

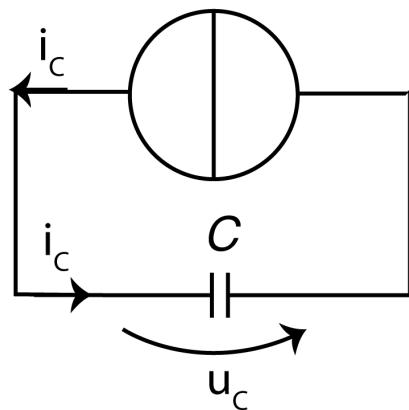
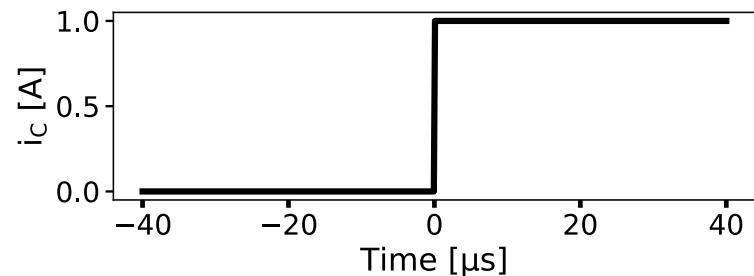
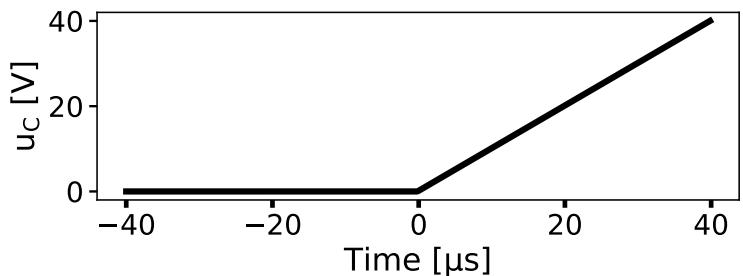
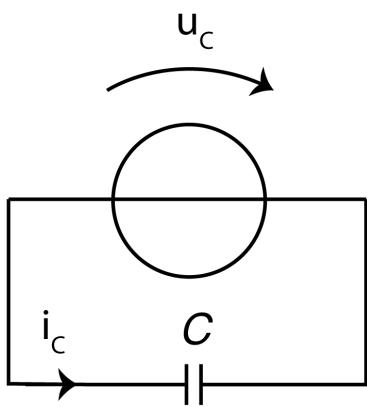
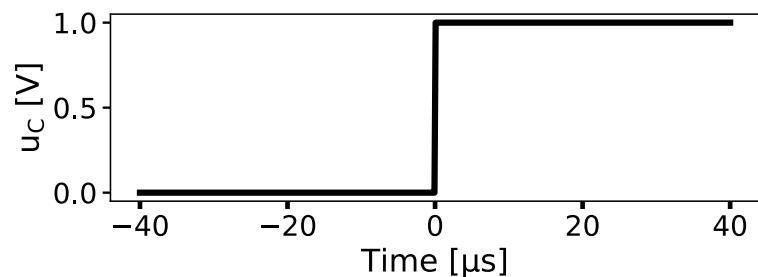
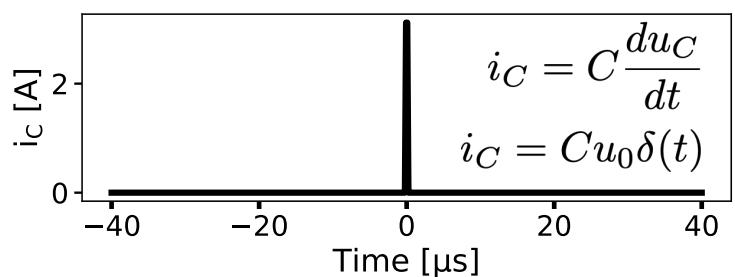
Electrotechique-II

MICRO-101: week 8

- What you have seen last time:
 - Time-dependent systems: Math recap (ch. 6.1), time-response of R and C (ch. 6.2.1 and 6.2.2) and RC circuits (ch. 6.3.1)
- Today:
 - Wrap up RC circuits (6.3.1)
 - Time-response of L (ch. 6.2.3.), RL circuits (ch. 6.3.2)
- Next time
 - Transient behavior with alternating voltages (ch. 6.4)
 - Solving of past exam (uploaded tomorrow to Moodle)

1-slide recap of last week

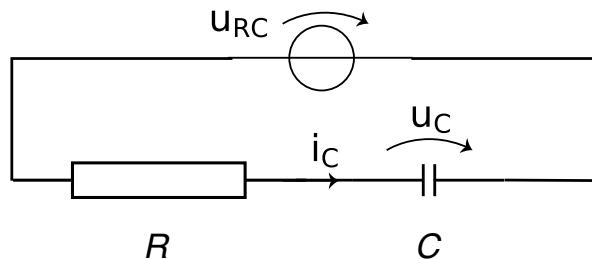
C-circuit (Ch. 6.2.3)



Today

RC circuit (Ch. 6.3.1): the current

- Rule 1: In real systems (with non-zero resistance) – the voltage across a capacitor can not change suddenly (no voltage jump)



$$t < 0 :$$

$$i_C = 0$$

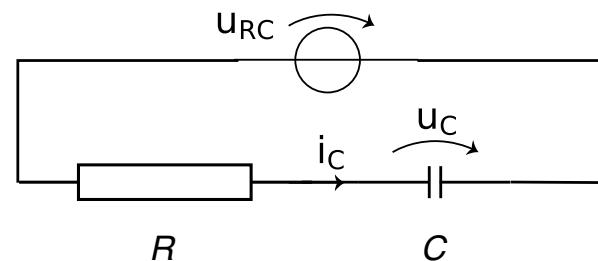
$$u_C = 0$$

$$t \geq 0 :$$

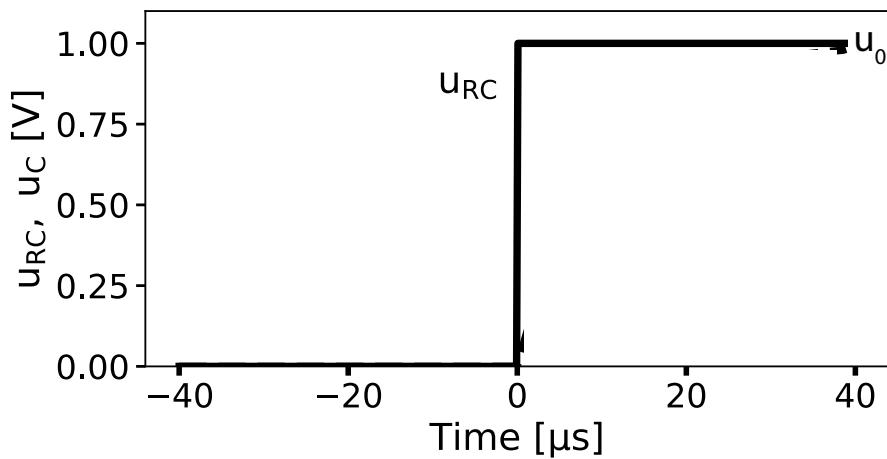
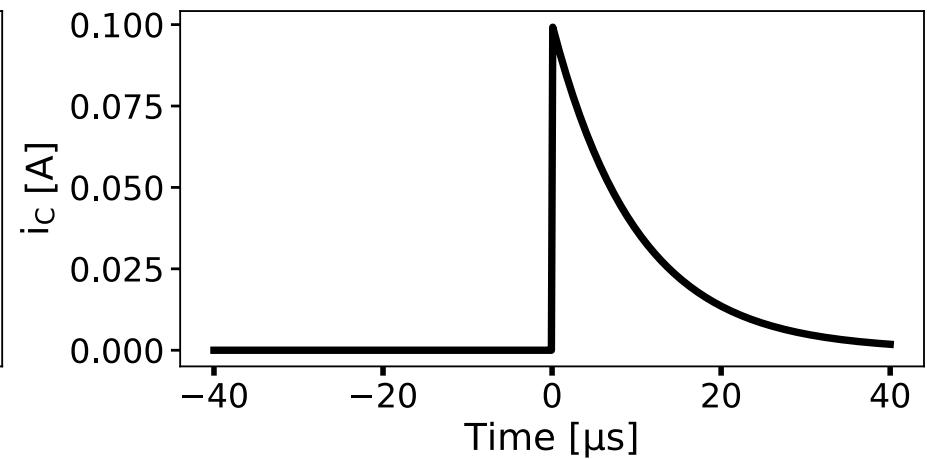
$$i_C = \frac{u_0}{R} e^{-\frac{t}{RC}}$$

RC circuit (Ch. 6.3.1): the current

- Rule 1: In real systems (with non-zero resistance) – the voltage across a capacitor can not change suddenly (no voltage jump)

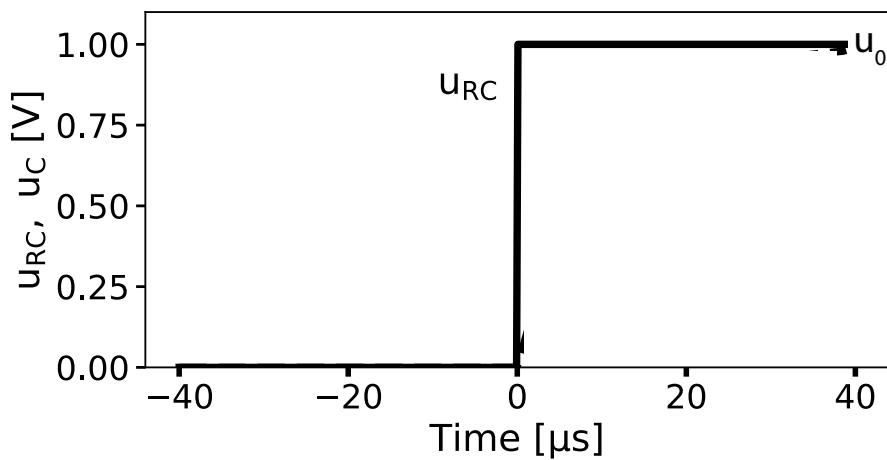
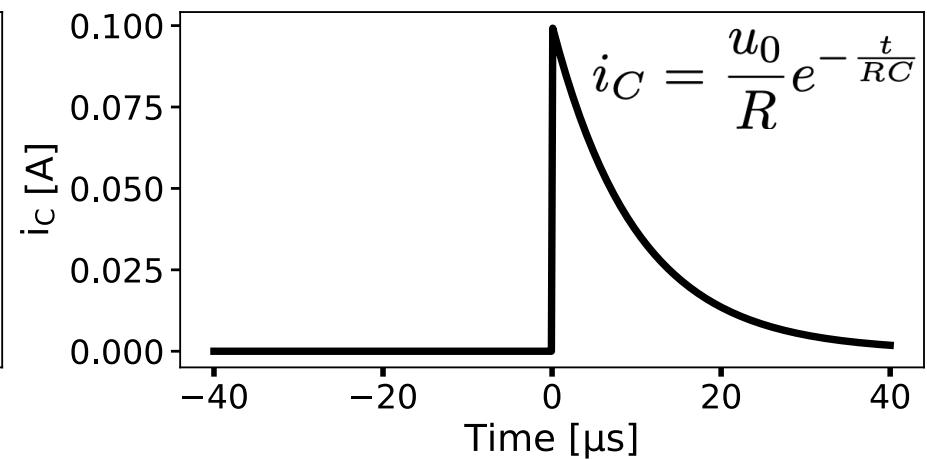


$$t \geq 0 : \quad i_C = \frac{u_0}{R} e^{-\frac{t}{RC}}$$



RC circuit (Ch. 6.3.1): the current

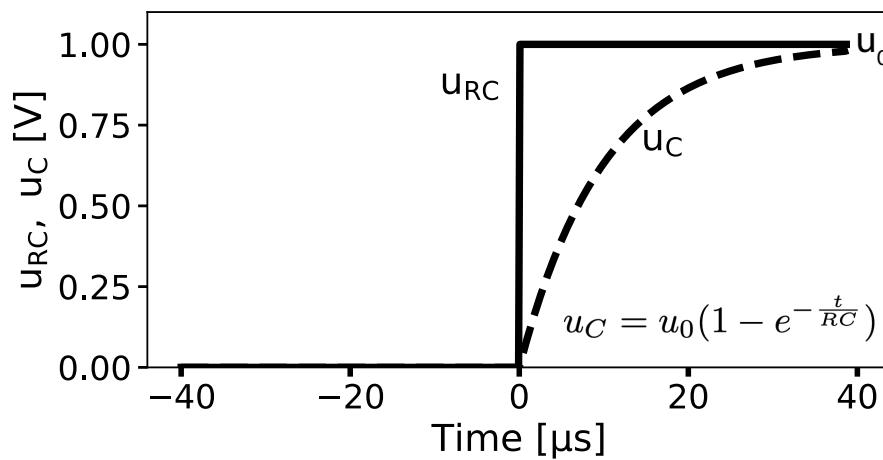
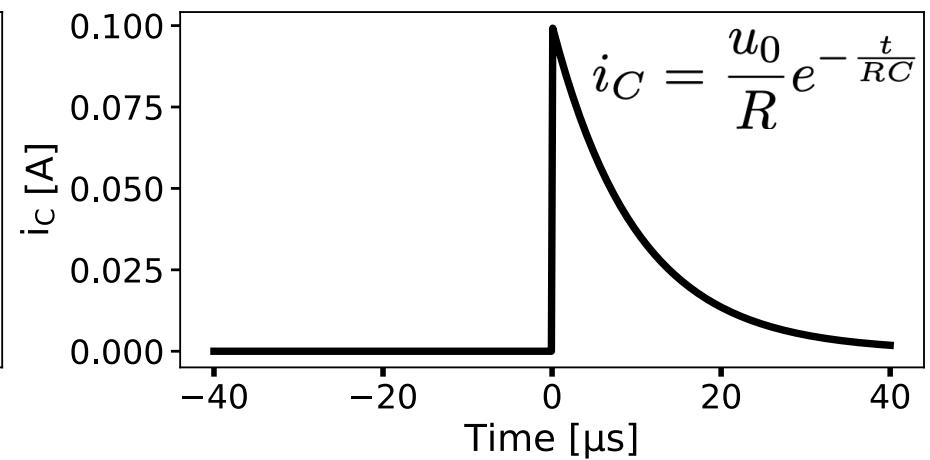
- Rule 1: In real systems (with non-zero resistance) – **the voltage across a capacitor can not change suddenly (no voltage jump)**
- The current spikes to finite value at $t = 0$: $i_C(t = 0) = \frac{u_0}{R}$
- i_C then decays with characteristic time $\tau_{RC} = RC$.
- The smaller R , the shorter τ_{RC} , the higher $i_C(t = 0) \rightarrow$ the more the system converges towards what we've seen for the C-circuit



RC circuit (Ch. 6.3.1): the voltage

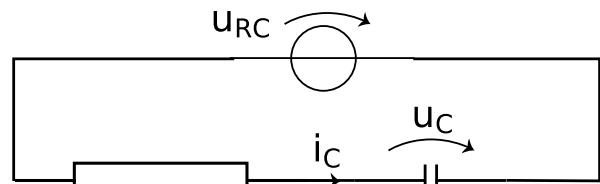
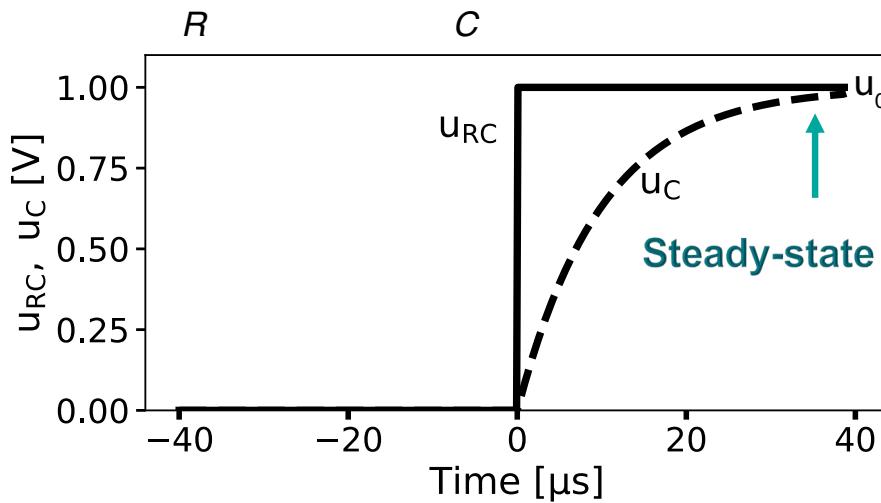
- Rule 1: In real systems (with non-zero resistance) – **the voltage across a capacitor can not change suddenly (no voltage jump)**
- No discontinuity in the voltage
- u_C then increases with τ_{RC} towards the value of the source.
- The smaller R , the shorter τ_{RC} , the faster u_C converges towards $u_{RC} \rightarrow$ what we've seen for the C-circuit

■ MICRO-101



Overview RC circuit (Ch. 6.3.1)

- Guided example 1:



$$t < 0 :$$

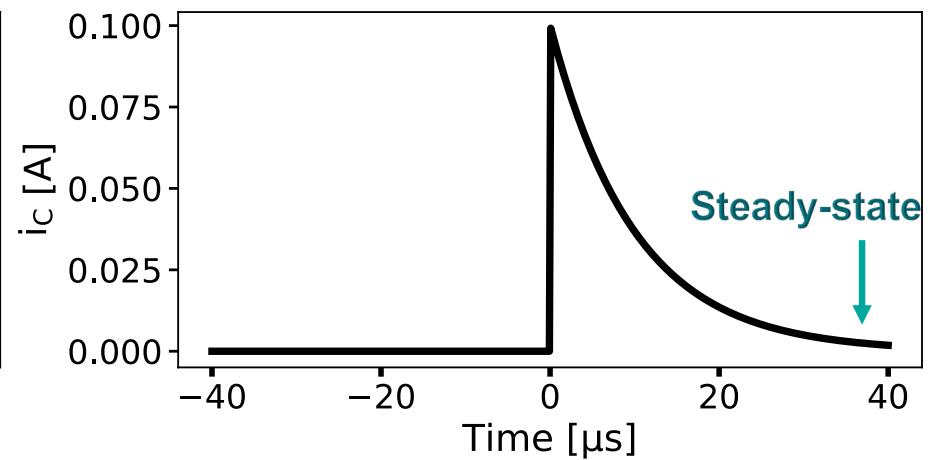
$$i_C = 0$$

$$u_C = 0$$

$$t \geq 0 :$$

$$i_C = \frac{u_0}{R} e^{-\frac{t}{RC}}$$

$$u_C = u_0 \left(1 - e^{-\frac{t}{RC}} \right)$$

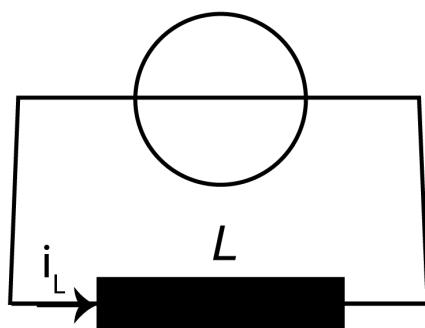
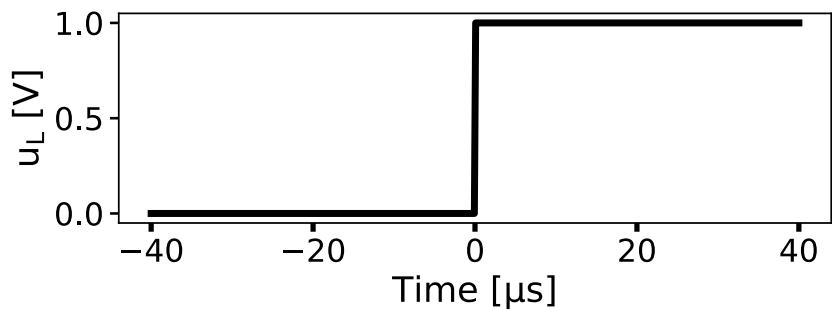


Time response of L (Ch. 6.2.3)

Voltage source connected

$$u_L(t) = u_0 h(t)$$

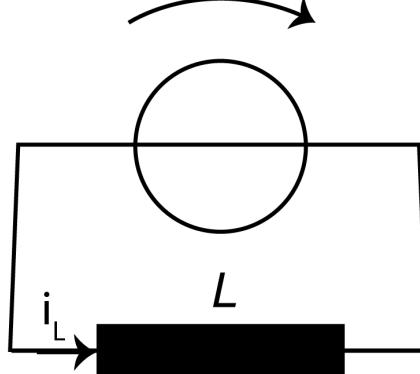
$$u_L(t) = L \frac{di_L}{dt}$$



Time response of L (Ch. 6.2.3)

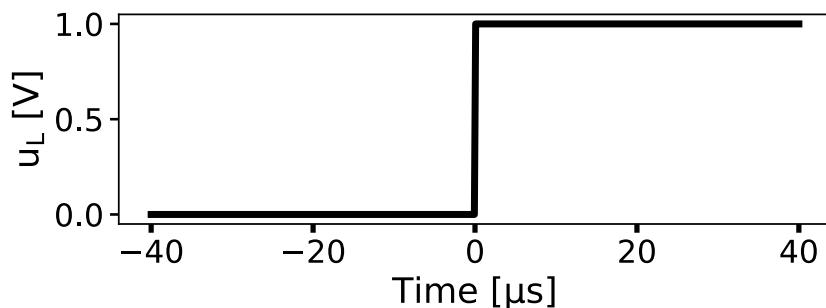
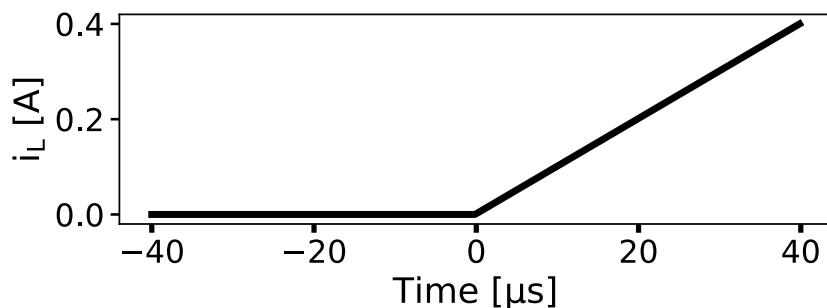
Voltage source connected

$$u_L(t) = u_0 h(t)$$



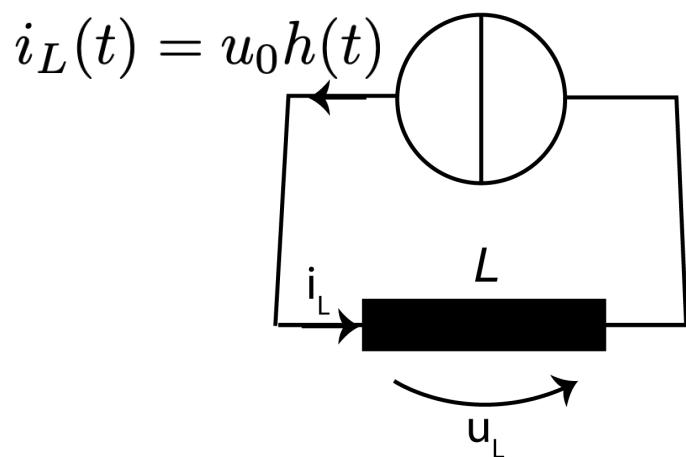
$$u_L(t) = L \frac{di_L}{dt}$$

Current does not react instantaneously to change in voltage:
It slowly ramps up until it reaches infinity.
For long times, the inductor behaves like a short.

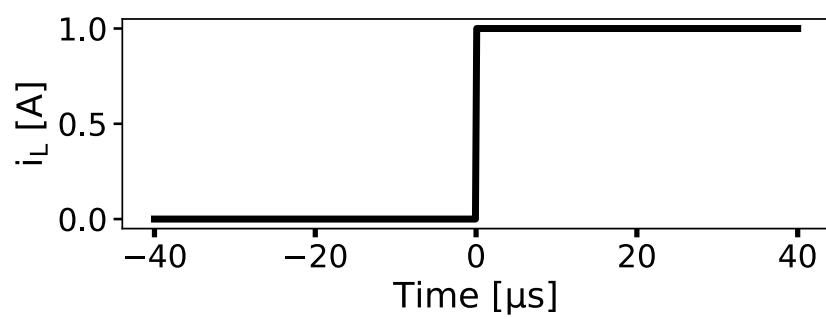


Time response of L (Ch. 6.2.3)

Current source connected

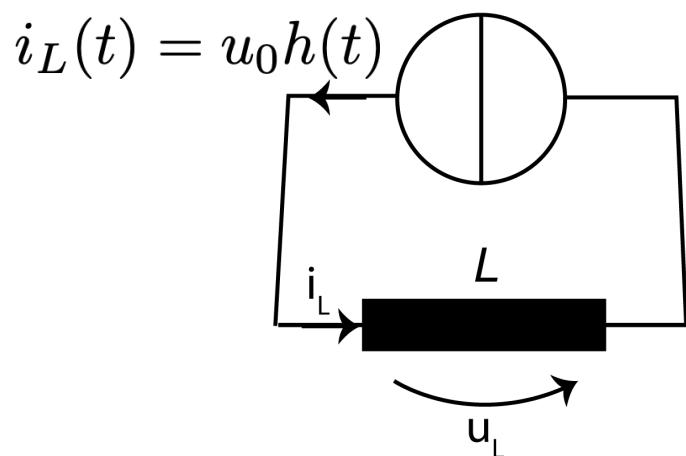


$$u_L(t) = L \frac{di_L}{dt}$$



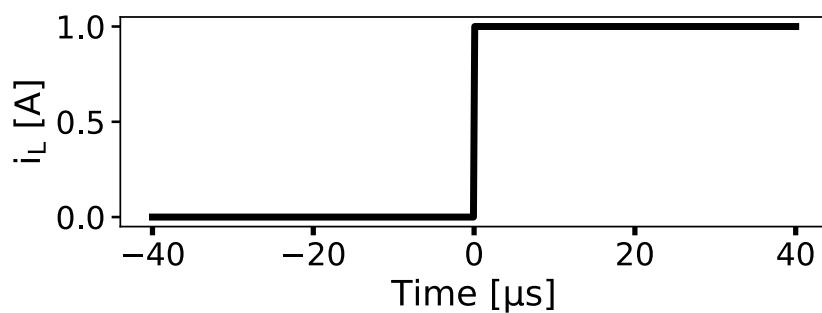
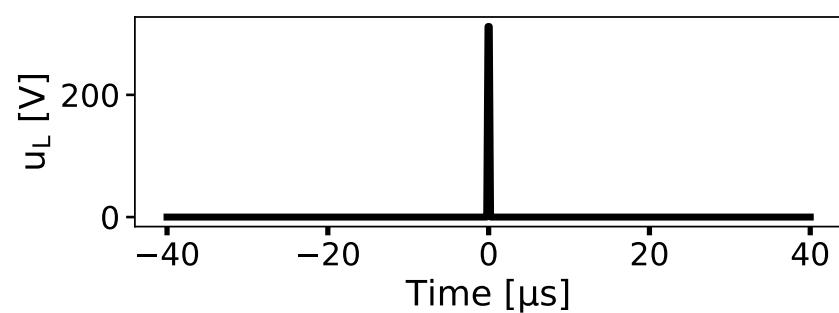
Time response of L (Ch. 6.2.3)

Current source connected



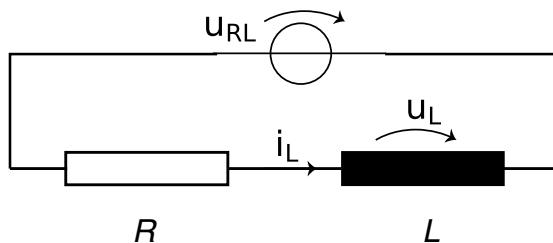
$$u_L(t) = L \frac{di_L}{dt}$$

Voltage spikes in reaction to change in current, so that the current flowing across the inductor equals the one of the source.



RL circuit (Ch. 6.3.2)

- Guided example 2:



$$u_{RL} = u_0 h(t)$$

- Boundary conditions:

$$t < 0$$

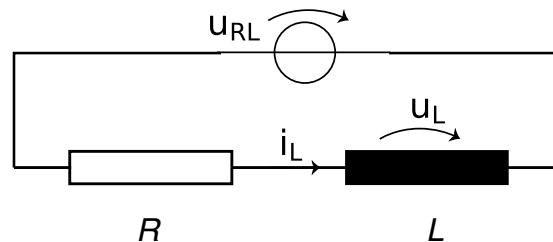
(calculation at the blackboard)

$$i_L = 0 \quad \text{No current flowing through the circuit!}$$

$$u_L = 0 \quad \text{No voltage drop across the inductor}$$

RL circuit (Ch. 6.3.2)

- Rule 2: In real systems (with non-zero resistance) – the current flowing through an inductor can not change suddenly (no current jump)



- Boundary conditions:

$$t < 0$$

$$i_L = 0$$

$$u_L = 0$$

$$t \geq 0$$

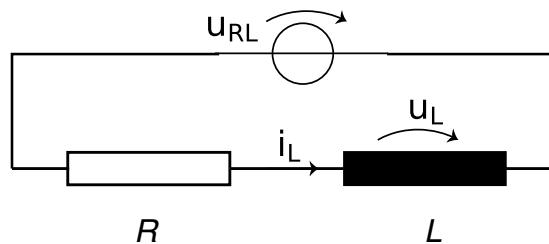
$$i_L = \frac{u_0}{R} \left(1 - e^{-\frac{tR}{L}}\right)$$

$$u_L = L \frac{di_L}{dt} = u_0 e^{-\frac{tR}{L}}$$

RL circuit (Ch. 6.3.2)

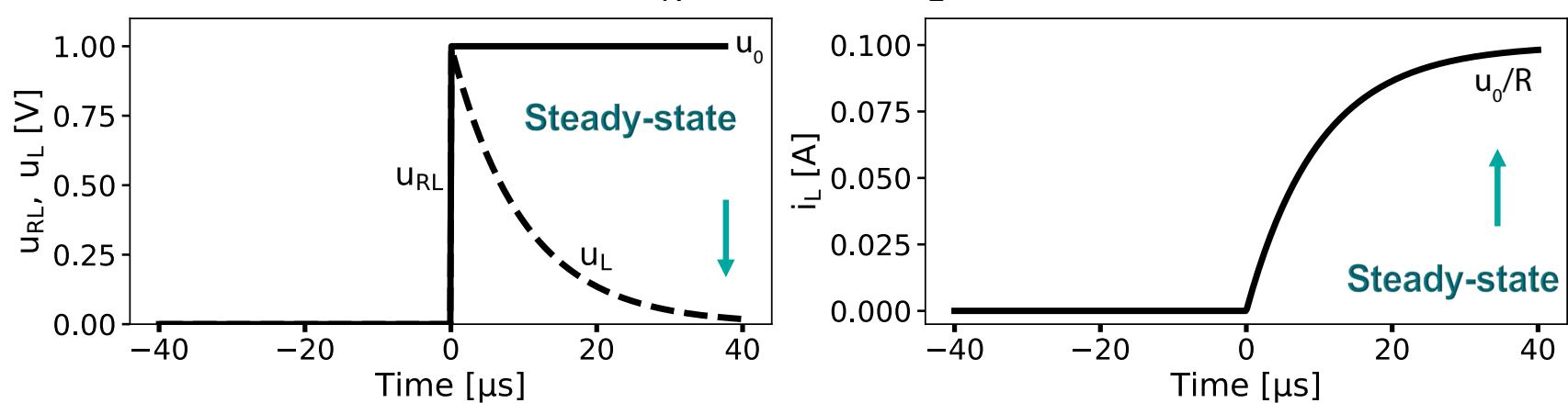
$$t \geq 0$$

- Guided example 2:



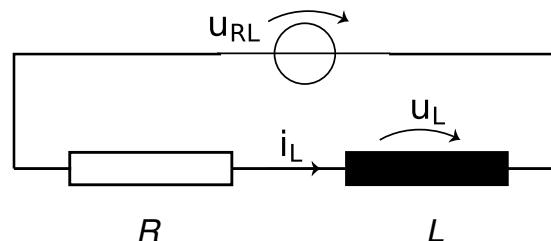
$$i_L = \frac{u_0}{R} \left(1 - e^{-\frac{tR}{L}}\right)$$

$$u_L = L \frac{di_L}{dt} = u_0 e^{-\frac{tR}{L}}$$



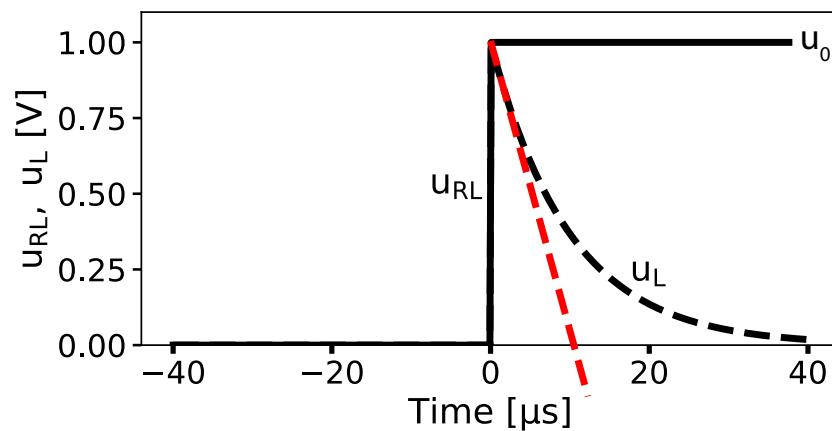
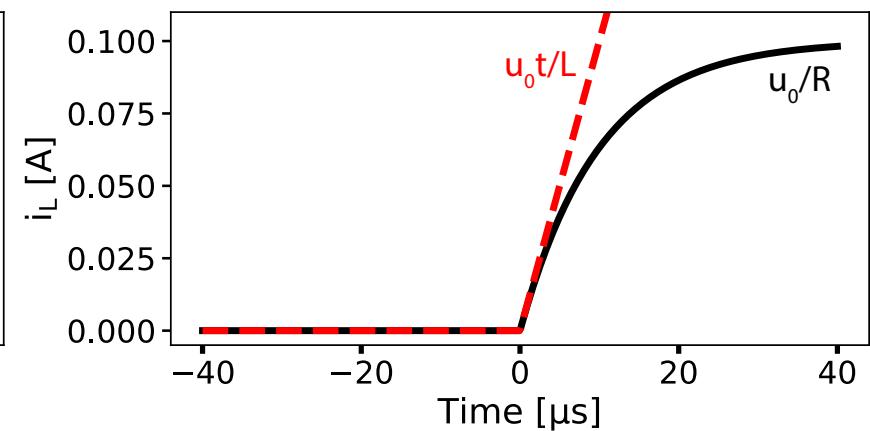
RL circuit (Ch. 6.3.2)

- Rule 2: In real systems (with non-zero resistance) – the current flowing through an inductor can not change suddenly (no current jump) $t \geq 0$



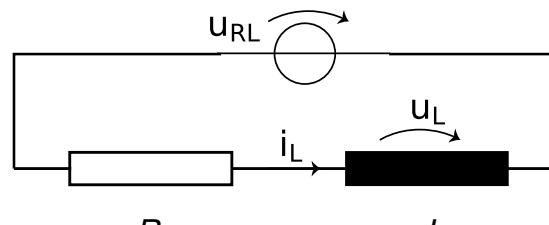
$$i_L = \frac{u_0}{R} (1 - e^{-\frac{tR}{L}})$$

$$u_L = L \frac{di_L}{dt} = u_0 e^{-\frac{tR}{L}}$$



RL circuit (Ch. 6.3.2)

- Rule 2: In real systems (with non-zero resistance) – **the current flowing through an inductor can not change suddenly (no current jump)**



$$t \geq 0$$

$$i_L = \frac{u_0}{R} \left(1 - e^{-\frac{tR}{L}}\right)$$

$$u_L = L \frac{di_L}{dt} = u_0 e^{-\frac{tR}{L}}$$

We find that the current ramps up with a characteristic time constant $\tau_{RL} = \frac{L}{R}$. The RL time constant can be reduced for example by decreasing L.

At $t = 0$, the voltage spikes to a value of $u_L(t = 0) = u_0$ after which it decreases again with the same slope as the current. We note that for $L \rightarrow 0$ we find back the case of the resistor connected to a voltage source which is switched on.