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Exercise week #6
Unbalanced three-phase systems

Problem 1 (in class):

Consider the electrical circuit shown in Fig. 1 with the following parameters:

Ul = 380 V, α = 0 and R = ωL = 1
ωC = 10 Ω. The neutral line is not connected to point C.

Figure 1: Unbalanced three-phase system.

a) Determine the three line currents IR, IS and IT . What can you tell about their sum?

b) Compute S , P and Q.

Problem 2 (self-study):

Consider the electrical circuits shown below with the following parameters:

Ul = 400 V , α = 0, Z = R + jωL, R = ωL = 50 Ω. The neutral line is not connected to point C.

The impedance on line T is short-circuited, as shown in Fig. 2.

a) With which other point is point C connected?

b) Calculate all line currents in the form Ie jβ.

In a second setting, the impedance connected to line T is disconnected from the circuit, as shown in Fig. 3.

a) Calculate all line currents in the form Ie jβ.
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Figure 2: Electrical circuit featuring a shorted impedance on line T.

Figure 3: Electrical circuit featuring an open circuit on line T.

Solution 1:

a) We recognise that we have phase voltage of U = 220 V and hence, assuming that α = 0 we have

URS =
√

3Ue j π6 = Ule j π6 (1)

and similarly US T = URS e− j 2π
3 and UTR = URS e− j 4π

3 .

From this starting point, we can set up the system of linearly dependent equations

URS = Ule j π6 = IRR − IS jωL (2)

US T = Ule j π6 e− j 2π
3 = IS jωL − IT

1
jωC

(3)

UTR = Ule j π6 e− j 4π
3 = IT

1
jωC
− IRR (4)

IR + IS + IT = 0. (5)

We find therefore that IT = −IR − IS and from eq. 4

(−IR − I s)
1

jωC
− IRR = Ule− j 7π

6 = −Ule− j π6 (6)

IR(R +
1

jωC
) + IS

1
jωC

= Ule− j π6 (7)
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We multiply the last equation by jωC on both sides and combine it with eq. 2 that we divide by jωL into one
system of equations

IR( jωCR + 1) + IS = Ul jωCe− j π6 (8)

IR
R

jωL
− IS =

Ul

jωL
e j π6 (9)

We add up the two equations ad find

IR = Ul

jωCe− j π6 + e j π6

jωL

1 + jωCR + R
jωL

(10)

We use now the fact that R = ωL = 1
ωC and hence ωCR = R

ωL = 1 and simplify:

IR = Ul j
e− j π6 − e j π6

R(1 + j − j)
=

Ul

R
j(−2 j) sin(

π

6
) =

Ul

R
= 38 A. (11)

From here we compute

IS = IR
R

jωL −
Ul
jωL e j π6 = (− j38 + j38e j π6 ) A = (−19 + j38(−1 +

√
3

2 )) A and

IT = −IR − IS = (−19 − j38(−1 +
√

3
2 )) A.

We plot these in Fig. 4 and find that their sum adds up to zero. The currents do not have the same magnitudes
despite the magnitude of the impedances being the same.
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Figure 4: Phasors of line voltages and line currents.

b) The total power can be computed by summing up the contributions to the different loads:

S = URC I∗R + US C I∗S + UTC I∗T (12)

S = R|IR|
2 + jωL|IS |

2 +
1

jωC
|IT |

2 (13)
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We notice that the two reactive powers cancel each other since |IT |
2 = |IS |

2 and ωL = 1
ωC , yielding

S = R|IR|
2 = 14440 VA (14)

and, consequently, P = 14.44 kW and Q = 0.

Solution 2:

For the shorted circuit

a) We start by remembering the relationship between phase voltage and line voltages: if URN = Ue jα and α = 0
then we have URS =

√
3URNe j π6 , US T =

√
3URNe j( π6−

2π
3 ) and UTR =

√
3URNe j( π6−

4π
3 ). Since

√
3U = Ul, we then

have URS = Ule j π6 , US T = − jUl and UTR = −Ule− j π6 .

Furthermore, we have Z = R + jωL = R(1 + j) = R
√

2e j π4 .

If the impedance on the T line is short-circuited, point C coincides with point T. From here, we can write down the
dependencies between line currents and phase voltages:

US T = IS Z (15)

and hence IS =
US T

Z =
− jUl

R
√

2e j π4
=

Ul

R
√

2
e− j 3π

4 = 4
√

2e− j 3π
4 A.

We also have that
URT = IRZ (16)

and consequently IR =
URT

Z = −
UTR

Z =
Ule
− j π6

R
√

2e j π4
=

Ule
− j 5π

12

R
√

2
= 4
√

2e− j 5π
12 A

Finally, we have that IT = −I s − IR = −4
√

2(e− j 3π
4 + e− j 5π

12 ) A = 9.8e j 5π
12 . All currents are plotted in Fig. 5 (left

panel).
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Figure 5: Currents for the shorted and open circuit.

For the open circuit

a) In the case of the open circuit, current IT = 0. Consequently, IR = −IS and URS = IRZ − IS Z = 2IRZ. We can
now compute the currents:
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IR = −IS =
URS

2Z
=

Ule j π6

2
√

2Re j π4
= 2
√

2e− j π12 . (17)

All currents are plotted in Fig. 5 (right panel). Note: A minus sign manifests itself as a phase difference of π.
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