

Exercise week #6
 Unbalanced three-phase systems

Problem 1 (in class):

Consider the electrical circuit shown in Fig. 1 with the following parameters:

$U_l = 380 \text{ V}$, $\alpha = 0$ and $R = \omega L = \frac{1}{\omega C} = 10 \Omega$. The neutral line is not connected to point C.

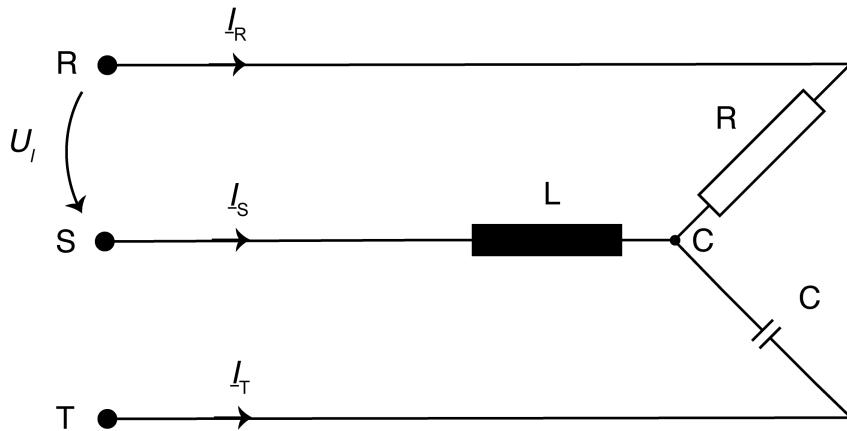


Figure 1: Unbalanced three-phase system.

- Determine the three line currents I_R , I_S and I_T . What can you tell about their sum?
- Compute \underline{S} , P and Q .

Problem 2 (self-study):

Consider the electrical circuits shown below with the following parameters:

$U_l = 400 \text{ V}$, $\alpha = 0$, $\underline{Z} = R + j\omega L$, $R = \omega L = 50 \Omega$. The neutral line is not connected to point C.

The impedance on line T is short-circuited, as shown in Fig. 2.

- With which other point is point C connected?
- Calculate all line currents in the form $Ie^{j\beta}$.

In a second setting, the impedance connected to line T is disconnected from the circuit, as shown in Fig. 3.

- Calculate all line currents in the form $Ie^{j\beta}$.

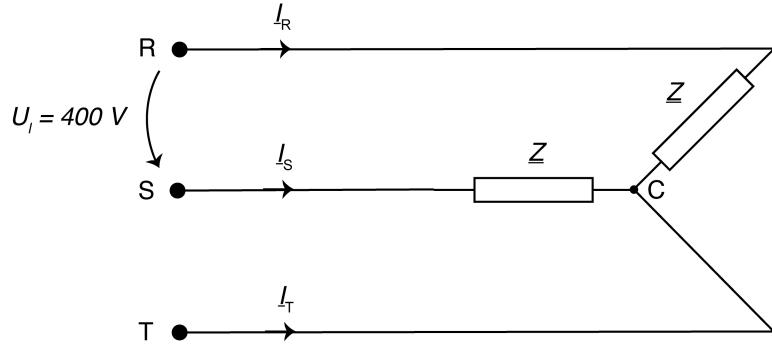


Figure 2: Electrical circuit featuring a shorted impedance on line T.

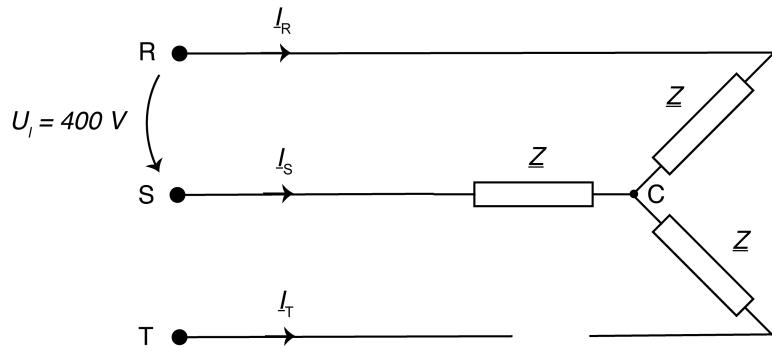


Figure 3: Electrical circuit featuring an open circuit on line T.

Solution 1:

a) We recognise that we have phase voltage of $U = 220 \text{ V}$ and hence, assuming that $\alpha = 0$ we have

$$\underline{U}_{RS} = \sqrt{3}Ue^{j\frac{\pi}{6}} = U_l e^{j\frac{\pi}{6}} \quad (1)$$

and similarly $\underline{U}_{ST} = \underline{U}_{RS} e^{-j\frac{2\pi}{3}}$ and $\underline{U}_{TR} = \underline{U}_{RS} e^{-j\frac{4\pi}{3}}$.

From this starting point, we can set up the system of linearly dependent equations

$$\underline{U}_{RS} = U_l e^{j\frac{\pi}{6}} = \underline{I}_R R - \underline{I}_S j\omega L \quad (2)$$

$$\underline{U}_{ST} = U_l e^{j\frac{\pi}{6}} e^{-j\frac{2\pi}{3}} = \underline{I}_S j\omega L - \underline{I}_T \frac{1}{j\omega C} \quad (3)$$

$$\underline{U}_{TR} = U_l e^{j\frac{\pi}{6}} e^{-j\frac{4\pi}{3}} = \underline{I}_T \frac{1}{j\omega C} - \underline{I}_R R \quad (4)$$

$$\underline{I}_R + \underline{I}_S + \underline{I}_T = 0. \quad (5)$$

We find therefore that $\underline{I}_T = -\underline{I}_R - \underline{I}_S$ and from eq. 4

$$(-\underline{I}_R - \underline{I}_S) \frac{1}{j\omega C} - \underline{I}_R R = U_l e^{-j\frac{7\pi}{6}} = -U_l e^{-j\frac{\pi}{6}} \quad (6)$$

$$\underline{I}_R (R + \frac{1}{j\omega C}) + \underline{I}_S \frac{1}{j\omega C} = U_l e^{-j\frac{\pi}{6}} \quad (7)$$

We multiply the last equation by $j\omega C$ on both sides and combine it with eq. 2 that we divide by $j\omega L$ into one system of equations

$$\underline{I}_R(j\omega CR + 1) + \underline{I}_S = U_l j\omega C e^{-j\frac{\pi}{6}} \quad (8)$$

$$\underline{I}_R \frac{R}{j\omega L} - \underline{I}_S = \frac{U_l}{j\omega L} e^{j\frac{\pi}{6}} \quad (9)$$

We add up the two equations ad find

$$\underline{I}_R = U_l \frac{j\omega C e^{-j\frac{\pi}{6}} + \frac{e^{j\frac{\pi}{6}}}{j\omega L}}{1 + j\omega CR + \frac{R}{j\omega L}} \quad (10)$$

We use now the fact that $R = \omega L = \frac{1}{\omega C}$ and hence $\omega CR = \frac{R}{\omega L} = 1$ and simplify:

$$\underline{I}_R = U_l j \frac{e^{-j\frac{\pi}{6}} - e^{j\frac{\pi}{6}}}{R(1 + j - j)} = \frac{U_l}{R} j(-2j) \sin(\frac{\pi}{6}) = \frac{U_l}{R} = 38 \text{ A.} \quad (11)$$

From here we compute

$$\underline{I}_S = \underline{I}_R \frac{R}{j\omega L} - \frac{U_l}{j\omega L} e^{j\frac{\pi}{6}} = (-j38 + j38e^{j\frac{\pi}{6}}) \text{ A} = (-19 + j38(-1 + \frac{\sqrt{3}}{2})) \text{ A and}$$

$$\underline{I}_T = -\underline{I}_R - \underline{I}_S = (-19 - j38(-1 + \frac{\sqrt{3}}{2})) \text{ A.}$$

We plot these in Fig. 4 and find that their sum adds up to zero. The currents do not have the same magnitudes despite the magnitude of the impedances being the same.

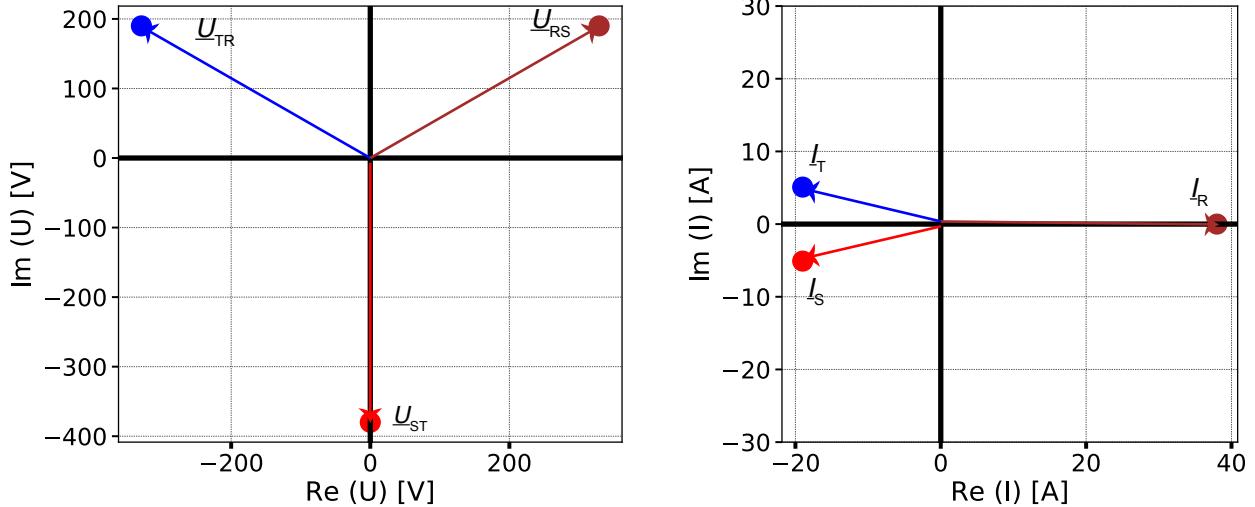


Figure 4: Phasors of line voltages and line currents.

b) The total power can be computed by summing up the contributions to the different loads:

$$\underline{S} = \underline{U}_{RC} \underline{I}_R^* + \underline{U}_{SC} \underline{I}_S^* + \underline{U}_{TC} \underline{I}_T^* \quad (12)$$

$$\underline{S} = R |\underline{I}_R|^2 + j\omega L |\underline{I}_S|^2 + \frac{1}{j\omega C} |\underline{I}_T|^2 \quad (13)$$

We notice that the two reactive powers cancel each other since $|I_T|^2 = |I_S|^2$ and $\omega L = \frac{1}{\omega C}$, yielding

$$\underline{S} = R|\underline{I}_R|^2 = 14440 \text{ VA} \quad (14)$$

and, consequently, $P = 14.44 \text{ kW}$ and $Q = 0$.

Solution 2:

For the shorted circuit

a) We start by remembering the relationship between phase voltage and line voltages: if $\underline{U}_{RN} = U e^{j\alpha}$ and $\alpha = 0$ then we have $\underline{U}_{RS} = \sqrt{3} \underline{U}_{RN} e^{j\frac{\pi}{6}}$, $\underline{U}_{ST} = \sqrt{3} \underline{U}_{RN} e^{j(\frac{\pi}{6} - \frac{2\pi}{3})}$ and $\underline{U}_{TR} = \sqrt{3} \underline{U}_{RN} e^{j(\frac{\pi}{6} - \frac{4\pi}{3})}$. Since $\sqrt{3}U = U_l$, we then have $\underline{U}_{RS} = U_l e^{j\frac{\pi}{6}}$, $\underline{U}_{ST} = -jU_l$ and $\underline{U}_{TR} = -U_l e^{-j\frac{\pi}{6}}$.

Furthermore, we have $\underline{Z} = R + j\omega L = R(1 + j) = R\sqrt{2}e^{j\frac{\pi}{4}}$.

If the impedance on the T line is short-circuited, point C coincides with point T. From here, we can write down the dependencies between line currents and phase voltages:

$$\underline{U}_{ST} = \underline{I}_S \underline{Z} \quad (15)$$

and hence $\underline{I}_S = \frac{\underline{U}_{ST}}{\underline{Z}} = \frac{-jU_l}{R\sqrt{2}e^{j\frac{\pi}{4}}} = \frac{U_l}{R\sqrt{2}} e^{-j\frac{3\pi}{4}} = 4\sqrt{2}e^{-j\frac{3\pi}{4}} \text{ A}$.

We also have that

$$\underline{U}_{RT} = \underline{I}_R \underline{Z} \quad (16)$$

and consequently $\underline{I}_R = \frac{\underline{U}_{RT}}{\underline{Z}} = -\frac{\underline{U}_{TR}}{\underline{Z}} = \frac{U_l e^{-j\frac{\pi}{6}}}{R\sqrt{2}e^{j\frac{\pi}{4}}} = \frac{U_l e^{-j\frac{5\pi}{12}}}{R\sqrt{2}} = 4\sqrt{2}e^{-j\frac{5\pi}{12}} \text{ A}$

Finally, we have that $\underline{I}_T = -\underline{I}_S - \underline{I}_R = -4\sqrt{2}(e^{-j\frac{3\pi}{4}} + e^{-j\frac{5\pi}{12}}) \text{ A} = 9.8e^{j\frac{5\pi}{12}}$. All currents are plotted in Fig. 5 (left panel).

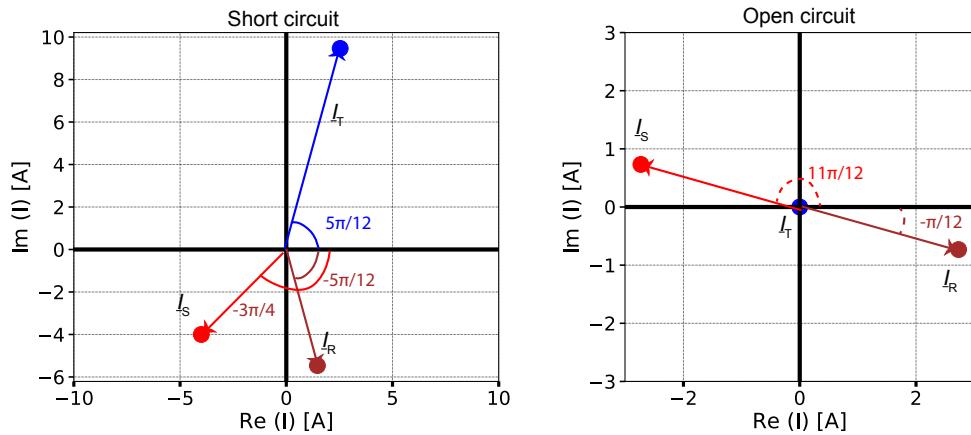


Figure 5: Currents for the shorted and open circuit.

For the open circuit

a) In the case of the open circuit, current $\underline{I}_T = 0$. Consequently, $\underline{I}_R = -\underline{I}_S$ and $\underline{U}_{RS} = \underline{I}_R \underline{Z} - \underline{I}_S \underline{Z} = 2\underline{I}_R \underline{Z}$. We can now compute the currents:

$$\underline{I}_R = -\underline{I}_S = \frac{\underline{U}_{RS}}{2\underline{Z}} = \frac{U_I e^{j\frac{\pi}{6}}}{2\sqrt{2}R e^{j\frac{\pi}{4}}} = 2\sqrt{2}e^{-j\frac{\pi}{12}}. \quad (17)$$

All currents are plotted in Fig. 5 (right panel). *Note:* A minus sign manifests itself as a phase difference of π .