



# Welcome to Electrotechique-II MICRO-101



# Welcome to Electrotechnique-II MICRO-101

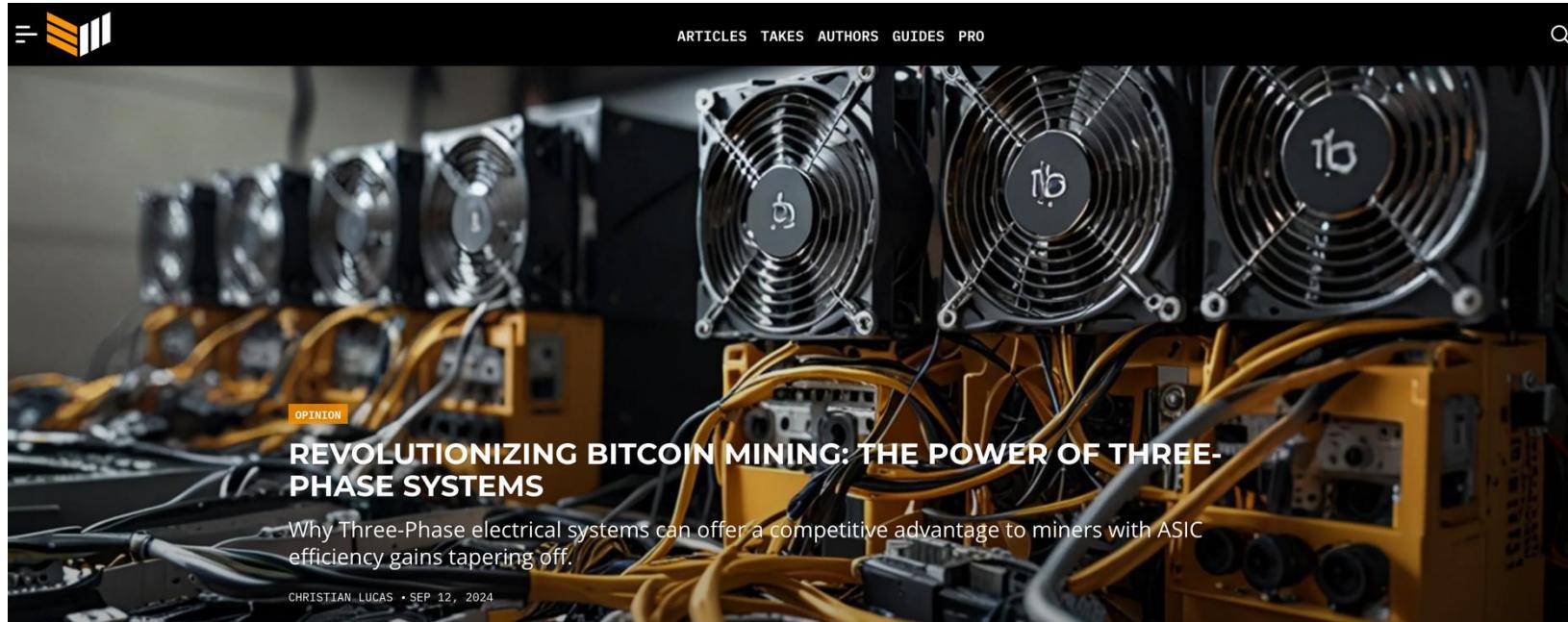


Control over

- ✓ The frequency-behavior
- ✓ The time-behavior
- ✓ The magnitude

- Introduction:
  - Why should we care about electronic circuits?
  - What is this course about?
- Organisational things:
  - Syllabus and moodle
  - Exercise classes, lab session, and exam
- Recap MICRO-100

- Why interested in this class? What are you hoping to learn?
- Which concepts of MICRO-100 were difficult to understand?


This course gives an introduction to basic electronic circuits made from lumped elements and voltage/current sources.



**There is no stupid questions. You're here to learn, and I don't judge.**

**We'll try to also get an intuitive understanding about the systems we'll study. But this is a difficult task, so ask questions whenever something is not clear.**

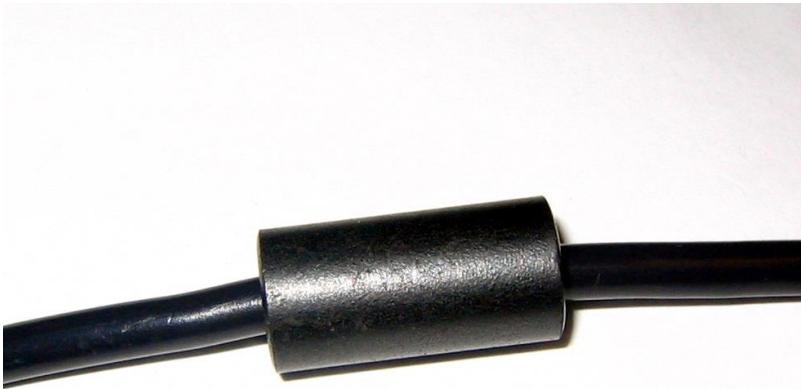
**There is no stupid question.**



ARTICLES TAKES AUTHORS GUIDES PRO

Q

OPINION


## REVOLUTIONIZING BITCOIN MINING: THE POWER OF THREE-PHASE SYSTEMS

Why Three-Phase electrical systems can offer a competitive advantage to miners with ASIC efficiency gains tapering off.

CHRISTIAN LUCAS • SEP 12, 2024

Need for more energy-efficient power transfer to end-users.

# Electronic circuits in your pocket:



RF choke

Selectively blocks passage of high-frequency signals (currents) and allows low-frequency ones.

Where is this useful?

”

The skill lies in **understanding working principle of the most basic components** and so that you then can imagine more complex systems, based on these components **to benefit an application of choice**.

Because, after all, we're engineers and **want to build things!**

- Introduction:
  - Why should we care about electronic circuits?
  - What is this course about?
- Organisational things:
  - Syllabus and moodle
  - Exercise classes, lab sessions, and exam
- Recap MICRO-100

- **Lecture:** by Cristina Benea-Chelmus, weeks 1-9 ([cristina.benea@epfl.ch](mailto:cristina.benea@epfl.ch))
- Where: in CM 1 Mondays 13:15-14:00 (first class: 17.02.2025)

### **Lecture material:**

You will be provided with these slides and typeset lecture notes that contain derivations performed in class. The lecture notes provide more extensive explanations.

I nevertheless strongly recommend that you take notes during class.

### **Geogebra:**

We gain some additional understand through interactive exercises, e.g. using geogebra

### **Ed:**

This is the best place to ask questions and get answers from teachers. This is also a place to interact with peers. I strongly recommend that students answer questions they feel confident answering.

- 1. Recap Electrotechnique-I
  - What is a resistor, capacitor, and inductor?
  - How do they behave as a function of frequency? Why so? How can we explain this intuitively?
- 2. Frequency-behavior of electronic circuits.
  - How can we represent inductances and admittances in the complex plane?
  - What does this teach us about phase relationship between current and voltage?
- 3. Three-phase systems.
  - Why do we care about three-phase systems? Why are they so special that nations worldwide adopted them?
- 4. Time-dependent systems.
  - What happens if an RC/RL systems is turned on? Why do we care and how can we explain this intuitively?

## Recap Electrotechnique-I

Chapter title

This chapter reviews the most important concepts that you have studied during Electrotechnique-I and will be relevant to Electrotechnique-II.

### Key questions:

- What is an electrical current? What is a voltage?
- What happens on the plates of a capacitor?
- What happens inside an inductor?

### Key concepts:

- Equations: Kirchhoff's first and second law (junction rule and loop rule).
- Physical quantities: resistance, inductance, capacitance, impedance, admittance.
- Representation of impedances/admittances in the complex plane.

**Key equations:** capacitance, inductance

**Literature:** M. Jufer and Y. Perriard, "Electrotechnique", chapters 1-5

Brief motivation

What you need to take away from the lecture

Use these concepts to explain/reason

Where to read further

- **Exercise:** analytical exercises to deepen understanding of subjects treated in class.
- Where: in CM 1 Mondays 14:15-15:00 (first class: 17.02.2025)

## Exercise material:

Consists of 1-2 analytical exercises.

## Philosophy:

You derive by yourself further characteristics of the circuits we will treat.

- **Labs (weeks 10-13):** hands-on, practical exercises to deepen acquired knowledge
- Who: Philippe Allenbach [philippe.allenbach@epfl.ch](mailto:philippe.allenbach@epfl.ch)
- Where:
  - Lab 1: Time-dependent systems, Mondays 13:15-16:45, MED 22519
  - Lab 2: Three-phase systems, Fridays 12:15 – 15:45, ELD 040

(based on student registrations)

- More info will follow from Philippe Allenbach

- **Exam:**

- final written exam which counts for 80% of the grade
- and a multiple choice exam about the practical lab work which counts for 20% of the grade, organized in the last week of the semester (week 14).

- **Preparation:** each chapter contains key questions that you need to be able to answer at the end of the semester.

- Me:

- Leading Hybrid photonics laboratory (HYLAB):  
<https://www.epfl.ch/labs/hylab/>
- We study integrated circuits that combine electronics with photonics, fabricate them and measure their properties in the lab.

- Your TAs:

- Yayan Lampert [yayan.lampert@epfl.ch](mailto:yayan.lampert@epfl.ch)
- Gabriel Juelg [gabriel.juelg@epfl.ch](mailto:gabriel.juelg@epfl.ch)
- Tianyi Zhang [tianyi.zhang@epfl.ch](mailto:tianyi.zhang@epfl.ch)
- Amine Ben Salem [amine.bensalem@epfl.ch](mailto:amine.bensalem@epfl.ch)
- Ishita Poddar [ishita.poddar@epfl.ch](mailto:ishita.poddar@epfl.ch)
- Clarence Provenaz [clarence.provenaz@epfl.ch](mailto:clarence.provenaz@epfl.ch)
- Remi Galley [remi.galley@epfl.ch](mailto:remi.galley@epfl.ch)
- Ines Duranton [ines.duranton@epfl.ch](mailto:ines.duranton@epfl.ch)
- Daniel Roulin [daniel.roulin@epfl.ch](mailto:daniel.roulin@epfl.ch)
- William Schmid [william.schmid@epfl.ch](mailto:william.schmid@epfl.ch)
- Tim Vial [tim.vial@epfl.ch](mailto:tim.vial@epfl.ch)

Microengineering (MT) / MT - Bachelor

## Electrotechnics II

Course    Settings    Participants    Grades    Reports    More ▾

### General

[Collapse all](#)

#### Classroom teaching (weeks 1-9)

Teacher and examiner: Prof. Dr. Cristina Benea-Chelmu

Class: Mondays 13:15-14:00 in CM 1

Exercise: Mondays 14:15-15:00 in CM 1

Office hours: Throughout weeks 1-9, Fridays from 11:00-13:00, BM3138

Contacts: Cristina Benea-Chelmu [cristina.benea@epfl.ch](mailto:cristina.benea@epfl.ch) & Yazan Lampert [yazan.lampert@epfl.ch](mailto:yazan.lampert@epfl.ch)

#### Practical work (weeks 10-13)

Teacher and examiner: Philippe Allenbach

# By the end of the course

You should know:

- How the most basic electronic components work and what happens if we assemble them together. Use simple formulas to support your arguments.
- What kind of interesting electronic systems have emerged from assembling together and why are they relevant:
  - Switches
  - Lumped elements
  - Sources

- Introduction:
  - Why should we care about electronic circuits?
  - What is this course about?
- Organisational things:
  - Syllabus and moodle
  - Exercise classes, lab sessions, and exam
- Recap MICRO-100