnok calculates that using his biased penny the probability of 

at least four heads [given by Pr(4) + Pr(5)] is about 0.74. For the fair penny 

Pr(4) + Pr(5) yields a probability of only 0.19.

• For the fair penny a wager at even money that he can throw at least four 

heads appears unfavorable to him.

• By using his biased penny he can make an average of 48 cents for every dollar 

bet.  (If he bets a single dollar on this basis 100 times, in 74 cases he will make 

a dollar and in 26 cases he will lose a dollar. His overall net gain is thus 74-26 = 

48 dollars per 100 bet.)
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The Poisson distribution

• According to this result, in any binomial experiment in which n is large and p is 

small, b(x; n, p) < p(x;  ), where  = np. As a rule of thumb, this approximation 

can safely be applied if n > 50 and np < 5.
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Poisson distribution in Python

from scipy.stats import poisson

# Parameters

x = 1 # number of events

Lambda = 2/3 # lambda parameter

print("Mean: ", poisson.mean(Lambda))

print("Variance: ", poisson.var(Lambda))

print("Probability mass function: ", poisson.pmf(x, Lambda))

print("Cumulative distribution function: ", poisson.cdf(x, Lambda))

Mean: 0.6666666666666666 
Variance: 0.6666666666666666 
Probability mass function: 0.3422780793550613 
Cumulative distribution function: 0.8556951983876534

See python code in module2_discrete_RVs.ipynb
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PDF of Continuous random variables
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CDF of Continuous random variables
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Computing probabilities for CDFs
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Expected value and variance
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Normal Distribution
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Normal distributions in Python

from scipy.stats import norm

# Parameters

x = 1.3 # value to look for

mu = 0 # mean

sigma = 1 # standard deviation

print("Mean: ", norm.mean(loc = mu, scale = sigma))

print("Variance: ", norm.var(loc = mu, scale = sigma)) 

print("Probability mass function: ", norm.pdf(x, loc = mu, scale = sigma))

print("Cumulative distribution function: ", norm.cdf(x, loc = mu, scale = sigma))

print("Survival function (1-cdf): ", norm.sf(x, loc = mu, scale = sigma))

Mean: 0.0 
Variance: 1.0 
Probability mass function: 0.17136859204780736 
Cumulative distribution function: 0.9031995154143897 
Survival function (1-cdf): 0.09680048458561036

See python code in module2_continuous_RVs.ipynb
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The normal distribution

• In the real-world, random variations often result in the “normal” distribution
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Characteristics of the normal distribution

• Symmetric, bell shaped 

• Continuous for all values of X between -∞ and ∞ so that each conceivable 

interval of real numbers has a probability other than zero. 

-∞ ≤ X ≤ ∞ 

• • Two parameters,  and σ. Note that the normal distribution is actually a 

family of distributions, since  and σ determine the shape of the distribution. 

• • The rule for a normal density function (normalized to have an area of 1) is

• About 2/3 of all cases fall within one standard deviation of the mean, that is 

P( - σ ≤ X ≤  + σ) = .6826. 

• About 95% of cases lie within 2 standard deviations of the mean, that is 

P( - 2σ ≤ X ≤  + 2σ) = .9544 
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Why is the normal distribution important?

The central limit effect

• Any measurement in a set of replicates is subject to numerous sources of 

error or “noise”.

• Typically, in a well-designed experiment, the effect of these individual errors 

is small.  As such, the overall error can then be approximated as a linear 

combination of the individual errors:

• The central limit theorem states that the resulting distribution will tend to 

normality if:

– There are several sources of error, such that the distribution of the individual 

error sources becomes unimportant

– No individual error source dominates

Robustness to assumption of normality

• The techniques used here work well even if the fit to normality is only 

approximate.
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Example: Dice throwing

1 die thrown repeatedly

Average of 2 dice thrown repeatedly

(i.e., sum of values / 2)

Average of 3 dice thrown repeatedly

(i.e., sum of values / 3)

Average of 4 dice thrown repeatedly

(i.e., sum of values / 4)

Average 5 dice thrown repeatedly

(i.e., sum of values / 5)

MICRO-110 / Spring 2024 70

Normal Distribution Characteristics
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Z-scores

• Populations are sometimes presented as z-scores to normalize with respect 

to the standard deviation

Y – 
z  =  ────

σ
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Back to our Camipro example

• Here is some idealized data of an ASK 10110 stream

• Consider the effect of noise

noise = np.random.normal(0,0.1,500)

modulated_signal_noisy=modulated_signal+noise

plot_signal(tc,modulated_signal_noisy)

See python code in module2_continuous_RVs.ipynb
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Demodulation

• To extract the 1’s and 0’s, a demodulator on the reader rectifies the input 

signal
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Rectification in python

rectified_signal=np.zeros(500)

for counter in range(500):

rectified_signal[counter]=modulated_signal_noisy[counter]

if modulated_signal_noisy[counter] < 0:

rectified_signal[counter]=0

plot_signal(tc,rectified_signal)
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Data extraction

• Let’s assume the data extraction uses the peaks of the half-waves.

• Python allows us to easily extract peaks of waveforms

from scipy.signal import find_peaks

peaksarray, _=find_peaks(rectified_signal)

peakvalues=np.zeros(len(peaksarray))

for counter in range(len(peaksarray)):

peakvalues[counter]=rectified_signal[peaksarray[counter]]
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Data extraction

• In fact, in reality, the 1’s and 0’s look like normal distibutions

plt.hist(peakvalues,bins=50)

x_axis = np.arange(0,1.5,0.001)

plt.plot(x_axis, 2*norm.pdf(x_axis, 0.05, 0.1)+norm.pdf(x_axis,1,0.08))

plt.show
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How would we estimate error rate probabilities?
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Probability and Inferential Statistics

• Probability is important because it establishes a link between samples and 

populations.  

• For any known population it is possible to determine the probability of 

obtaining any specific sample.  

• We will use this link as the foundation for inferential statistics.  

• The general goal of inferential statistics is to use the information from a 

sample to reach a general conclusion (inference) about an unknown 

population.  

• Typically a researcher begins with a sample.  

• If the sample has a high probability of being obtained from a specific 

population, then the researcher can conclude that the sample is likely to 

have come from that population. 

• If the sample has a very low probability of being obtained from a specific 

population, then it is reasonable for the researcher to conclude that the 

specific population is probably not the source for the sample.
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Checking if an experimental factor affects a measured response
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The missing information in samples

• We may know the mean of the population, but we rarely know the variance

• This means that we cannot easily determine the z score of a measurement.  

We define a new term, t, which is determined from the population mean and 

the sample variance
vs
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Effect of sample size

• As we increase the number of samples, the distribution of the samples 

approaches the normal distribution if the sampling is random

• This sample distribution is called the student’s t distribution.

– The original discoverer was W. S. Gosset, who wrote under the pseudonym 

“student”.
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Repeated sampling

• In many experiments, we draw repeated independent samples from a general 

population

– E.g., 

• take a bucket full of numbered balls (the population)

• Extract n random balls, calculate the sample mean ഥ𝒚, and put the balls back

• Repeat multiple times

• This is called independent identically distributed observations.

• The distribution of the sample means have several interesting properties
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The central limit theorem and normality
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Special case: random sampling from a normal distribution

Notice that we could calculate a t-distribution of the ഥ𝒚 population purely from the s values of 

the individual samples.  This is only possible because we are sampling from a normal 

distribution.. This is a useful fact since we often don’t have access to the population  , etc.
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Other continuous distributions: The exponential distribution
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Other continuous distributions: The chi-squared distribution

Others that are important: Chi-squared, Weibull, etc.
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Joint Probability: Discrete Random Variables

• Joint probability deals with determination of probabilities for 2 or more 

random variables

• Reminder: 2 gas station example

– Two gas stations are located at a certain intersection. Each one has six gas pumps. 

An experimental outcome specifies how many pumps are in use at the first 

station and how many are in use at the second one. 

– The sample space was

– These are discrete random variables, since we cannot have a fractional pump use, 

and we could calculate probabilities of outcomes.
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Joint Probability: Discrete Random Variables

• Joint probability deals with determination of probabilities for 2 or more 

random variables
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Joint Probability: Discrete Random Variables

• Reminder: 2 gas station example

– Assuming equal probability of use for all pumps, we have:

– What is the probability of 4 pumps being used in total?

– What is the probability of no pumps being available?

0.0204   0.0204     0.0204     0.0204     0.0204     0.0204     0.0204

0.0204   0.0204     0.0204     0.0204     0.0204     0.0204     0.0204

0.0204   0.0204     0.0204     0.0204     0.0204     0.0204     0.0204

0.0204   0.0204     0.0204     0.0204     0.0204     0.0204     0.0204

0.0204   0.0204     0.0204     0.0204     0.0204     0.0204     0.0204

0.0204   0.0204     0.0204     0.0204     0.0204     0.0204     0.0204
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Another example

• Consider the case of buying insurance.   As you know, you can choose the 

amount of the franchise.   

• Suppose we look at the deductibles chosen by a random customer for health 

(x)  and automobile (y) insurance and we find:

• To proceed, we must (1) confirm this is a valid probability table:

– All values are  > 0

– Sum is 1

• What is the probability that the auto insurance franchise is >=  CHF500?
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Marginal Probability

• The marginal probability is simply the probability function for one variable for 

the particular condition of another variable

• For example:

• px(x) = 0.35 @ x=100, 0.4 @ x=500, 0.25 @ x=1000, 0 otherwise.
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Joint Probability: Continuous Random Variables

• Joint probability deals with determination of probabilities for 2 or more 

continuous variables
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Marginal Probability: Continuous Random Variables
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Example: Visiting McDonald’s 

• Suppose you go to the McDonald’s in Villeneuve, which has both a walk-in 

(y) and drive-through (x) service.   Suppose the joint PDF that X,Y are in use 

is:

• First, verify that this is a legitimate PDF:

– Never negative

– Total:
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Example: Visiting McDonald’s 

• What is the probability that neither walk-up or drive-through is busy more 

than ¼ of the time?
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Statistical dependence

In many experiments, we need to examine multiple responses and how they 

vary with each other.  For example:

• Suppose you were considering two characteristics, for example, the height 

y1 in cm and the weight y2 in kg of the population

– distribution of heights p(y1); Distribution of weights p(y2) 

– the probability distribution of the weights of all people who were 150 cm tall. 

This distribution is written as p(y2y1 = 150). 

– You would expect the conditional distribution p(y2  y1 = 150) to be quite 

different from p(y2  Y1 = 175)

– Y1 and Y2 would be said therefore to be statistically dependent.

– The likelihood of finding someone with a specific weight and height would be:

• Now suppose that y3 was a measure of the IQ of the recruit.   Y3 would be 

statistically independent of Y1, such that 

• For statistically, independent variables, the probability of achieving some 

specific combination of y1 and y2 values is
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Independence of RVs

• Going back to the insurance example:

• Are x and y independent?

• If independent, then for all values of x and y, we should see that p(x,y)= px(x)* px( 

Check:

– p(100,500) = 0.3, px(100)=0.35, py(500) = 0.55

– p(100,500)  px(100)*py(500), so therefore, not independent
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Conditional Probability

• Going back to the McDonald’s example:

• If we want to find the probability that the walk-up is busy at most half the 

time given that the drive-through is 0.8 is:
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Expected values and Covariance

Covariance is used to estimate the degree of linear independence of two variables:
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Covariance and correlation

Positive covariance                        Negative Covariance             approx. zero covariance
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Covariance and correlation in Python

• Python has built-in functions to calculate covariance and correlation.

• The output is a matrix of form [i,j] where the i,i terms are variances or self-

correlations and the i,j terms are covariances and correlations

np.cov(x,y)) 

np.corrcoef(x, y))

See python code in module2_covariance.ipynb
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Estimation

• So far, we have discussed the probability of finding specific outcomes.

• Estimation is a complementary concept, where we have a specific outcome

(e.g., a particular data set) and we want to find a distribution that from

which that data set could have been obtained.  

• Formally:

• We will introduce 2 methods:

– Method of moments

– Maximum likelihood estimation
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Likelihood vs Probability

• Consider a distribution of the weights of screws.  The weights are normally

distributed as below

• Why is this normally distributed?
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Review: Probability

• The probability of finding a screw with a weight between 32 and 34 grams

• which is in fact, 0.29

• We can write this as:

This symbol means «given»
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Likelihood

• Suppose we measure a screw and find its weight to be 32 grams

• Then, the likelihood of measuring a 32 gram screw is the corresponding y-

axis value for that date point

• We can write this as:

screw
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Likelihood vs Probability

In estimation, we know the data and want to find the distribution.  Our goal 

then, is to maximize the likelihood that the data is from the distribution by 

picking the appropriate distribution parameters
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Method of Moments

• In the Method of Moments, we calculate “moments” from the known data 

and equate those to “moments” from the theoretical distribution.

• We then solve for the distribution parameters to obtain a distribution that is 

an estimate based on the data

• For example, consider a normal distribution:

• The parameters of this distribution are  and .   We will use the method of 

moments to find values of these so that we have an estimate for these 

values that correspond to a known data set
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Definition: Moments

• Moments are defined for both the distribution and the sample data:

• In the method of moments, we just equate the theoretical moments to the 

sample moments.  We need as many moments as there are paramteres in 

the distribution equation (for example, in the normal distribution we need 2 

moments, since there are two parameters,  and .

• This gives us a set of simultaneous equations, which we solve for the 

unknown parameters

• We denote these parameter estimates with the “hat” (^) symbol, to indicate 

that they are estimates, i.e., ෝ𝝈 and ෝ𝝁
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MoM Example 1: Bernoulli random variables

• Consider a set of n data points taken from a Bernoulli distribution.  As a 

reminder, these take the form:

– Where p is the probability of obtaining 1.  

• Suppose we have obtained the following data set from 10 samples:

– 0, 1, 1, 0, 1, 1, 1, 0, 1, 0

• There is only 1 parameter to this distribution (p), so we only need the first 

theoretical and sample moment, which, for this distribution is:

• We can calculate the sample moment as:

= 0.6

• Therefore, the MoM estimate ෝ𝒑 = 𝟎. 𝟔 , which we can use in the f equation 

above to identify the MoM-derived distribution from which the data likely 

came.
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MoM Example 2: Normal random variables

• Consider a set of n data points taken from a Normal distribution:

• Suppose we have obtained the following data set from 3 samples:

– x1 = -2.321, x2 = 1.112, and x3 = -5.221

• For the normal distribution, the 1st and 2nd theoretical moments are:

• The experimental moments are: 

= -2.143                                       = 11.29

• Which means, the estimators are: ෝ𝝁 = −𝟐. 𝟏𝟒𝟑 and ෝ𝝈 = 𝟐. 𝟓𝟖𝟖

• Note that this standard deviation is biased, which is a limitation of this 

estimation method
See python code in module2_MoM.ipynb
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Maximum likelihood estimation (MLE)

• In MLE, we maximize the likelihood of the known data occurring, by 

adjusting the parameters of the distribution.  For example, in a normal 

distribution, we would use MLE:
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Maximum likelihood estimation (MLE) – single data point

• Given the known data point in red, which of the curves has the maximum 

likelihood for varying ?

• And for varying ?
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Maximum likelihood estimation (MLE) – multiple data points

• We can individually calculate the likelihood for each of the data points

• HINT: The samples are assumed to be independent.
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Maximum likelihood estimation (MLE) – multiple data points

• Extending to n data points, we:
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Maximum likelihood estimation (MLE)

• More generally, if we several data points, we can calculate the overall 

likelihood and plot it
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Maximum likelihood estimation (MLE)

• More generally, if we several data points, we can calculate the overall 

likelihood and plot it
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Maximum likelihood estimation (MLE) - methodology

• Define the likelihood function (e.g., for a normal distribution)

• And find derivatives of the function for each parameter (e.g,  and ), 

assuming other parameters are constant

• Then, we find the maximum by finding the point where the derivative goes 

to zero (technically, we should then verify it is a maximum and not a 

minimum by taking the 2nd derivative, if the function could have both 

maxima and minima)
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Maximum likelihood estimation (MLE) - methodology

• Commonly, we actually take the log of the likelihood function since the math 

is often much easier
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Detailed example: Normal Distribution Log Transformation

• Using the log converts the  into 

MICRO-110 / Spring 2024 120

Detailed example: Normal Distribution Log Transformation

• We will go through the first term in detail, but every term is similar:

=

=

=

=

= 
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Detailed example: Normal Distribution Log Transformation

• So, we have:
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Detailed example: Normal Distribution Log Transformation

• So, we have:

• We take derivatives with respect to  and .  The math is involved, but the 

answer is:

• Set these to zero to find the maxima

– In fact, for normal distributions, the answer is simply  and 
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Detailed example: Normal Distribution Log Transformation

• To find the maxima, we set to zero

• ෝ𝝁

• ෝ𝝈

Again, the  estimator

is biased
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MLE in Python

• We can generate some synthetic normal data:

• We can use the log pdf of the normal distribution and plot for the mean and SD:

• We can use the “minimize” function (actually, negative of it to maximize) to find 

the MLE values

See python code in module2_MLE.ipynb

data = norm.rvs(loc=100,scale=15,size=1000,random_state=1)

def likelihood(params,data):

return norm.logpdf(data,loc=params[0],scale=params[1]).sum()

x = np.linspace(70,130,1000)

y = [likelihood([val,15],data) for val in x]

plt.plot(x,y)

x = np.linspace(5,40,1000)

y = [likelihood([100,val],data) for val in x]

plt.plot(x,y)

def neglikelihood(params,data):

return -1*likelihood(params,data)

result = minimize(neglikelihood,[90,10],args=(data))

print(result)
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Other estimators

• Exponential function:

• Estimator:

• Other examples can be found at:

https://www.statlect.com/fundamentals-of-statistics/normal-distribution-

maximum-likelihood

https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood

