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About Me

¢ Professor of Microengineering

Joined EPFL in 2018, after spending 18 years as a professor at UC Berkeley
Spent most of my career working in / with the semiconductor industry

— My research @ EPFL is f d on ad' i micr facturing for
electronics, micromechanics, medical devices, and microrobotics

— Office: MC B4 187 in Microcity (Neuchatel)
— Phone: +41216954265
Email: Vivek.Subramanian@epfl.ch
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INTRODUCTION

MICRO-110 / Spring 2025

Language of Instruction

¢ This course will be taught in English
— Lectures in English
— Tests in English
— Exercises in English

* However

I understand French pretty well at this point, though my speaking is still poor,

so you are welcome to try French if we are struggling to communicate with each
other in English
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Course Staffing

Student Teaching Assistants:

* Maxime Charles M Blanpain, maxime.blanpain@epfl.ch

¢ Alice Athénais Domitille Marie Lemaire alice.lemaire@epfl.ch

* Ismael Tekaya, ismael.tekaya@epfl.ch

o Célia Marie Bernadette Lundmark celia.lundmark@epfl.ch

* Constance Sophie Héléne Alice Gagneraud constance.gagneraud@epfl.ch
* Anatole Ming Debierre anatole.debierre@epfl.ch

PhD teaching Assistants

¢ Kyle Haas kyle.haas@epfl.ch

Course Logistics

[T
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Examinations

Lectures:
e Room CO1
¢ Pre-recorded videos from previous years will be made available at:

at the end of each week. These are intended to serve as reference videos for
you to use, as a backup to the in-class lectures. You will be responsible for
all material covered in class.

* | will also be recording videos from CO1 and making them available each
week

Exercises:
¢ Weeks with merged lectures / exercises: CO1
— Lecture will be interspersed with exercise. Jupyter notebooks will be used
throughout, and the entire 3 hour session will be held in CO1
* Weeks with separate exercise: 18h-19h in rooms CO 4-5-6 and 260
— Exercise will be held in computer rooms, and you will use Jupyter notebooks to
complete the exercise. Exercises for paper-based solution will also be provided
a few days ahead of the exercise session

Examinations:
* There will be three midterm tests, each worth 10% of the course grade. The
tests will be administered via moodle during class hours.
— Test 1: March 27
— Test2:May1
— Test 3: May 29
* The final examination date will be announced during the semester when
available.

[T —
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Course Syllabus
[Topic Key material
Course e Overview of the course

Introduction . Why do we care about use of statistics?
o Observation
o Model building
o Inference

«  Whydo we care about probability?

o likelihood
Introduction to [ e Mean, Median, Mode, Standard Deviation
statistics «  Population Statistics

o Graphical Representation
o Population distributions
o Mean and standard deviation
o Sampling
Probability . Sample spaces and events
o Properties of probability
. Discrete Random Variables and Probability
. Binomial and Poisson Distributions
. Continuous Random Variables and Probability
. Normal and other continuous distributions
. Joint Probability Distributions
. Covariance and Correlation
. Point Estimation

Comparison | = Significance tests
Statistics . T tests and other hypothesis tests
. ANOVA
« R ion and fitting
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Intro. to Statistics

Intro. to Statistics

¢ “Quantitative”

— Involves
measurement

— Data in numerical
form

— Answers “How much”
questions

— Objective and results
in unambiguous
conclusions

¢ “Qualitative”

— Describes the nature
of something

— Answers “What” or
“Of what kind”
questions

— Often evaluative and
ambiguous

¢ What can Stats do?
— Allow us to draw conclusions from the data
¢ Group of numbers #1:6,1, 8, 3,5,4,9
e Averageis51/7
¢ Group of numbers #2: 8,3,4,2,7,1,4
e Averageis4%
— Allows us to do this objectively and quantitatively
¢ What can Probability do?
— Can help us estimate the likelihood of an event
— Can inform us about the quality of our inferences and estimations

T eee— 10
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The engineering development cycle

I 000 spring 2025 9
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What do engineers do?
o We build stuff
I 0100 spng 2025 n
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Model to relate specifications to design

Requirements /]

Implementation

Verification 7

Characterize to ensure viability

Characterize to ensure service life

T p— 12
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An example: tuning timing on mechanical watches

* A balance wheel's period of oscillation T in seconds, the time required for
one complete cycle (two beats), is determined by
— the wheel's moment of inertia | in kilogram-meter?

— the stiffness (spring constant) of its balance spring k in newton-meters per
radian:

I
T =2m—
K

* Springs and balances as produced do not match to the correct frequency.
* Springs are compared with respect to a standard balance and their stiffness is
estimated.
* Balance wheels are compared to a standard spring and their inertia is estimated.
* These are paired (“appairage") to get close to the desired frequency of the
combination.
¢ Fine tuning is done on the watch:
* Spring stiffness is adjusted using the “raquette”. This changes the length of the
spring and so its stiffness.
* Balance wheels usually have screws that tune the moment of inertia.

" W] s 13
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How are Invar-like Hairsprings made?

Wire is drawn to set diameter

Final shaping

Each step results in variations across the parts

I icro.110 /g 2025 15
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The problem...

Expensive, difficult to scale

A yicro.110 /png 2025 &
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Silicon hairsprings

Can produce very tall
Plasma chemistry that g = structures with nm

etches vertically with precision
very precise lateral
control
Makes high quality
springs with improved
precision
ICPH o110, sprng 2025 16
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Statistics can help Sampling — living in the real world

. N

¢ From metal to ultra-precise silicon

Population Sample
All items ltems selected

from the population
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Why is this beneficial?
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Sampling in inferential statistics Sampling
THE POPULATION _ size-
All of the individuals of interest « Sample of 5 cards from a deck of 52

— 2 of Clubs, 10 of Diamonds, Jack of Hearts, 5 of Clubs, and 7 of Hearts
¢ What could we conclude about the full deck from this sample about what
the full deck looks like without any prior knowledge of a deck of cards?

* Compare this to a sample of 51/52 cards — What could we conclude from

this sample?

f r;hteh resulr;s | The sample

;?e ger?esr%lizzg is selected from
to the population s prealER

THE SAMPLE
The individuals selected to
participate in the research study
.-_W.\! MICRO-110 / Spring 2025 19 L - MICRO-110 / Spring 2025 20
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Sampling

Sampling

— Randomness —
* This time lets use the same 5 card sample, but this time the deck is
unshuffled (nonrandom)
— 2 of Clubs, 10 of Clubs, Jack of Clubs, 5 of Clubs, and 7 of Clubs
* What would we conclude about the characteristics of our population (the
deck) this time versus when the sample was more random (shuffled)?

* Smaller/less random samples both poorly represent population of entire
deck of cards
— Also result in inaccurate inferences about population — poor external validity

[T —
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Inferential Statistics

2 B e 22
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Basic Terminology

¢ Estimation

— e.g., Estimate the population mean weight using the
sample mean weight

¢ Hypothesis testing ﬂ "

— e.g., Test the claim that the *
population mean weight is 70 kg .\

Inference is the process of drawing conclusions or making decisions about a
based on sample results

e Summarizing versus Analyzing

¢ Descriptive Statistics

¢ Inferential Statistics

— Inference from sample to population

— Inference from statistic to parameter

— Factors influencing the accuracy of a sample’s ability
to represent a population:
* Size
¢ Randomness

[T P —
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The tyranny of the real world

“Noise”

Modsi M, Induction «— Analysis with
' M nduction «=—=32 | <= w1 (M, My", ...
\ 0,

T~ | Consequences
of M,

¢ Effects of things outside our control

What we observe can be divided into:
signal

A

noise

[T e —
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An example: Amplitude Shift Keying

* ASK is routinely used to encode data in communication

— A more complex version (QAM) is used in cellular and WiFi

bits = np.array((1, 0, 1, 1, 0, 1, 0, O, 1, 0, 1]

— Baseband signal (i.e., the direct encoding of the digital information)

AL UL

What are some possible sources of error in decoding the baseband signal?

[T —

27

I icroa10/sprng 2025 2
26
Carrier Signal
¢ To transmit, we modulate onto a carrier at a specific frequency
Ac - Amplitude of the carrier signal
fc - Frequency of the carrier signal
tc - Time variable of the carrier the signal
xc - Carrier signal row vector
xc = Ac * np.sin(2.0 * np.pi * fc * tc)
plot_signal (tc, xc)
B
H
2
1
o
-1
-2
=
-
000000 000002 000004 000006 000008 000010
28
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Simple:

modulated_signal = x * xc
plot_signal (tc, modulated signal)

* What are some possible sources of error?

29
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e 2level:
Al - Amplitude of the carrier signal for 1
A2 - Amplitude of the carrier signal for 0

Al = 8

A2 = 4

for i in range(N):
if bits[i] ==

sig = AL * np.sin(2.0 * np.pi * fc * tc)

ask_modulated signal = np.append(ask_modulated signal, sig)
else:

sig = A2 * np.sin(2.0 * np.pi * fc * tc)

ask_modulated signal = np.append(ask _modulated signal, sig)

o500 =3 oo0r 00%08 = =3

32
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ANALYZING POPULATION DATA
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Replicates Histogram

* Replicates are collections of data that is expected to be nominally identical. ¢ The adjacent bars indicate that a numerical range is being summarized by
¢ Example: indicating the frequencies in arbitrarily chosen classes
667 643 671 661 655 690 672 68.0 657 664 ¢ Also sometimes displayed as a “frequency polygon”

* These may be visualized in various ways:

— Dot diagram

1 1@& L encee® & & | 2 |
63 64 65 66 67 68 69 70

Yield

— Frequency distribution (e.g. for 500 observations)

Froquency

Income (in thousands of dollars)

Ralsave Iraquancy = s

T J— 37 B e 38
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Ogive or cumulative frequency plot Example: Times on phone waiting for service

o Lists cumulative population at or below the x-axis value ¢ Definitions

data = np.array([45,62,52,72,91,88,64,65,69,59,70,..])

data = data.reshape(len(data), 1) # Prepare the data for

pandas

df = pd.DataFrame (data=data, columns=['Service Times']) #
— Transform data to pandas DataFrame

print ('Data: \n', df)

:> ’ 4 df.hist (['Service Times'], grid=False)
¢ : plt.show ()
& B Service Times
) - 100
L ===y L=
Y e o A

o What are these?

i dollar Income (in thousands of dollar

e — 39 T eem— 40

39 40
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Baking the best Pizza

Pizza statistics - Histogram

* Pizza tastes best when baked at a very high temperature (e.g., 375°C)

* However, variations and dependencies (e.g. on dough uniformity) get larger
at high temperature

* Consider two options (275°C and 375°C). Come up with a histogramand a
cumulative distribution plot for the taste score for each condition. Assume
20 taste scores per condition

LT Ey— 41
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Pizza statistics — Ogive
Score | Frequency | Frequency Y
@ 275°C | @ 375°C
1
2
3
4
5
6
7
8
9
10
(T P —— 43

43

Score | Frequency | Frequency ry
@ 275°C | @ 375°C

1

2

3

4

5

6

7

8

9 a
10 i

WA cr0110  sping 225 42
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Questions to consider

* What are the advantages and disadvantages of each temperature?
¢ Which one would you pick for your store, and why?
* Which one would you pick if baking at home, and why?

I yicro.110 /sping 2025 a4
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Pie Chart

* The pie chart is an effective way of displaying the percentage breakdown of
data by category.
o Useful if the relative sizes of the data components are to be emphasized

m Wages

M| Raw matenals
@ Shipping
Overhead

m Miscellancous

Bar chart

I 000 spring 2025 45
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Time Series Graph
¢ The time series graph is a graph of data that have been measured
over time.
¢ The horizontal axis of this graph represents time periods and the
vertical axis shows the numerical values corresponding to these time
periods
$30)
[
1981 1982 1983 1984 1985 1986 1987 1988
I 0100 spng 2025 a7
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¢ Another common method for graphically presenting nominal and ordinal
scaled data

¢ The bars are separated, and this is why such a graph is frequently used for
nominal and ordinal data — the separation emphasize the plotting of
frequencies for distinct categories

10

Frequency

Red  Green  Blue  Yellow

Favorite colors

T eee— 46
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Measures of Central Tendency

* These measures tap into the average distribution of a set of scores or values
in the data.
— Mean
— Median
- Mode

T p— 48
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The Mean

Donut-Eating Professors — the problem with outliers

* The “mean” of some data is the average score or value, such as the average
age of a student or average weight of professors that like to eat donuts.

Inferential mean of a sample: y=(Xy)/n
« Mean of a population: n=(Zy)/N

* The main problem associated with the mean value of some data is that it is
sensitive to outliers.

— Example, the average weight of political science professors might be affected if
there was one in the department that weighed 600 pounds.

Professor Weight Weight
Schmuggles 165 165
Bopsey 213 213
Pallitto 189 410
Homer 187 610
Schnickerson 165 165
Levin 148 148
Honkey-Doorey 251 251
Zingers 308 308
Boehmer 151 151
Queenie 132 132
Googles-Boop 199 199
Calzone 227 227

194.6 248.3

Question: How can | reduce the impact of outliers?

MICRO-110 / Spring 2025 50

Quartiles and box plots

IEPHUI icro-110 / sping 2025 49
The Median
* Because the mean average can be sensitive to extreme values, the median is
sometimes useful and more accurate.
¢ The median is simply the middle value among some scores of a variable.
Professor Weight Weight
P - pres Rank order
chmuggles and choose 132
Bopsey 213 middle value. 148
Pallitto 189 151
Homer ::; If even then 165
o . average 165
H:\:::e -Doore; 251 b two 187
yDoorey in the middle 189
Zingers 308
Boshmer 151 199
Queenie 132 213
Googles-Boop 199 227
Calzone 227 251
194.6 308
* If we know the median, then we can go up or down and rank the data as
being above or below certain thresholds.
* You may be familiar with standardized tests. 90" percentile, your score was
higher than 90% of the rest of the sample
IEPHUI icro-110 1 sping 2025 51
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* We can extend our concept of the median (50% point) and develop upper
and lower quartiles. These can then be used to generate a box plot

Lower Upper
quartilevalue  quartile value
Two outliers which
Outliar have the same value
. -
Median value
Minimum data value Maximum data value

¢ There is no rigorous mathematical definition for what exactly is or isn't an
outlier, however there are a few tests and criterions that can be applied.
These include Chauvernet's criterion, Peirce's criterion, Grubb's test for
outliers and Dixon's Q-test.
— Interquartile range: IQR = Q3 - Q1
— Lower outlier(s) < Q1-(1.5xIQR)
— Upper outlier(s) > Q3+(1.5xIQR)

MICRO-110 / Spring 2025 52
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ox plots

Ql = df.quantile(0.25)
Q3 = df.quantile(0.75)
IOR = Q3 - Q1

#print (IQR)

# We print the outliers here

mask = ((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))
filtered data = (mask*df).to_numpy()

print ("Outliers:")
for datum in filtered data:
if (datum != 0):

The Mode

¢ The most frequent response or value for a variable.
e Multiple modes are possible: bimodal or multimodal.

Professor Weight

What is the mode?
Schmuggles 165
Bopsey 213
Pallitto 189
Homer 187 Answer: 165
Schnickerson 165
Levin 148 Important descriptive
Honkey-Doorey 251 information that may help
Zingers 308 inform your research and
Bochmer 151 diagnose problems like lack
Queenie 132 of variabil ity.
‘Googles-Boop 199
Calzone 227

[T —
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Population vs Sample Averages

54

print (datum)
plt.boxplot (df, vert=False)
plt.show()
Outliers: 1o }_i '—{ o oo o0
[177]
[135]
[143]
[186]
[28] 40 80 80 100 120 140 160 180
[105]
[T JOE— 53
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Analysis of service time data example
print ("Sample mean: ", mean(df))
Sample mean: Service Times 69.345
print ("Sample median: ", median (df))
Sample median: 66.0
r = 0.05 # r value for trimming
print ("Sample trimmed mean: ", stats.trim mean(df, r))
Sample trimmed mean: [67.88333333]
print ("Sample mode: ", stats.mode (df))
Sample mode: ModeResult(mode=array([61]), count=array([13]))
[T Je— 55
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* Population mean (eta), indicated by:

zy

n=5=

N
* Sample mean (y-bar), indicated by:

gofitnteoctm Ty
- n - n

* Both represent the “point of balance” of a distribution

(X

00z

o Dul] 5 0 15 20 25 £
Maan —
v v

The mean of the population is also called the expected value of y or the mathe-
matical expectation of y and is often denoted as E(y). Thus n = E(y).

[T
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Measures of Dispersion

* Measures of dispersion tell us about variability in the data.

* Basic question: how much do values differ for a variable from the min to
max, and distance among scores in between. We use:
— Range
— Standard Deviation
— Variance

57

The Range

Reminder: Why dispersion is important

¢ From metal to ultra-precise silicon

5 0 5

x

Why is this beneficial?

e r=h-I
—  Where hiis high and | is low

* In other words, the range gives us the value between the minimum and
maximum values of a variable.

* Understanding this statistic is important in understanding your data,
o
P yforr

1ent and diagnostic purposes.

* Otherranges include IQR (Inter-Quartile Range)

print ("Upper sample quartile: ", stats.mstats.mquantiles(df, prob=[0.75]))
print ("Lower sample quartile: ", stats.mstats.mquantiles(df, prob=[0.25]))
print ("Interquantile range: ", (stats.mstats.mquantiles(df, prob=[0.75]) -
stats.mstats.mquantiles (df, prob=[0.25])))

Upper sample quartile: [76.]
Lower sample quartile: [61.]
Interquantile range: [15.]

MICRO-110 / Spring 2025
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The Standard Deviation and Variance
¢ A standardized measure of distance from the mean.
T2
S= RDX-X)
(n-1)
.
V' =square root
T=sum (sigma)
X=score for each point in data
X=mean of scores for the variable
n=sample size (number of
observations or cases
e Variance is just S?
2. E(x-X)?
(n-1)
MICRO-110 / Spring 2025 60
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Analysis of service time data example

Sample vs population variance and standard deviations

print ("Sample variance: ", stats.tstd(df)**2)
print ("Sample standard deviation: ", stats.tstd(df))

Sample variance: [309.31253769]
Sample standard deviation: [17.58728341]

Population:

_Lo-n

2 prv o2
ot =E(y—n) N

Sample:

52 2y —'y)z

n—1

The reason for this is explained next

[T —
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Residuals and degrees of freedom

61

The residuals are the deviations of the individual data points from the mean,
i.e.: — _ —

M=F 2 =¥ Yo =¥
It necessarily follows that the sum of the residuals is always 0

Te-N=0

Note that for any set of n residuals, there are only n-1 independent
constraints (since the mean plus the n-1 residuals fully define the data set)

This is called the number of degrees of freedom,i.e. v=n-1

This is why we use n-1 in the sample standard deviation. Otherwise, we
would effectively “double-count” one piece of data.

[T P —
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An example to show this (not a proof!)

62

Consider a population of 3 cards

‘e (v [iwew
v

> e
4

A A M
ave _12_
3 3

— @020+ (6-D? _ 8
- 3 3

Population mean:n =

Population variance: ¢

Suppose we were to take many repeated samples of 2 cards from this
population. For an accurate sample variance, we would expect:E(s?) = o2

— i.e., the sample variance should be “unbiased”, i.e., in a c | set of random
samples, it should match the population

T p—
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An example to show this (not a proof!)

An example to show this (not a proof!)

i five [ww B A M

* Population | , . |, 4 : :g * Population | o . |, & : :s

* 9 possible samples of 2 cards * 9 possible samples of 2 cards

Sample y s2 (unbiased, i.e., n-1) Sample y s2 (biased, i.e., n)
I IR
v |vw - - e »
N 3 2 e 31
_ 243+44+3+4+5+445+6 e[ _ 2+3+44+3+4+5+4+5+6
N3 4 8 gy- : 4 i 4 4 5= . =4
L oD T S
. . o ie, E@)=n FF . 0 ie, EQ)=n
el s 0+2+8+2+0+2+8+2+0 8 el s 0+1+4+14+0+1+4+14+0 4
R s 2 E)s 9 "3 RE s 1 B9 9 3
v v |- W v w |- ¥
Eﬁ 4 8 i.e., E(s?) = o? Er 4 4 i.e., E(s?) # o?
il s 2 il s 1
MICRO-110 / Spring 2025 65 It - MICRO-110 / Spring 2025 66
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A proof

Ele’ — ] =E

1 1 _
P %(Te —n) - Py ‘2:;(2; - EJ“}

Z (fzf — 2mip+ p*) — (2} — 20T +53))

i=1

1
——E
n

=E

w7 +%g(2mi(i —_u)}}
=EB[w* - 7" + 23 - 3]

= E[,,E —2ap+ @2]

=E[(@ - p)’]

:V;ﬂ(i)

_ This is true for truly random samples from an uncorrelated

n population... you’ll learn more about this soon
So, the expected value of the biased estimator will be
& n—1,
E[s? = - — ="
[ohanal =7~ T = "

So, an unbiased estimator should be given by

&2 LI
unbiazed o7 | “hissed

[T P —
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