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Dissipativity theory

Introduced by Jan C. Willemsl[l?l as a fundamental framework for analyzing the energy

balance in dynamical systems.

= generalizes classical notions of passivity and stability by

describing systems in terms of an energy-like storage Supp,y‘rate
function and an input-output relation known as the —
supply rate.

Storage
function

Widely used across various fields in engineering, optimization, and machine learning:

« Control theory and robustness

« Optimization and convergence of algorithms

« Optimal control and Reinforcement Learning

« Robustness and stability in neural networks

[1] J. C. Willems, “Dissipative dynamical systems parti: General theory,” Archive for rational mechanics and analysis, 1972

[2] J. C. Willems, “Dissipative dynamical systems partii: Linear systems with quadratic supply rates,” Archive for rational mechanics and analysis,1972
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Dissipativity for continous-time systems

o

Vix(h) - V(x(t)) < / s(u(t), y(t)dt,

Yo

{ff(f} = f(x(t), u(1)),
y(t) = hix(1), u(t)),
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Storage and supply

» The storage function V(x) can be interpreted as
a representation of the stored system’s internal
energy w.r.t. a single point of neutral storage
(energy minimum), where V is zero.

» The supply rate s(u, y) quantifies the energy

exchanged between the system and its environment.

x(t)) <

/vu

fo

< V(x(ty)
(

R
Supply rate

— p»| Storage
function

0)) + /1 s(u(t), y(t))dt.

—

energy at time t,

energy possessed at time fy

amount of energy dissipated




EPFL Differentiated dissipation inequality

= With similarities to Lyapunov theory we can also formulate time differentiated version of
the classical dissipation inequality.

Differentiated Dissipation Inequality

The nonlinear system (1) is said to be dissipative with respect to a sup-
ply function s : R” x RP — R if there exists a storage function
V :R" — R such that V(0) = 0, V(x) > 0, such that:

d

oV (x(@) = s(u(t), y(1)),

for all t and for all x, u, y.
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EPFL Induced stability

Lyapunov stability (relaxed form)!

The nonlinear system (1) is stable at the origin with input u(t) = 0, if there
exists a Lyapunov function V : R"” — R such that V(0) = 0, V(x) > 0

such that:

d
—V(x() <0 (1)

for all t. Moreover, the nonlinear system is asymptotically stable if the
condition above holds, but with strict inequality except when x(t) = 0.

E NN4OC PhD school

[] H. Khalil, Nonlinear systems. 3rd ed. Prentice-Hall, 2002



EPFL Induced stability

Lyapunov stability (relaxed form)L!

The nonlinear system (1) is stable at the origin with input u(t) = 0, if there
exists a Lyapunov function V : R"” — R such that V(0) = 0, V(x) > 0

such that:

d
—V(x() <0 (1)

for all t. Moreover, the nonlinear system is asymptotically stable if the
condition above holds, but with strict inequality except when x(t) = 0.

Stability analysis can be performed on a dissipative system
by analyzing the supply function.
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[] H. Khalil, Nonlinear systems. 3rd ed. Prentice-Hall, 2002
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Stability from dissipativity*!

Assume the nonlinear system (1) is dissipative under a storage function
V w.r.t. a supply rate s that satisfies:

s(0,y) <0

for all y, then, the nonlinear system is stable. If the supply function
satisfies the condition above, but with strict inequality when y < 0, and
the system is observable, then the nonlinear system is asymptotically
stable.

» Unlike Lyapunov theory, dissipativity is not restricted to stability

« storage function connects classical dissipativity to stability.
« supply rate connects dissipativity to various performance notions.

E NN4OC PhD school

[] A. Van der Schaft, L2-gain and passivity techniques in nonlinear control. Springer, 2000.
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Dissipativity for discrete-time systems

ky

- Vix(ki +1) = Vix(ko)) < > s(u(k), y(k)),

_ K= g I

{x(k + 1) = f(x(k), ulk)),
y(k) = h(x(k), u(k)),
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EPFL Dissipativity for discrete-time systems

= Discrete-time nonlinear dynamical systems
{x(k + 1) = f(x(k), u(k)), f(0,0) =0 (1a)
y(k) = h(x(k), u(k)), h(0,0) =0

Dissipativity!*!

The nonlinear system (1) is said to be dissipative with respect to a sup-
ply function s : R” x R? — R if there exists a storage function
V :R" — R such that V(0) = 0, V(x) > 0, Vx and:

k1

V(x(ki + 1)) = V(x(ko)) < ) _ s(u(k), y(K)),

k=ko

for all ko, k1 with ky > kg and for all input wu.
Alternatively in difference form, such that

Vix(k +1)) = V(x(k)) < s(u(k), y(k)),

for all k and for all x, u, y.

E NN4OC PhD school

[] C. I. Byrnes and W. Lin, “Losslessness, feedback equivalence, and the global stabilization of discrete -time nonlinear systems,”
IEEE Transactions on automatic control,1994.
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(Q,S,R) framework

The supply function connects dissipativity to various performance notions.

A popular choice of supply function is the class of quadratic ones of the form:

s(u )—“TQS Y Q. S, R) real tric matri
) = y sT R vl (Q, S, R) real symmetric matrices

With the (Q,S,R) framework we can consider the following performance notions:
. Finite £, gain
* Passivity
« Strictly output passivity
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Performance notions

= =

= Finite £, gain: characterizes the maximum amplification of input energy to
output energy. The supply rate is defined as:

s(u,y) = 2?(lull® = |lyI?
which corresponds to the (Q, S, R) matrices:
Q=7°l, S=0, R=-I.

or equivalently
Q=~I, S=0, R=—y""1

» stronger statement than stability; it bounds how much the output of a systems
can grow with respect to its input.
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Performance notions

= =

Passivity: specific case of dissipativity where the system does not generate
energy. The supply rate for passivity is:

S(U, y) = yTu’
which corresponds to the (Q, S, R) matrices:
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Performance notions

== —— e

Strictly Output Passivity: Strictly output passive systems are those that are
passive with an additional output-dependent dissipation term.
The supply rate is:

s(u,y) = e >0,
which corresponds to the (Q, S, R) matrices:
Q=0 _ ] I, R=—¢l
=0, =50 = —e€l.

or equivalently:
Q=0, S=1 R=—2¢l

In addition, output strict passivity implies an £, gain of v = 1/¢ because a
completion of squares argument gives

Y 1
u' y——y y < 2uTu——y y= fyv °lul® = |y[?).

Then the storage function 2y V/(:) yields the £,-gain supply rate 2|ul® — |y|?.
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Example mass-spring-damper system

Equation of motion mx + bx + kx = F

B et T

Totale energy of the system (kinetic and potential)

1 [dx\* 1
EtOt = Em <—) + ékxz

Rate of change of the total energy

By rewriting the terms and considering y = X and u = F, we obtain that the
system is strictly output passive

dE ot
dt

o[ 15 )[4

< uy — by?




EPFL Graphical interpretation

= For a memoryless system
y(t) = h(u(t))

we take the storage function to be zero and interpret dissipativity as the static
inequality
s(u, h(u)) > 0, YueR",

y=h(u)

SV
Sy

passivity output strict passivity finite gain
uh(u) > 0 uy —ey?>0 Y2Ur —y* >0

B NN4OC PhD school
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Slope restricted nonlinearities

= A function o(-) is said to have a slope restriction [0, ] if

7)oty _

0< S
X—=y

Vx,y e R, ~v>0.

Thus, we have
Auy > Ay

or equivalently in a quadratic form:

=y

Auly~y — Ay? >0

Leading to the following supply

Aul'To 1 ] [Au
S(Au, Ay) = [Ay] [/ —2e/] [Ay]'
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LMI to certify finite L2 gain

= Discrete-time linear time-invariant (LTI) system:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

= We aim to certify the L»-gain v > 0 of the system using:
« A quadratic storage function: V(x) = x ' Px, with P > 0,
* A quadratic supply rate: s(u(k), y(k)) = v2u(k) " u(k) — y (k)" y(k).
= LMI for certifying the £,-gain v (also known as Bounded Real Lemma):

ATPA-P ATPB CT
T
(ATPB) BTPB—~I DT|=0.
C D —~l

where P > 0 is the decision variable, and v > 0 is the L£,-gain.
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Dissipativity for feedback interconnections
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EPFL Stability for feedback interconnection

=

= Dissipativity theory provides a powerful framework for analyzing feedback sys-
tems by characterizing system behavior in terms of energy storage and dissi-
pation, enabling the derivation of stability analysis:

* Small gain theorem.
* Feedback theorem for passive systems.

D
N
A
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Small gain theorem

= Consider two systems with gains vy and ..

Gy

v

A

Gy

The small gain theorem ensures stability when the product of the £,-gains of
two interconnected systems is less than one.
The interconnected system is stable) if: vy, < 1.

> If the system has a finite £, gain, we can design a controller with a finite £,
gain such that vy, < 1.

[] Van der Schaft, A. (2000). L2-gain and passivity techniques in nonlinear control. Berlin, Heidelberg: Springer Berlin Heidelberg.



EPFL Passivity theorem

= Consider two systems G; and G, interconnected via negative feedback,
lL.e., Uy = — Yo, Uo = V.

Gy

v

A

Gy

If both systems are strictly passive, the passivity theorem tells us that inter-
connection is passive and stablel*,

> If the system is strictly passive it can be desirable to enforce strict passivity of the
controller.

[] Van der Schaft, A. (2000). L2-gain and passivity techniques in nonlinear control. Berlin, Heidelberg: Springer Berlin Heidelberg.

B NN4OC PhD school

[] Zakwan, M., & Ferrari-Trecate, G. (2024). Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization
Approach. arXiv preprint arXiv:2411.10096.
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Incremental dissipativity
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EPFL Incremental dissipativity

= Beyond Single Trajectories

Standard dissipativity focuses on energy or supply-rate behavior with respect to one
trajectory or equilibrium.
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EPFL Incremental dissipativity

= Beyond Single Trajectories

Standard dissipativity focuses on energy or supply-rate behavior with respect to one
trajectory or equilibrium.

= Comparisons of Solutions
Incremental dissipativity allows us to compare the system’s behavior across different

trajectories.
/
/ \
I

\__33'3

B NN4OC PhD school



EPFL Incremental dissipativity

= Beyond Single Trajectories
Standard dissipativity focuses on energy or supply-rate behavior with respect to one
trajectory or equilibrium.

= Comparisons of Solutions
Incremental dissipativity allows us to compare the system’s behavior across different
trajectories.

= Refined Stability & Performance
By analyzing how any pair of system trajectories relate energetically, we can derive
stronger statements about tracking performance, convergence to desired trajectories,
and robustness.
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Incremental dissipativity

Beyond Single Trajectories

Standard dissipativity focuses on energy or supply-rate behavior with respect to one
trajectory or equilibrium.

Comparisons of Solutions

Incremental dissipativity allows us to compare the system’s behavior across different
trajectories.

Refined Stability & Performance
By analyzing how any pair of system trajectories relate energetically, we can derive

stronger statements about tracking performance, convergence to desired trajectories,
and robustness.

Key for Nonlinear & Time-Varying Systems

Many advanced control problems (e.g., trajectory tracking, adaptive control) benefit
from incremental properties because they do not rely on a single operating condition.



EPFL Incremental dissipativity

= Beyond Single Trajectories
Standard dissipativity focuses on energy or supply-rate behavior with respect to one
trajectory or equilibrium.

= Comparisons of Solutions
Incremental dissipativity allows us to compare the system’s behavior across different
trajectories.

= Refined Stability & Performance
By analyzing how any pair of system trajectories relate energetically, we can derive
stronger statements about tracking performance, convergence to desired trajectories,
and robustness.

= Key for Nonlinear & Time-Varying Systems
Many advanced control problems (e.g., trajectory tracking, adaptive control) benefit
from incremental properties because they do not rely on a single operating condition.

= Same Tools, New Perspective
The underlying idea is similar to classical dissipativity—there is still a storage function
and a supply rate. But we extend them to capture differences between pairs of
trajectories rather than absolute values.

® NN4OC PhD school



EPFL Incremental dissipativity

Consider a discrete-time nonlinear system:

{X(k + 1) = f(x(k), u(k)), (1a)

Incremental Dissipativity!*!

System (1) is incrementally dissipative if there exists a storage function
V :R” x R” — R, such that for all time steps k and for any two trajec-
tories (x, u, y) and (X', U, y'):

V(x(k +1),x'(k +1)) = V(x(k), X'(K)) < s(u(k), u'(k), y(k), y'(K)),

where s(u, U, y, y’) is the incremental supply rate, quantifying energy
flow between different system trajectories.

" v

E NN4OC PhD school

[] P.J. Koelewijn and R. T oth, “Incremental stability and performance analysis of discrete-time nonlinear systems using the Ipv
framework,” IFAC-PapersOnLine, vol. 54, no. 8, pp. 75-82, 2021.



EPFL Relation to stability

Incremental Stability(*!

If a system is incrementally dissipative with a storage function V and the supply
function satisfies:

s(u,u,y,y') <0, VYu, Vy#y,

then the system exhibits incremental asymptotic stability, meaning that all trajectories
asymptotically converge toward one another.

Incremental dissipativity can be analyzed using a quadratic supply rate (Q, S, R) function:

s(u, U/ = u—uvl'TQ Slfu—-u
3 5_y5y - y_y/ ST R y_y/ .

For appropriate values of Q, S, R, this formulation covers notions such as incremental pas-
sivity and incremental L,-gain.

E NN4OC PhD school

[] P.J. Koelewijn and R. Toth, “Incremental stability and performance analysis of discrete-time nonlinear systems using the Ipv
framework,” IFAC-PapersOnLine, vol. 54, no. 8, pp. 75-82, 2021.
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Conclusions

= =S —— A O

Incremental stability is a stronger property than standard stability, because if all
trajectories converge to each other (the essence of incremental stability), then in
particular they converge to (and thus remain stable with respect to) any one
trajectory—such as an equilibrium.

:‘\562 /‘\L
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