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Gala Contemplating the Mediterranean Sea (detail). c© Salvador Dali, Gala-
Salvador Dali Foundation, DACS, London, 2003. Image supplied by Bridgeman
Art Gallery. One of the most important concepts presented in this book is that of
intermediate asymptotics. It is illustrated in chapter 2, Figure 2.3, by a tiled version
of the photograph of Abraham Lincoln on a $5 bill (Harmon 1973). The paper by
Harmon, and, in particular, this tiled picture inspired Salvador Dali to create in
1976 the painting presented here, where some tiles are themselves pictures: of
his wife Gala entering the sea, Harmon’s original tiled picture of Lincoln, and
others. This painting is in fact an excellent example of multiscale intermediate
asymptotics.
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Foreword

For the past seven years students and faculty at the University of Califor-
nia at Berkeley have had the privilege of attending lectures by Professor G.I.
Barenblatt on mechanics and related topics; the present book, which grew out
of some of these lectures, extends the privilege to a wider audience. Professor
Barenblatt explains here how to construct and understand self-similar solutions
of various physical problems, i.e. solutions whose structure recurs over differing
length or time scales and different parameter ranges. Such solutions are often
the key to understanding complex phenomena; there is no universal recipe for
finding them, but the tools that can be useful, including dimensional analysis
and nonlinear eigenvalue problems, are explained here with admirable concise-
ness and clarity, together with some of the multifarious uses of self-similarity
in intermediate asymptotics and their connection with wave propagation and
the renormalization group. Whenever possible, Professor Barenblatt shuns dry
and distant abstraction in favor of the telling example from his incomparable
stock of such examples; with the appearance of this book, there is no longer
any excuse for any scientist not to master these simple, elegant, crucial and
sometimes surprising ideas.

This book is also very timely. Dimensional analysis and simple similarity
arguments (what is called here complete similarity) are quite familiar to most
scientists, with the possible exception of many mathematicians, yet the deeper,
more beautiful and exceptionally useful idea of incomplete similarity, with
its extraordinary ramifications, is not yet part of everyone’s scientific culture.
Maybe part of the reason is the absence of a book that is both sound and
accessible. After all, the original papers by Barenblatt and Zeldovich and by
others were addressed to the expert; the previous books by Professor Barenblatt
are rich in theory and examples and therefore not always easy to read; the
very interesting book by Goldenfeld on the renormalization group, where the
connection with incomplete similarity is carefully explained, assumes a wider

ix



x Foreword

knowledge of modern theoretical physics than can be expected from experts in
other fields. If this were the only reason for ignorance then the current book
would solve the problem: it is accessible and direct and can be read with profit
even by undergraduates.

I suspect however that the difficulty in assimilating the notion of incom-
plete similarity had deeper sources as well: here is a simple mathematical pro-
cedure which makes it possible to contemplate, and indeed often rationally
analyze, the disquieting possibility that small parameters may have persistent
large-scale effects, not confined to the margins of a physical domain as in most
textbook examples of singular perturbations, and not safely relegated to the ex-
otic realm of phase transitions and critical phenomena, but observable in simple
physical situations. It is natural to resist ideas which fly in the face of comfort-
able habits of thought, but this would be a big mistake: the possibility is real,
and its understanding requires full attention because it is important. Indeed,
the major pedagogical outcome of the example involving turbulent boundary
layers in Chapter 8 is to show how admitting the possibility of incomplete sim-
ilarity can lead to conclusions that are innovative, striking and subversive of
long-accepted beliefs.

The importance of this range of ideas is now growing fast. We are at the
beginning of the age of multiscale science and multiscale computation, with a
growing need to understand not only phenomena on each of many scales but also
the interaction between phenomena at very different scales; such interactions
abound in fields such as materials science and biology and by definition occur
when the impact of the parameters that describe small scales propagates across
the full range of scales in a problem. Incomplete similarity is the basic paradigm
of how such an impact propagates and is a major tool in the analysis and
understanding of new classes of problems and in the emerging art of solving
them on a computer.

What we have before us is a clear, masterful and uniquely timely book by one
of the great applied mathematicians, who brings us his own great knowledge and
experience of a key topic and, furthermore, some of the accumulated experience
of the great Soviet school of applied mathematics in which he grew up and of
which he is the most distinguished living embodiment.

Alexandre Chorin
University Professor
University of California



Preface

Applied mathematics is the art of constructing mathematical models of phenom-
ena in nature, engineering and society. In constructing models it is impossible
to take into account all the factors which influence the phenomenon; there-
fore some of the factors should be neglected, and only those factors which
are of crucial importance should be left. So we say that every model is based
on a certain idealization of the phenomenon. In constructing the idealizations
the phenomena under study should be considered at ‘intermediate’ times and
distances (think of the impressionists!). These distances and times should be
sufficiently large for details and features which are of secondary importance to
the phenomenon to disappear. At the same time they should be sufficiently small
to reveal features of the phenomena which are of basic value. We say therefore
that every mathematical model is based on ‘intermediate asymptotics’.1

The construction of an appropriate idealization is the most difficult stage in
mathematical modelling. It is always performed in steps. Trial and error, and
comparison with experiments, physical or computational, play a basic role. The
reader can find a truly remarkable and very exact description of this process in
Maurice Maeterlinck’s Blue Bird – it was not by accident that this play won
Maeterlinck a Nobel Prize.

Mathematics is considered to be the language of science, because its role
in constructing mathematical models is similar to that of language in human
communications. All people use language. However, among users of language
a particularly important group can be distinguished. These are the authors:

1 The writing of War and Peace by Lev Tolstoy is a remarkable example of such an intermediate
vision. The novel was extemely successful from the very beginning because lesser details of the
Napoleonic war had decayed in people’s memories whereas gigantic historic events and their
influence on human destinies appeared unshadowed both by small details in the past and
current events in the life of society. I am afraid that the literature has missed such an
opportunity for the ‘Thirty Years War’, 1914–1945.

xi



xii Preface

poets, novelists, playwrights, essayists etc., who create fictional images and
paradigms – idealized models of people and social phenomena around them.
The greatest of these paradigms continue to live for centuries and even millenia.
They transform human culture and, sometimes, language itself.

To a certain extent a similar role is played by applied mathematicians. Using
the language of mathematics, developing and transforming it when necessary,2

applied mathematicians create their paradigms – models of phenomena. These
idealized models should be sufficiently complete images of phenomena, and
at the same time they should enable further mathematical study – analytic
and experimental, computational and physical. The right to existence of these
models is determined by one thing only: they have to work, i.e. they must predict
the behavior of the systems under study in interesting but as yet unexplored
ranges of external conditions. When this goal is achieved, it leads to practical
applications.

Of special importance is the following fact: the construction of models, like
any genuine art, cannot be taught by reading books and/or journal articles. the
reason is that in articles and especially in books the ‘scaffolding’ is removed,
and the presentation of results is shown not in the way that they were actually
obtained but in a different, perhaps more elegant way. Therefore it is very
difficult, if not impossible, to understand the real ‘strings’ of the work: how
the author really came to certain results and how to learn to obtain results on
your own.

Therefore, just like in every art an appropriate way to become an applied
mathematician is to become part of a good school, i.e. to work for some time
in a team under the guidance of a genuine master. Knowledge, experience
and inspiration come from constant discussions on scientific and non-scientific
matters, not only with the master gender but also with colleagues and other
members of the team. Conversations about music, literature, visual art etc. are
as important in the process of education as are scientific debates. To be part of a
school means to live in a unique environment where an intensive flow of ideas
is customary. The present author was fortunate to belong to the school of A.N.
Kolmogorov, and to work closely for a long time with Ya.B. Zeldovich, after
being taught and strongly influenced by his first teacher, the eminent analyst
B.M. Levitan. I want to mention here also a remarkable physicist and teacher of
physics, A.S. Kompaneets. I owe him so much for my understanding of physics.
My gratitude to these outstanding people is immense.

2 I emphasize when necessary. To reproach applied mathematicians for using well-known tool of
analysis to construct models is ridiculous: it is the same as reproaching Rafael for not inventing
new brushes and paints. Leonardo did, and without any improvement to his paintings this made
great trouble for future restorers.
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As with every art, constructing intermediate asymptotics and models has
many practical devices and tricks. They should be assimilated. Moreover, they
should enter the conscience and subconscience of a researcher who has decided
to become an applied mathematician. One of them is the ability to extract from
available evidence scaling laws. One may ask, why is it that scaling laws are
of such distinguished importance? The answer is that scaling laws never ap-
pear by accident. They always manifest a property of a phenomenon of basic
importance, ‘self-similar’ intermediate asymptotic behavior: the phenomenon,
so to speak, repeats itself on changing scales. This behavior should be discov-
ered, if it exists, and its absence should also be recognized. The discovery of
scaling laws very often allows an increase, sometimes even a drastic change,
in the understanding of not only a single phenomenon but a wide branch of
science. The history of science of the last two centuries knows many such
examples.

It is this subject that the present book is about. In writing this book I have
followed the rule which I learned from my great mentor: never start teach-
ing or research in a new field of applied mathematics from general concepts,
statements, theories and theorems. Consider some instructive examples and the
general theory will come and be cast naturally.

In Berkeley I delivered a course of 30 double lectures which closely follows
the present book. I expect that this book can be considered as a textbook for
graduate and advanced undergraduate courses. Some parts can also be used
in courses such as the strength of materials, the theory of elasticity, fracture,
electrodynamics, heat and mass transfer, fluid mechanics, the flow of non-
Newtonian fluids and many others. However, if the course is to be taken as
a whole then my recommendation is to consider the first six-and-a-half chap-
ters (up to the biological example) as mandatory. It will take approximately
three-quarters of a semester. The remaining time can be used for the detailed
presentation of a particular topic appropriate for the audience. I myself have
selected turbulence. To many people the subject presented in the chapter on tur-
bulence, based on our joint work with A.J. Chorin and V.M. Prostokishin, may
seem rather controversial, although not to me. This example gives a unique
possibility of presenting together general pricincples and the use of freshly
obtained large experimental databases.

I have previously written several books about the subject presented here.
(I remember with deep gratitude the publisher from ‘Gidrometeoizdat’, Mrs
O.V. Vlasova, Mrs T.G. Nedoshivina, and Mrs L.L. Belen’kaya. They pub-
lished my first book in Russian in spite of the serious risk of losing their jobs.)
Naturally, some material from my earlier books will find its place in the present
book too, particularly material regarding dimensional analysis and physical



xiv Preface

similarity, in only slightly modified form. However, the central part of this
book is entirely new: in particular I have replaced some complicated and difficult
basic examples with simpler ones.

I want to express my thanks to Cambridge University Press (Dr D. Tranah
and Dr A. Harvey). In fact, the very idea that I should write such an ‘intermedi-
ate’ book matching my inaugural lecture (Barenblatt 1994) and the large book
(Barenblatt 1996) belongs with these gentlemen.

I want to express my gratitude to Professor V.M. Prostokishin, who attended
all my lectures and gave me important advice both about the lectures and the
present book. I am grateful to Professor L.C. Evans and Professor M. Brenner for
reading the manuscript and for valuable comments. I want to thank Professors
S. Kamin, R. Dal Passo, M. Bertsch, N. Goldenfeld, D.D. Joseph, L.A. Peletier,
G.I. Sivashinsky and J.L. Vazquez for the stimulating and friendly exchange
of thoughts concerning the subjects presented in this book over many years. I
thank Mrs Deborah Craig for processing the manuscript.

To my friend Alexandre Chorin I want to express special thanks for our
remarkable time in Berkeley. I have learned from him a lot, in particular his
basic paradigm of computational science: this is a different, independent and
very productive way of mathematical modelling. I hope to be able to use this
knowledge in my future work.



Introduction

The term scaling describes a seemingly very simple situation: the existence of
a power-law relationship between certain variables y and x ,

y = Axα, (0.1)

where A, α are constants. Such relations often appear in the mathematical mod-
elling of various phenomena, not only in physics but also in biology, economics,
and engineering. However, scaling laws are not merely some particularly sim-
ple cases of more general relations. They are of special and exceptional im-
portance; scaling never appears by accident. Scaling laws always reveal an
important property of the phenomenon under consideration: its self-similarity.
The word ‘self-similar’ means that a phenomenon reproduces itself on different
time and/or space scales – I will explain this later in detail.

I begin with one of the most illuminating examples of the discovery of scaling
laws and self-similar phenomena: G.I. Taylor’s analysis of the basic interme-
diate stage of a nuclear explosion. At this stage a very intense shock wave
propagates in the atmosphere and the gas motion inside the shock wave can be
considered as adiabatic.

This work started in one of the worst and most alarming days of the
Battle of Britain, in the early autumn of 1940. Cambridge professor Geoffrey
Ingram Taylor was invited to a business lunch at the Athenaeum by Professor
George Thomson, chairman of the recently appointed maud committee (the
name ‘maud’ originally appeared by chance, but later it was interpreted as the
acronym for ‘military application of uranium detonation’). G.I. Taylor was told
that it might be possible to produce a bomb in which a very large amount of en-
ergy would be released by nuclear fission – the name ‘atomic bomb’ had not yet
been used. The question was: what mechanical effect might be expected if such
an explosion were to occur? The answer would be of crucial importance for the
further development of events. Shortly before this conversation the confidential

1
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Air in motion
rf

Quiescent
air

Shock-wave front

Figure 0.1. A very intense shock wave propagating in quiescent air.

Figure 0.2. Photograph of the fireball of the atomic explosion in New Mexico at
t = 15 ms, confirming in general the spherical symmetry of the gas motion (Taylor
1950b, 1963).

report of G.B. Kistyakovsky, the well-known American expert in explosives,
had been received. Kistyakovsky claimed that even if the bomb were success-
fully constructed and exploded, its mechanical effect would be much less than
expected because the main part of the released energy would be lost to radiation.
As R.W. Clark wrote in his instructive book (Clark 1961), in the whole of Britain
there was only one man able to solve this problem – Professor G.I. Taylor.

To answer this question, G.I. Taylor had to understand and calculate the
motion of the ambient gas after such an explosion. It was clear to him that, after
a very short initial period (related as we now know to thermal-wave propagation
in quiescent air), a very intense shock wave would appear (Figure 0.1). The
motion was assumed to be spherically symmetric, that is, identical for all radii
going out from the explosion centre. (This simplifying assumption later received
excellent confirmation in the first atomic test; see Figure 0.2.) For constructing
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a complete mathematical model the following partial differential equations of
motion inside the shock wave had to be considered:

1. the equation for the conservation of mass;
2. the equation for the conservation of momentum;
3. the equation for the conservation of energy.

It was intuitively clear to G.I. Taylor that at this early stage in the explosion
viscous effects could be neglected and the gas motion could be considered
as adiabatic. The above equations of motion had to be supplemented by the
following boundary conditions at the shock-wave front:

1. the condition for the conservation of mass;
2. the condition for the conservation of momentum;
3. the condition for the conservation of energy.

Also, the initial conditions, at the beginning of the very intense shock-wave-
propagation stage of a nuclear explosion, had to be prescribed.

In fact, this primary mathematical model is so complicated that even now
nobody is able to treat it analytically. Adequate computing facilities at that
time were non-existent. Moreover, the problem formulation outlined above is
incomplete, because nobody knew then or knows now how the air density, air
pressure and air velocity are distributed inside the initial shock wave at the
time when the shock wave just outstrips the thermal wave and the adiabatic gas
motion begins.

G.I. Taylor, however, was astute. His ability to deal with seemingly unsolv-
able problems, by apparently minor adjustment converting them to problems
admitting simple and effective mathematics, was remarkable. And here also
he took several steps, of crucial importance, which allowed him to obtain the
solution that was needed in a simple and effective form. In addition his formu-
lation allowed him to overcome the lack of detailed knowledge of the initial
distribution of the gas density, pressure and velocity. G.I. Taylor’s steps were
as follows:

1. He replaced the problem by an ‘ideal’ one. As he wrote (see Taylor 1941,
1950a, 1963), this ideal problem is the following: ‘A finite amount of
energy is suddenly released in an infinitely concentrated form.’ This means
that r0, the initial radius of the shock wave (the radius at which the shock
wave outstrips the thermal wave), is taken as equal to zero, that is, the
explosion is considered as instantaneous and coming from a point source
of energy. It is clear that neglecting the initial radius of the shock wave r0 is
allowable (if at all!) only when the motion is considered at a stage when
the shock front radius rf is much larger than r0. If the initial shock-wave
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radius is taken as equal zero then the initial distributions of the air density,
pressure and velocity inside the initial shock wave disappear from the
problem statement: a great simplification.

2. At the same time, he restricted himself to consideration of the motion at the
stage when the maximum pressure of the moving gas, reached at the
shock-wave front, is large, much larger than the pressure p0 in the ambient
air; this allowed him to neglect the terms involving the initial pressure p0

in the boundary conditions at the shock-wave front and in the initial
conditions. Note that, namely, this stage determines the mechanical effect
of the explosion.

The first question G.I. Taylor addressed was: what are the quantities on which
the shock-wave radius rf depends? In the original ‘non-ideal’ problem they are
obviously:

1. E , the total explosion energy, concentrated in the sphere of radius r0 where
the shock wave outstrips the thermal wave (according to the second
assumption above the initial internal energy of the ambient quiescent air is
negligible);

2. ρ0, the initial density of the ambient air;
3. t , the time reckoned from the moment of explosion;
4. r0, the initial radius of the shock wave;
5. p0, the pressure of the ambient quiescent air;
6. γ , the adiabatic index.

The units for measuring these quantities in the c.g.s. system of units are

[E] = g cm2

s2
, [ρ0] = g

cm3
, [t] = s, [r0] = cm, [p0] = g

cm s2
; (0.2)

γ is a dimensionless number. We shall see later how important it was that G.I.
Taylor neglected the last two quantities r0 and p0, thus replacing the problem
by an ideal one.

The reader may ask a natural question: in the real explosion r0 and p0 are
certain positive numbers which definitely influence the whole gas motion from
the very beginning to the end. How can their values be taken to be equal to
zero?

In fact (and this comment will be important in our future analysis), the real
content of Taylor’s assumption was that at the intermediate stage under con-
sideration, where the mechanical effect occurs, the motion remains the same
if we replace r0 by λr0, and p0 by µp0. Here λ and µ are arbitrary positive
numbers ‘of order unity’. This will be explained in detail in Chapter 5, but
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those who are familiar with the idea of a transformation group even vaguely,
will recognize that in fact this was an assumption of group invariance at the
all-important intermediate stage.

Taylor’s next step can be represented in the following way. He introduced
the quantity

R =
(

Et2

ρ0

)1/5

, (0.3)

which is measured according to (0.2) in units of length. Then, if we replace
centimeters, cm, by another unit of length, m, mm, µm, km, . . . , or in general by
cm divided by an arbitrary positive number L , the value of R will be magnified
by L , as will also the value of rf, whereas the quantity

I = rf

R
(0.4)

obviously will remain unchanged.
The quantity I depends in principle on the same quantities as rf, and this

dependence can be represented, neglecting r0 and p0, as

I = rf

R
= F(R, ρ0, t, γ ) (0.5)

where F is a certain function which is not known. The arguments r0 and p0

were neglected by Taylor: this was, as we will see, a step of crucial importance.
The argument γ is an numerical constant.

The first three arguments of F have independent dimensions. This means,
in particular, that time t is measured in time units, i.e., seconds or otherwise
s/T where T is an arbitrary positive number. Units of time are absent in the
dimensions of the first two arguments; therefore, by varying the number T we
can vary the numerical value of the argument t while leaving the values of I
and those two other arguments of I invariant (all three others, in fact, since γ

is a fixed number). But this means exactly that I cannot depend on t . Similarly
with ρ0: if we vary the unit of mass then the value of ρ0 will vary arbitrarily,
leaving I and the first argument R invariant. That means that I likewise does not
depend on ρ0. Furthermore, I does not depend on the argument R: by varying
the unit of length we vary R, but the value of I remains invariant. Thus, the
function F is simply a constant depending on the value of γ , and so Taylor’s
famous scaling law for the radius of the shock wave was obtained:

rf = C(γ )

(
Et2

ρ0

)1/5

, (0.6)
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Figure 0.3. Logarithmic plot of the fireball radius, showing that r5/2
f is proportional

to the time t (Taylor 1950b, 1963).

or, in the logarithmic form that he used,

5

2
log10 rf = 5

2
log10 C + 1

2
log10

(
E

ρ0

)
+ log10 t. (0.7)

Later, Taylor’s processing of the photographs taken by J.E. Mack of the first
atomic explosion in New Mexico in July 1945 (Taylor 1950b, 1963) confirmed
this scaling law (Figures 0.2 and 0.3) – a well-deserved triumph of Taylor’s
intuition. We can see how important it was to neglect the arguments r0 and p0,
the initial radius of the shock wave and the initial pressure. If not, additional
variable arguments would have appeared in the function F and we would have
returned to the hopeless mathematical model that we faced at the outset. But the
outcome for the simplified situation was different. Taylor was able to obtain in
the same way scaling laws for the pressure, velocity and density immediately
behind the shock-wave front:

pf = C p(γ )

(
E2ρ3

0

t6

)1/5

, ρf = Cρ(γ )ρ0, uf = Cu(γ )

(
E

t3ρ0

)1/5

.

(0.8)
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Inside the shock wave an additional argument, the distance r from the center
of the explosion, appears, so that the relationships for the pressure, density and
velocity inside the shock wave can be represented in the form

p = pf P

(
r

rf
, γ

)
, ρ = ρf R

(
r

rf
, γ

)
, u = ufV

(
r

rf
, γ

)
. (0.9)

The structure of the relationships (0.9) obtained by Taylor is instructive. It
demonstrates that the phenomenon has the important property of self-similarity.
This means that the spatial distribution of pressure (and other quantities) varies
with time while remaining always geometrically similar to itself (Figure 0.4(a)):
the distribution at any time can be obtained from that at a different time by a
simple similarity transformation. Therefore in ‘reduced’ coordinates using pf,
ρf, uf and rf as corresponding scales,

p

pf
,

ρ

ρf
,

u

uf
, and

r

rf
,

the spatial distributions of pressure, density and velocity remain invariant in
time (Figure 0.4(b)). The property of self-similarity greatly simplifies the in-
vestigation: instead of the two independent variables r and t in the system of
differential equations, boundary conditions and initial conditions mentioned
above, Taylor obtained one single variable argument, r/rf, in his solution and
so was able to reduce the original problem, which required the solution of partial
differential equations to the solution of a set of ordinary differential equations.
The method of solution was sufficiently simple that he himself was able to
make all the necessary numerical computations using a primitive calculator. In
particular, he showed that the constant C in the scaling law (0.6) is close to
unity: for γ = 1.4, C = 1.033.

G.I. Taylor submitted his paper on Friday 27 June 1941. The great American
mathematician J. von Neumann, who was also involved in the atomic prob-
lem and asked the same question independently, submitted a paper three days
later, on Monday 30 June 1941 (von Neumann 1941; see also von Neumann
1963). His solution complemented Taylor’s solution – he noticed an energy
integral for the set of ordinary differential equations and was able to obtain
the solution in closed form. Later, the solution of this problem was published
in the Soviet Union by L.I. Sedov (Sedov 1946, 1959), who also found the
energy integral, and by other authors, R. Latter (1955) and J. Lockwood Taylor
(1955).

We have seen that in obtaining the scaling law (0.6) and achieving the prop-
erty of self-similarity an important role was played by dimensional analysis:
the construction of dimensionless quantities from the arguments of the function
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Figure 0.4. (a) Air pressure as a function of radius at various instants of time for the
motion of air following an atomic explosion. The pressure distributions at various
times are similar to one another. (b) Spatial distributions of the gas pressure, density
and velocity in the reduced ‘self-similar’ coordinates ρ/ρf, p/pf, u/uf and r/rf

do not depend on time.
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F with subsequent reduction in the number of arguments. The idea on which
dimensional analysis is based is fundamental, but very simple: physical laws
cannot depend on an arbitrary choice of basic units of measurement. The formal
recipe for using dimensional analysis is very simple also. The main art, how-
ever, is not in using this simple tool but in finding, as G.I. Taylor did, the proper
formulation or idealization of the problem in hand – an instantaneous concen-
trated very intense explosion in his case – that allows effective use of this tool.
Here the key point is the concept of intermediate asymptotics: consideration of
the phenomenon in intermediate time and space intervals.

It is important, however, to note that dimensional analysis is not always
sufficient for obtaining self-similar solutions and scaling laws. Moreover, it can
be claimed that as a rule it is not so and that the Taylor–von Neumann solution
to the explosion problem was in fact a rare and lucky exception.

Here an instructive role is played by the paper by K.G. Guderley (1942)
where, in a certain sense, the mirror image of the problem of a very intense
explosion was considered. The formulation of this implosion problem is as
follows.1 On the wall of a spherical cavity of radius r0 in an absolutely rigid
vessel filled by gas of density ρ0 (Figure 0.5) there is a uniform thin layer
of a strong explosive. The latter is exploded instantaneously and uniformly
over the wall and a strong spherical shock wave is formed. The shock wave
converges to the center of the cavity. It is very intense, as in the case of a very
intense explosion, so that the pressure behind the wave is much larger than the
initial gas pressure p0, which, as in the case of a very intense explosion, can
be neglected. The shock wave comes to a focus at the center of the cavity at a
time which we take as t = 0, so that the time before focusing will be negative,
t < 0. Similarly to the case of an intense explosion, dimensional analysis gives
for the radius of the shock wave

rf = [E(−t)2/ρ0]1/5�(η, γ ), η = r0

[E(−t)2/ρ0]1/5
(0.10)

where as before E is the energy of the explosion and γ is the adiabatic index.
Seemingly the application of reasoning analogous to that for the case of an

intense explosion would suggest that the argument η goes to infinity at t → 0
and therefore can be neglected close to the focus, so that a formula analogous
to (0.6) could be obtained:

rf = C(γ )

[
E(−t)2

ρ0

]1/5

(0.11)

1 A detailed discussion of the Guderley problem can also be found in the books by Zeldovich and
Raizer (1967) and Landau and Lifshitz (1987).



10 Introduction

r0

Figure 0.5. A very intense implosion in a spherical cavity. The explosive is placed
on the wall of the cavity. The black dot shows the shock front as it comes to a
focus at the centre of the cavity at t = 0.

In fact, this is not the case, for the following reason. In the case of implosion
the function �(η, γ ) at η → ∞ does not tend to a finite non-zero limit as
was the case for an explosion! However, it happens that at η → ∞ the function
�(η, γ ) has a power-law-type behavior, �(η, γ )∼C(γ )η−β where β = β(γ ) =
const > 0, so that at t → 0, that is, close to the focus, the expression for the
radius of the shock wave assumes the form

rf = C(γ )r−β

0

[
E(−t)2

ρ0

]α/2

= A(−t)α,

α = 2

5
(1 + β), A = C(γ )r−β

0

(
E

ρ0

)α/2

. (0.12)

It is important to note that the exponent α cannot be obtained by dimensional
analysis, as it was in the case of an intense explosion, but requires a more
complicated technique, the solution of a nonlinear eigenvalue problem.
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The Guderley (1942) solution as well as the solution to the ‘impulsive load’
problem which is in fact a one-dimensional analog of the implosion problem,
obtained by von Weizsächer (1954) and Zeldovich (1956), introduced a new
class of self-similar phenomena: incomplete similarity and self-similar solu-
tions of the second kind. These problems are closely related to the concept of
the renormalization group, well known in theoretical physics.

In what follows we will present in detail the ideas of dimensional analysis,
physical similarity, self-similarity, intermediate asymptotics and the renormal-
ization group. Our goal is to demonstrate in detail the many possibilities for
application of these ideas and also the difficulties which can occur – throughout
using many examples. Most of the examples in the present book are related
to fluid dynamics: my experience shows that the elements of fluid mechanics
are familiar to engineers, mathematicians and physicists. Those who are more
interested in elasticity, fracture, fatigue or geophysical fluid dynamics can find
additional examples in my book Barenblatt (1996). The examples (‘Problems’)
considered in the present book should be considered as an essential part of the
whole text.



Chapter 1

Dimensional analysis and physical similarity

1.1 Dimensions

1.1.1 Measurement of physical quantities, units
of measurement. Systems of units

We say without any particular thought that the mass of water in a glass is
200 grams, the length of a ruler is 0.30 meters (12 inches), the half-life of
radium is 1600 years, the speed of a car is 60 miles per hour. In general, we
express all physical quantities in terms of numbers; these numbers are obtained
by measuring the physical quantities. Measurement is the direct or indirect
comparison of a certain quantity with an appropriate standard, or, to put it
another way, with an appropriate unit of measurement. Thus, in the examples
discussed above, the mass of water is compared with a standard – a unit of
mass, the gram; the length of the ruler is compared with a unit of length, the
meter; the half-lifetime of radium is compared with a unit of time, the year;
and the velocity of the car is compared with a unit of velocity, the velocity of
uniform motion in which a distance of one mile is traversed in a time equal to
one hour.

The units for measuring physical quantities are divided into two categories:
fundamental units and derived units. This means the following.

A class of phenomena (for example, mechanics, i.e. the motion and equi-
librium of bodies) is singled out for study. Certain quantities are listed, and
standard reference values – either natural or artificial – for these quantities are
adopted as fundamental units; there is a certain amount of arbitrariness here.
For example, when describing mechanical phenomena we may adopt mass,
length and time standards as the fundamental units, though it is also possible
to adopt other sets, such as force, length and time. However, these standards
are insufficient for the description of, for example, heat transfer, and so the unit
of temperature, the kelvin, is introduced. Additional standards also become

12
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necessary when studying electromagnetic phenomena, Luminous phenomena
or, indeed, subject areas quite outside the scope of physical science, such as
economics.1

Once the fundamental units have been decided upon, derived units are ob-
tained from the fundamental units using the definitions of the physical quanti-
ties involved. These definitions always involve describing at least a conceptual
method for measuring the physical quantity in question. For example, velocity
is by definition the ratio of the distance traversed during some interval of time
to the size of that time interval. Therefore, the velocity of uniform motion in
which one unit of length is traversed in one unit of time can be adopted as a unit
of velocity. In exactly the same way, density is by definition the ratio of some
mass to the volume occupied by that mass. Thus, the density of a homogeneous
body that contains one unit of mass per unit of volume – a cube with a side equal
to one unit of length – can be adopted as a unit of density, and so on. We see that
it is precisely the class of phenomena under discussion, i.e., the complete set
of physical quantities in which we are interested, which ultimately determines
whether a given set of fundamental units is sufficient for its measurement. For
example, it is impossible to define a unit for the measurement of density using
only the fundamental units of length and time. It becomes possible to define
such a unit by adding a unit of mass.

A set of fundamental units that is sufficient for measuring the properties of
the class of phenomena under consideration is called a system of units. Until
recently, the cgs (centimeter–gram–second) system, in which units for mass,
length and time are used as the basic units and one gram2 (g) is adopted as the
unit of mass, one centimeter3 (cm) as the unit of length and one second4 (s) as
the unit of time, has customarily been used.

The unit of velocity in this system is the velocity of uniform motion in which
a distance of one centimeter is traversed in one second. This unit is written in
the following way: cm/s. The unit of density in the cgs system is the density
of a homogeneous body in which one cubic centimeter contains a mass of one

1 Recently the analysis of economic and, especially, financial phenomena using the traditional
approaches of applied mathematics has attracted serious attention. For such applications the
correct definition and measurement of the quantities involved is of prime importance.

2 The gram is one-thousandth of the mass of a specially fabricated standard mass, which is
carefully preserved at the Bureau of Weights and Measures in Paris.

3 The centimeter is one-hundredth of the length of a specially fabricated, carefully preserved
standard length – the meter. There is another, more precise and universal definition of this
standard based on a natural process: 1650 736.73 wavelengths in vacuo of the radiation
corresponding to the transition between the 2p10 and 5d5 levels of the krypton-86 atom.

4 The second is, by definition, 1/86 400 of a mean solar day. A more precise and universal
definition of the second is 9192 621 770 periods of the radiation corresponding to the transition
between two hyperfine levels in the ground state of the caesium-133 atom.
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gram. This unit is written in the following way: g/cm3. This method of writing
units is, to a certain extent, a matter of convention: for example, the ratio cm/s
cannot be thought of as a quotient of the length standard – the centimeter – and
the time standard – the second. Such a quotient would be totally meaningless:
one may divide one number by another, but not an interval of length by an
interval of time!

A system of units consisting of two units (a unit for the measurement of
length and a unit for the measurement of time, for example the centimeter
and the second) is sufficient for measuring the properties of kinematic phe-
nomena, while a system of units consisting of only one length unit (for ex-
ample the centimeter) is sufficient for measuring the properties of geometric
objects.

However, in order to be able to measure the properties of heat transfer, the
system of units for the measurement of mechanical quantities must be supple-
mented by an independent standard (the degree Kelvin (kelvin), a temperature
standard, is convenient for this purpose). We would require an additional stan-
dard, for example a unit of electric current (the ampere) in order to be able to
measure electromagnetic phenomena and so forth.

However, a system of units need not be minimal, i.e. redundancy in its units
need not be avoided. For example, one can use a system of units in which
the unit of length is 1 cm, the unit of time is 1 s and the unit of velocity is
1 knot (approximately 50 cm/s). However, in this case, the velocity will not be
numerically equal to the ratio of the distance traversed to the magnitude of the
time interval in which the distance is traversed. We shall discuss this important
point in greater detail below.

1.1.2 Classes of systems of units

Let us now consider, in addition to the cgs system, a second system, in which
one kilometer (= 105 cm) is used as the unit of length, one metric ton (= 106 g)
is used as the unit of mass and one hour (= 3600 s) is used as the unit of
time. These two systems of units have the following property in common:
standard quantities of the same physical nature (mass, length and time) are
used as the fundamental units. Consequently, we say that these systems belong
to the same class. To generalize, a set of systems of units that differ only in the
magnitudes (but not in the physical nature) of the fundamental units is called
a class of systems of units. The system just mentioned and the cgs system are
members of the class in which standard lengths, masses and times are used as
the fundamental units. If we choose to regard the cgs system as the original
system in this class then the corresponding units for an arbitrary system in this
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class are as follows:

unit of length = cm/L ,

unit of mass = g/M, (1.1)

unit of time = s/T,

where L , M and T are positive numbers that indicate the factors by which
the fundamental units of length, mass and time decrease in passing from the
original system (in this case, the cgs system) to another system in the same
class. This class is called the LMT class.5 The SI system has recently come into
widespread use. This system, in which one meter (= 100 cm) is adopted as the
unit of length, one kilogram (= 1000 g) as the unit of mass and one second as
the unit of time, also belongs to the LMT class. Thus, when passing from the
original system to the SI system, M = 0.001, L = 0.01 and T = 1.

Systems in the LFT class, where units for length, force and time are chosen
as the fundamental units, are also frequently used. Using as original units 1 cm,
1 kgf and 1 s, the fundamental units for an arbitrary system in this class are as
follows:

unit of length = cm/L ,

unit of force = kgf/F, (1.2)

unit of time = s/T .

The unit of force in the original system, the kilogram-force (kgf), is the force
that imparts an acceleration of 9.80665 m/s2 to a mass equal to that of the
standard kilogram.

We emphasize that a change in the magnitudes of the fundamental units in
the original system of units does not change the class of systems of units. For
example, a class in which the units of length, mass and time are given by

m

L
,

kg

M
,

hr

T

is the same as that defined in (1.1), LMT. The only difference is that the numbers
L , M and T for a certain system of units (for example, the SI system) will be
different for the two members, or representations, of the LMT class: in the
second representation, we obviously have L = 1, M = 1 and T = 3600.

5 The designation of a class of systems of units is obtained by writing down, in consecutive order,
the symbols for the quantities whose units are adopted as the fundamental units. Such a symbol
simultaneously denotes the factor by which the corresponding fundamental unit decreases upon
passage from the original system to another system in the same class. The reader should be
careful to distinguish between these two, closely related, meanings of L , M, T etc.
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1.1.3 Dimension of a physical quantity

If the unit of length is decreased by a factor L and the unit of time is decreased
by a factor T then the new unit of velocity is a factor LT−1 times smaller than
the original unit, so that the numerical values of all velocities are increased
by a factor LT−1. Similarly, upon decreasing the unit of mass by a factor M
and the unit of length by a factor L we find that the new unit of density is
a factor L−3 M smaller than the original unit, so that the numerical values of
all densities are increased by a factor L−3 M . Other quantities may be treated
similarly. The change in the numerical value of a physical quantity upon passage
from one system of units to an arbitrary system within the same class is deter-
mined by its dimension. The function that determines the factor by which the
numerical value of a physical quantity changes upon passage from the origi-
nal system of units to an arbitrary system within a given class is called the
dimension function, or dimension,6 of that quantity. It is customary, following
a suggestion of J.C. Maxwell, to denote the dimension of a quantity φ by [φ].
We emphasize that the dimension function of a given physical quantity is de-
termined for a specified class and is different in different classes of systems
of units. For example, the dimension function of density ρ in the LMT class is
[ρ] = L−3 M ; in the LFT class it is [ρ] = L−4FT2.

Quantities whose numerical values are identical in all systems of units within
a given class are called dimensionless; clearly, the dimension function is equal to
unity for a dimensionless quantity. All other quantities are called dimensional.

We shall now cite a few additional examples. If (in the LMT class) the unit
of length is decreased by a factor L , the unit of mass is decreased by a factor
M and the unit of time is decreased by a factor T then the numerical values
of all forces are increased by a factor LMT−2. Indeed, according to Newton’s
second law, the nett force f on a mass m is the product of the mass and its
acceleration a:

f = ma.

For the decreases in the fundamental units mentioned at the start of this sub-
section, the numerical values of all masses are increased by a factor M and the
numerical values of all accelerations are increased by a factor LT−2. Now, the
dimensions of both sides of any equation with physical sense must be identical:
otherwise, an equality in one system of units would not be an equality in another

6 Our use of the singular should be noted.
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system, and this is not permissible for equations with physical sense.7 Thus, we
find that the dimension of force in the LMT class is

[ f ] = [m][a] = LMT−2. (1.3)

Analogously, the dimension of mass in the LMT class is M , while it is [m] =
L−1FT2 in the LFT class; the dimension of energy, [e], is L2MT−2 in the
LMT class and LF in the LFT class. In the LMT class, the ratio of velocity and
distance divided by time is dimensionless. However, if we use the LMTV class,
in which the unit of velocity (knot/V ) is independent, this ratio has a dimension
different from unity, L−1TV. For instance, for a vessel travelling at 20 knots the
ratio is equal to 20 if the unit of length is one nautical mile (∼ 1850 meters)
and equal to 37 if the unit of length is one kilometer, whereas the units of time
and velocity, one hour and one knot respectively, are the same in each system.

Dimension functions possess two important properties, which we shall now
discuss.

1.1.4 The dimension function is always a power-law monomial

We have seen that the dimension function is a power-law monomial in all
the cases discussed above. This brings up the following question: are there
physical quantities for which this is not so, and for which the dimensions in
the LMT class are given, for example, by dimension functions of the form
L + M2, eL M or sin M log T ? In fact, there are no such physical quantities,
and the dimension function for any physical quantity is always a power-law
monomial. This follows from a simple, naturally formulated (but actually very
deep) physical principle: all systems within a given class are equivalent, i.e.,
there are no distinguished, somehow preferred, systems among them.

We shall prove this using the LMT class of systems; the reader may easily
make the generalization to an arbitrary class of systems. By virtue of the fact
that the systems within a given class are equivalent, the dimension in this class
of any mechanical quantity a depends only on the ratios L , M and T (see
subsection 1.1.3):

[a] = φ(L , M, T ). (1.4)

7 Equations which hold only in one system of units do exist and sometimes are very useful,
although they have no physical sense. For instance, my colleague Professor A.Yu. Ishlinsky
proposed a formula for the time taken to drive a given distance in Moscow: the time in minutes
is equal to the distance in kilometers plus the number of traffic lights. Of course, the formula
time = distance + number of traffic lights does not work in other units, and therefore has no
physical sense.
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If there existed some distinguished system within the LMT class, it would be
necessary to include in (1.4) the relationship between the system of units we are
working in and the distinguished system. In this case, the dimension function φ

would depend on three additional arguments, �0/�d, m0/md and t0/td, the ratios
of the units of length, mass and time, �0, m0 and t0, in the original system of
the LMT class and the corresponding units, �d, md and td, in the distinguished
system. According to the equivalence principle formulated above, this cannot
be so: the dimension function φ depends only upon the dimensions L , M and
T in the LMT class, independently of which system is adopted as the original
system.

To continue our proof, we shall now choose two systems of units within
the LMT class: system 1, which is obtained from the original system upon
decreasing the fundamental units by factors of L1, M1 and T1, and system 2,
which is obtained from the original system upon decreasing the fundamental
units by factors of L2, M2 and T2.

By the definition of dimension, the numerical value of the quantity under
discussion, equal, say, to a in the original system, is a1 = aφ(L1, M1, T1) in the
first system, and a2 = aφ(L2, M2, T2) in the second system. Thus, we have

a2

a1
= φ(L2, M2, T2)

φ(L1, M1, T1)
. (1.5)

We now note that by virtue of the equivalence of systems within a given
class, we may assume that system 1 is the original system of the class, without
altering the class. In this case, system 2 can be obtained from the new original
system (system 1) by decreasing the fundamental units by factors of L2/L1,
M2/M1 and T2/T1, respectively. Consequently, the numerical value a2 of the
quantity under discussion in the second system of units, is, by the definition of
the dimension function,

a2 = a1φ(L2/L1, M2/M1, T2/T1);

we emphasize that a1, the numerical value of the quantity a in system 1, remains
unchanged under the change in original system made above. Thus a2/a1 =
φ(L2/L1, M2/M1, T2/T1). Setting this expression equal to that in (1.5), we
obtain the following equation for the dimension function φ:

φ(L2, M2, T2)

φ(L1, M1, T1)
= φ(L2/L1, M2/M1, T2/T1). (1.6)

Equations of this type are called functional equations. We shall now show
that only power-law monomials satisfy this equation.
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To solve (1.6), we differentiate8 both sides of this equation with respect to
L2 and then set L2 = L1 = L , M2 = M1 = M and T2 = T1 = T . We find that

∂Lφ(L , M, T )

φ(L , M, T )
= 1

L
∂Lφ(1, 1, 1) = α

L
, (1.7)

where the quantity α = ∂Lφ(1, 1, 1) is a constant independent of L, M and T .
Integrating (1.7), we find that

φ(L , M, T ) = LαC1(M, T ). (1.8)

Substituting this expression into (1.6), we obtain an equation for the function
C1 of the same form as (1.6) but with one argument fewer:

C1(M2, T2)

C1(M1, T1)
= C1(M2/M1, T2/T1). (1.9)

Once again, we proceed in the same way: we differentiate both sides of (1.9)
with respect to M2 and set M2 = M1 = M and T2 = T1 = T :

∂MC1(M, T )

C1(M, T )
= 1

M
∂MC1(1, 1) = β

M
,

from which

C1 = MβC2(T ), (1.10)

where β = ∂MC1(1, 1) is a constant similar to α. Following the same line of
reasoning again, we find that

C2(T ) = C3T γ ,

so that

φ = C3Lα Mβ T γ . (1.11)

The constant C3 is obviously equal to unity, since L = M = T = 1 means
that the fundamental units remain unchanged, so that the value of the quantity
a must remain unchanged and φ(1, 1, 1) = 1.

So, we have shown that the solution to the functional equation (1.6) is the
power-law monomial Lα Mβ T γ , where α, β and γ are constants; therefore the
dimension of any mechanical quantity and, by extension, any other physical
quantity can be expressed in terms of a power-law monomial.

Let us look at what would happen if, for instance, the unit of length were
a distinguished unit, equal, say, to �d = 1 foot. (Originally, it was taken as

8 It is natural to assume that the dimension function is smooth, although, in fact, only the
assumption of continuity is enough.
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the length of the foot of an English king.) In this case the ratio �0/�d of the
fundamental unit of length in the original system �0 to the foot, i.e. the length of
the former in feet, will be significant and should be included in the arguments
of the dimension function. Therefore, relation (1.6) would be of the form

φ(L2, M2, T2, �0/�d)

φ(L1, M1, T1, �0/�d)
= φ

(
L2

L1
,

M2

M1
,

T2

T1
,
�0/�d

L1

)
.

Differentiating by L2 and then setting L2 = L1 = L , M2 = M1 = M and
T2 = T1 = T , we obtain

∂Lφ(L , M, T )

φ(L , M, T )
= 1

L
∂Lφ

(
1, 1, 1,

�0/�d

L

)
�= const

L
.

Thus, if we give up the principle that all systems of units within a given class
are equivalent, i.e. that there is no distinguished system in the class, the main
result of this principle – that dimension functions are power monomials – does
not hold.

It should be noted that systems of units convenient for use with some special
classes of problem have frequently been proposed. For example, Kapitza (1966)
proposed a natural system of units for classical electrodynamics. Kapitza’s
system uses the classical radius of the electron as the unit of length, the rest-
mass energy of the electron as the unit of energy and the mass of the electron
as the unit of mass. This system is convenient in classical electrodynamics
problems, since it allows one to avoid very large or very small numerical values
for all quantities of practical interest. It is important to note that Kapitza’s
system is not ‘distinguished’ in the sense described above: the dimensions of
physical quantities for an arbitrary system in the LEM class (E is the symbol
for energy) do not depend on the ratios of the units of length, energy and mass
in an original system in the class to the units in Kapitza’s system.

1.1.5 Quantities with independent dimensions

The quantities a1, . . . , ak are said to have independent dimensions if none of
these quantities has a dimension function that can be represented as a product
of the dimensions of the remaining quantities.

For example, density ([ρ] = LM−3), velocity ([U ] = LT−1) and force ([ f ] =
LMT−2), have independent dimensions. To show this, let us assume that, on the
contrary, only two of the three have independent dimensions. Then, since the
dimension functions for both density and force contain M and the dimension
function for velocity does not, there must exist numbers x and y such that
[ f ] = [ρ]x [U ]y . Substituting the expressions for the dimensions [ f ], [ρ] and
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[U ] in terms of L , M and T into this relation, we find that

LMT−2 = (ML−3)x (LT−1)y . (1.12)

Equating the exponents of L , M and T on the two sides of the equation, we
obtain a system of three equations for the two unknowns x and y:

−3x + y = 1, x = 1, y = 2, (1.13)

which obviously has no solution; x = 1 and y = 2 do not satisfy the first
equation. So, we come to a contradiction, and we conclude that our assumption
was false. In fact, it is easy to see that the dimensions of density, velocity
and pressure are dependent: the dimension of pressure (force per unit area),
L−1MT−2, is equal to the product of the dimension of density and the square
of the dimension of velocity.

Furthermore, it is clear that none of the quantities a1, . . . , ak having inde-
pendent dimensions can be dimensionless: the dimension of a dimensionless
quantity, which is equal to unity, is equal to the product of the dimensions of
the remaining quantities (whatever they are) raised to the power zero.

The fact which will be important below is that it is always possible to pass
from a chosen original system of units to some other system, within the same
class, such that any quantity, say a1, in the set of quantities with independent
dimensions a1, . . . , ak changes its numerical value by a specified factor A1

while the other quantities remain unchanged.

Problem Prove the above-mentioned property.

Solution. Passing, in a given class of systems of units P Q . . . (P, Q, . . .

denote the symbols L , M, T and/or other similar quantities), from a chosen
original system to an arbitrary one we obtain new values a′

1, . . . , a′
k of the

parameters a1, . . . , ak :

a′
1 = a1 Pα1 Qβ1 · · · , a′

2 = a2 Pα2 Qβ2 · · · , . . . ,

a′
k = ak Pαk Qβk · · · , (1.14)

where the powers α1, β1, . . . , αk, βk are determined by the dimensions of
a1, . . . , ak , respectively. We want to find the system such that

a′
1 = A1a1, a′

2 = a2, . . . , a′
k = ak .

Therefore, for P, Q, . . . a system of equations is obtained:

Pα1 Qβ1 · · · = A1, Pα2 Qβ2 · · · = 1, Pαk Qβk · · · = 1. (1.15)
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Taking logarithms, we obtain a system of linear equations:

α1 ln P + β1 ln Q + · · · = ln A1,

α2 ln P + β2 ln Q + · · · = 0,
...

αk ln P + βk ln Q + · · · = 0.

(1.16)

This system has at least one solution. Indeed, it is insoluble only if the left-
hand side of the first equation is a linear combination of the left-hand sides of
the remaining equations,

α1 ln P + β1 ln Q + · · · = c2(α2 ln P + β2 ln Q + · · · ) + · · ·
+ ck(αk ln P + βk ln Q + · · · ) (1.17)

where c2, . . . , ck are constants. This would imply, if we return to the exponents
from the logarithms, that

Pα1 Qβ1 · · · = (Pα2 Qβ2 · · · )c2 · · · (Pαk Qβk · · · )ck ,

giving

[a1] = [a2]c2 · · · [ak]ck (1.18)

so that the dimension of a1 would be equal to the product of the powers of
the dimensions of a2, . . . , ak , which would contradict the assumption that the
dimensions of the quantities a1, . . . , ak are independent. Thus the property is
proved.

1.2 Dimensional analysis

1.2.1 Governing parameters

In any physical study (theoretical or experimental), we attempt to obtain rela-
tionships among the quantities that characterize the phenomenon being studied.
Thus, the problem always reduces to determining one or several relationships
of the form

a = f (a1, . . . , ak, b1, . . . , bm), (1.19)

where a is the quantity being determined in the study, and its n = k + m
arguments a1, . . . , ak, b1, . . . , bm are assumed to be given; they are called gov-
erning parameters. The governing parameters in (1.19) are divided up in such
a way that the k parameters a1, . . . , ak have independent dimensions while the
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dimensions of the m parameters b1, . . . , bm can be expressed as products of
powers of the dimensions of the parameters a1, . . . , ak :

[b1] = [a1]p1 · · · [ak]r1 ,
...

[bi ] = [a1]pi · · · [ak]ri ,
...

[bm] = [a1]pm · · · [ak]rm .

(1.20)

Such a division may always be made. In some special cases, we might have
m = 0 (if the dimensions of all the governing parameters are independent) or
k = 0 (if all the governing parameters are dimensionless). In general k > 0,
m > 0.

The dimension of the quantity a to be determined must be expressible in terms
of the dimensions of the governing parameters in the first group, a1, . . . , ak :

[a] = [a1]p · · · [ak]r . (1.21)

If this were not so, the dimensions of the quantities a, a1, . . . , ak would be inde-
pendent. Then, by the property proved in subsection 1.1.5, it would be possible
to change the value of the quantity a by an arbitrary factor, via a change in the
system of units within the class in question, and leave the quantities a1, . . . , ak

unchanged. In doing so, the quantities b1, . . . , bm , whose dimensions can be ex-
pressed in terms of the dimensions of the quantities a1, . . . , ak , would likewise
remain unchanged. Thus, the quantity to be determined, a, could be changed
by any amount while the values of all the governing parameters remained un-
changed; this is impossible if the list of governing parameters is complete. Thus,
there always exist numbers p, . . . , r such that (1.21) holds.

1.2.2 Transformation to dimensionless parameters.
Generalized homogeneity. Π-theorem

We shall now introduce the parameters

� = a

a p
1 · · · ar

k

�1 = b1

a p1
1 · · · ar1

k

, . . . , �i = bi

a pi

1 · · · ari
k

, . . . ,

�m = bm

a pm

1 · · · arm
k

, (1.22)
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where the exponents of the governing parameters with independent dimensions
are chosen such that all the parameters �, �1, . . . , �m are dimensionless. Re-
lation (1.19) may be rewritten, replacing the parameters a, b1, . . . , bm (whose
dimensions depend on those of the parameters a1, . . . , ak) by the dimension-
less quantities �, �1, . . . , �m defined in (1.22) and keeping the parameters
a1, . . . , ak . We find that

� = f (a1, . . . ak, b1, . . . , bm)

a p
1 · · · ar

k

= 1

a p
1 · · · ar

k

f
(
a1, . . . ak, �1a p1

1 · · · ar1
k , . . . , �m a pm

1 · · · arm
k

)
.

Thus, we find that

� = F(a1, . . . ak, �1, . . . , �m), (1.23)

where F is a certain function.
Now, the most important point to be discussed here is as follows. We have

already seen that it is always possible to pass to a system of units within the class
in question such that any one of the parameters with independent dimensions
a1, . . . , ak , let us say a1, is changed by an arbitrary factor, the remaining
parameters, a2, . . . , ak , remaining unchanged. Obviously, the dimensionless
arguments �1, . . . , �m of the function F and the value of the dimensionless
function � also remain unchanged under such a transformation. It follows from
this that the function F is in fact independent of the argument a1. In exactly
the same way, it can be shown that it is also independent of the arguments
a2, . . . , ak , so that F = 	(�1, . . . , �m). Equation (1.23) can therefore in fact
be written in terms of a function 	 of m rather than n = k + m arguments:

� = 	(�1, . . . , �m). (1.24)

However, since � = f/a p
1 · · · ar

k , it follows that any function f that defines
some physical relationship possesses the property of a generalized homogeneity
or symmetry, i.e. it can be written in terms of a function of a smaller number of
variables and is of the following special form:

f (a1, . . . ak, b1, . . . , bm) = a p
1 · · · ar

k	

(
b1

a p1
1 · · · ar1

k

, . . . ,
bm

a pm

1 · · · arm
k

)
.

(1.25)

These results lead to the central theorem in dimensional analysis, the so-
called �-theorem: a physical relationship between some dimensional (gener-
ally speaking) quantity and several dimensional governing parameters can be
rewritten as a relationship between a dimensionless parameter and several
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dimensionless products of the governing parameters; the number of dimen-
sionless products is equal to the total number of governing parameters minus
the number of governing parameters with independent dimensions. The term
‘physical relationship’ is used to emphasize that it should be valid in all systems
of units.

Note that the �-theorem is, in fact, obvious at an intuitive level. Indeed, it
is clear that physical laws cannot depend on the choice of units. Therefore, it
must be possible to express them using relationships between quantities that
do not depend on this arbitrary choice, i.e., dimensionless combinations of the
variables. This was realized long ago, and concepts from dimensional analysis
were in use long before the �-theorem had been explicitly recognized, formu-
lated and proved formally. The outstanding names that should be mentioned
here are Galileo, Newton, Fourier, Maxwell, Reynolds and Rayleigh.

Dimensional analysis may be successfully applied (see below) in theoretical
studies where a mathematical model of the problem is available, in the pro-
cessing of experimental data and also in the preliminary analysis of physical
phenomena. The point that we are trying to make here is the following.

In order to determine the functional dependence of some quantity a, (1.19),
on each of the governing parameters, it is necessary to either measure or cal-
culate the function f for, let us say, 10 values of each governing parameter.
Of course, the number 10 is somewhat arbitrary; a smaller number of mea-
surements or calculations may suffice for some smooth functions, while even
100 measurements are insufficient for other functions. Thus, it is necessary to
carry out a total of 10k+m measurements or calculations to determine a. After
applying dimensional analysis, the problem is reduced to one of determining
a function 	 of m dimensionless arguments �1, . . . , �m , and only 10m (i.e.
a factor of 10k fewer) experiments or calculations are required to determine
this function. As a result, we reach the following important conclusion: the
amount of work required to determine the desired function is reduced by as
many orders of magnitude as there are governing parameters with independent
dimensions.

The following question naturally arises: if such substantial advantages are
obtained for n = k, m = 0, why not go to a class of systems of units in which
the dimensions of all the quantities a1, . . . , ak , b1, . . . , bm are independent?

Actually, nothing is gained in general by transforming to such a class. We
will show this using as an example a problem where quantities with dimen-
sions of length �, time τ and velocity v are included among the governing
parameters. We will then change to the LTV class of systems, where the unit of
velocity is independent. However, without modification the formula v = s/t
(where s is the distance travelled, and t is the time of travel) is not valid in
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m

�

Figure 1.1. A pendulum performs small oscillations. Experiment shows that the
period of small oscillations is independent of the maximum deviation of the
pendulum.

this class; it must be replaced by the formula v = As/t , where A is a con-
stant having dimension L−1TV (see subsection 1.1.3). In general, therefore, the
quantity A must also be included among the governing parameters, thereby
increasing the number of governing parameters by one. And, in general, the
difference m = n − k between the total number of governing parameters and
the number of governing parameters with independent dimensions remains un-
changed; thus, generally speaking, there is no advantage in transforming to a
new class of systems of units. However, in some special cases it may turn out
that the additional parameters, as is the case for A, happen to be non-essential.
In such cases, transforming to a new class increases the number of parameters
with independent dimensions and so is useful. We will see examples of this
below.

1.2.3 Problems

Problem 1. Derive, using dimensional analysis, the formula for the period θ

of small oscillations of a pendulum,

θ = 2π

√
�

g
≈ 6.28

√
�

g
. (1.26)

Here � is the length of the pendulum (Figure 1.1), and g is the gravitational
acceleration.
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Solution: It is arguable that in principle the period θ depends upon the fol-
lowing governing parameters:

1. the length of the pendulum �;
2. the mass of the bob m;
3. the gravitational acceleration g: if there were no gravity then the pendulum

would not oscillate.

The dimensions of the quantities involved are as follows:

[θ ] = T, [�] = L , [m] = M, [g] = LT−2. (1.27)

The dimensions of the governing parameters, �, m, g, are independent (each of
them contains a dimension absent in the others). Therefore, using the notation
defined at (1.19), k = n = 3. It is easy to show that [θ ] = [�]1/2[g]−1/2; then,
from (1.22) we obtain

� = θ

�1/2[g]−1/2
. (1.28)

In this case, m = n−k = 0, so that there are no parameters �i , and the function
	 in (1.24) and (1.25) is a constant. Therefore

θ = const

√
�

g
. (1.29)

The constant in (1.29) can be determined fairly accurately from a single exper-
iment, which the reader may carry out by measuring the period of oscillation
of a weight hung on a thread. With this step the derivation of formula (1.26)
will be complete. This derivation (which is due to the French mathematician
P. Appell) is instructive. It would seem that we have succeeded in obtaining an
answer to an interesting problem from nothing – except a list of the quantities
on which the period of oscillation of the pendulum is expected to depend, and a
comparison (analysis) of their dimensions. In fact, this is not completely true:
under this argument lies a deep physical model and observation: the amplitude-
independence of the period for small oscillations, the possibility of neglecting
the decay of oscillations due to the drag of ambient air etc.

Problem 2. Prove, using dimensional analysis, Pythagoras’ theorem (see also
Migdal 1977)

c2 = a2 + b2. (1.30)

Solution: Consider Figure 1.2. The area Sc of the largest right-angled triangle
is determined by its hypotenuse c and, for definiteness, the smaller of its acute
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a

c

b

φ

φ

Figure 1.2. A proof of Pythagoras’ theorem using dimensional analysis.

angles φ. Thus Sc = f (c, φ), and so k = 1, m = 1 since the only parameter
with an independent dimension is c. Also, � = Sc/c2. We have

� = 	(�1), �1 = φ, Sc = c2	(φ). (1.31)

The perpendicular to the hypotenuse of the basic triangle divides it into two
geometrically similar right triangles with hypotenuses equal to a and b.
Equation (1.31), obtained by dimensional analysis, yields for the areas of these
two triangles

Sa = a2	(φ), Sb = b2	(φ), (1.32)

where the function 	 is the same as for the larger triangle. The sum of the areas
of the two triangles Sa and Sb is equal to the area of the larger triangle Sc:

Sc = Sa + Sb, c2	(φ) = a2	(φ) + b2	(φ). (1.33)

Cancelling 	(φ) in the latter equation we obtain the desired result (1.30).
Here, there is an essential assumption underlying the simple procedure of di-

mensional analysis: the Euclidean nature of geometry. In both the Riemann and
Lobachevskii geometries, however, there is an intrinsic parameter λ with the di-
mension of length, and the function 	 will depend on two arguments. Therefore
instead of the relations (1.31), (1.32) different relations will be obtained:

Sc = c2	

(
φ,

λ

c

)
, Sa = a2	

(
φ,

λ

a

)
, Sb = b2	

(
φ,

λ

b

)
,

(1.34)

and it is impossible to cancel 	 in relation (1.33), so the proof presented above
no longer holds.
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Q

P

(a)

(b)

dp/dx = constant

Figure 1.3. (a) A schematic diagram showing the experiments of Reynolds. The
pipe is long, and the intermediate part, where the pressure gradient dp/dx is
constant, occupies a major part of the pipe and determines the drag. (b) A schematic
diagram showing the experiments of Bose, Rauert and Bose. The time τ required
to fill a vessel of volume Q and the pressure drop between the ends of the pipe P
were measured for the steady flow of various fluids through the pipe.

Problem 3. Derive, using dimensional analysis, the relation for the hydrody-
namic drag in a long cylindrical pipeline (Figure 1.3(a)).

Solution: The basic assumption is that the drag in a long cylindrical pipeline
is determined by the part intermediate between the pipe entrance and exit. In
this part, as is confirmed by experiment, the pressure gradient is constant: it
does not depend on the position x of the cross-section. Therefore

dp

dx
= f (U, D, ρ, µ), (1.35)

where U is the velocity averaged over the cross-section, i.e. the total discharge
rate divided by the cross-sectional area, D is the pipe diameter and ρ and µ are
the fluid properties, its density and dynamic viscosity. The dimensions of these
quantities in the LMT class are as follows:[

dp

dx

]
= M

L2T 2
, [U ] = L

T
, [D] = L , [ρ] = M

L3
, [µ] = M

LT
.

(1.36)

(The dimension of the viscosity, µ, can be obtained easily from the relation
τ = µV/h; this relation expresses the shear stress τ in Newton’s experiment
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Figure 1.4. The dimensionless pressure drop per unit length of pipe, �, of fluid
passing through a pipe as a function of Reynolds parameter Re = ρUD/µ. With
the exception of the transition region between laminar and turbulent flow, the data
from different experiments all lie on a single curve. The complicated nature of the
curve indicates that the flow regime changes as a function of Re, which is the only
parameter that determines the global structure of the flow.

with a fluid layer of thickness h between two plates, one of which moves
with velocity V and the second of which is at rest. The shear stress has the
dimension of pressure, force per unit area). Thus k = 3, m = 1: the dimen-
sions of U , D and ρ are obviously independent. The dimensions of dp/dx
and µ are [

dp

dx

]
= [U ]2[D]−1[ρ], giving

� = dp/dx

U 2 D−1ρ
, and [µ] = [U ][D][ρ]. (1.37)

Thus, for this case, relation (1.25) takes the form

dp

dx
= f (U, D, ρ, µ) = U 2 D−1ρ	

(
µ

UDρ

)
, (1.38)

so that the function f of four variables is expressed via a function of one single
variable, ρUD/µ.

This argument was performed for the first time by the English fluid mecha-
nist Osborne Reynolds at the end of the nineteenth century. He examined the
experimental data on flow in pipes available at the time and found that, to quite
good accuracy, the experimental data in the coordinates ρUD/µ and � lay on
a single curve (see Figure 1.4, where this relationship is illustrated using more
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recent data). This was a great success and, following a proposal by the promi-
nent physicist A. Sommerfeld, the dimensionless parameter ρUD/µ was later
named the Reynolds number in honour of its originator.

Figure 1.4 shows clearly that the flow regimes at small and large values of the
Reynolds number Re = ρUD/µ are different. Nowadays we know why – the
flow at small values of the Reynolds number is laminar whereas the flow at large
values is turbulent. The experimental data in the transition region show strong
scatter; they do not follow a single line. This indicates that the basic model
leading to the relation (1.35) is invalid in this region and that some additional
factors should be taken into account.

Problem 4. Subject to dimensional analysis the results of different experiments
for turbulent flow in pipes.

Many years after the work of Reynolds mentioned above, the physico-chemists
E. Bose, D. Rauert and M. Bose published a series of experimental studies of in-
ternal turbulent friction in various fluids (Bose and Rauert 1909; Bose and Bose
1911). The experiments were carried out in the following way (Figure 1.3(b)).

Various fluids, water, chloroform, bromoform, mercury, ethyl alcohol, etc.,
were allowed to flow through a pipe (not necessarily a long one) in a regime of
steady turbulence. The time τ required to fill a bowl with a certain fixed volume
Q and the pressure drop P between the ends of the pipe were measured. As
was customary, the results of the measurements were represented in the form
of a series of tables and curves (similar to those in Figure 1.5) showing P as a
function of τ .

It was Th. von Kármán, at the time a young researcher, who later became one
of the greatest applied mathematicians, who subjected the results of Bose, Bose
and Rauert to a processing procedure using what is now called dimensional
analysis (see von Kármán 1957).

Solution. The pressure drop between the ends of the pipe, P , depends on
the time τ required for the bowl to be filled and on its volume Q as well as
on the properties of the fluid, its viscosity µ and density ρ. It is instructive
that von Kármán retained the none-too-promising original parameters Q and τ

chosen by the experimenters. The dimensions of the quantities in question, for
definiteness, in the LMT class, are given by the following expressions:

[P] = M

LT2 , [τ ] = T, [Q] = L3, [µ] = M

LT
, [ρ] = M

L3
.

The first three governing parameters, τ , Q and µ, have independent dimensions;
the dimensional formula for µ contains the mass while those for the other two
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Figure 1.5. The experimental results of Bose, Rauert and Bose in their original
form: �, water; �, chloroform; +, bromoform; �, mercury (P in kgf/cm2 and τ

in seconds). The curves are different for the different fluids. From von Kármán
(1957).

governing parameters do not. The dimension of µ therefore cannot appear in
the dimensions of the other governing parameters with any exponent other than
zero. Furthermore, the dimensional formula for Q contains L alone, and the
dimensional formula for τ contains T alone. It is therefore impossible to obtain
the dimension of any one of these quantities in terms of the dimensions of the
other two. However, the dimension of the parameter ρ can be expressed as a
product of the dimensions of τ , Q and µ raised to various powers:

[ρ] = [τ ][Q]−2/3[µ].

The dimension of the pressure drop P can also be expressed in terms of the
dimensions of the governing parameters τ , Q and µ:

P = [τ ]−1[Q]0[µ].
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Figure 1.6. The experimental results of Bose, Rauert and Bose as represented by
von Kármán, who used dimensional analysis. All the experimental points lie on a
single curve. From von Kármán (1957).

Thus, (1.19), k = 3. Dimensional analysis yields

� = 	(�1), (1.39)

where

� = P

µτ−1
, �1 = ρ

µτ Q−2/3
.

Therefore the search for the desired relationship between the pressure drop
and the four parameters that govern it, P = f (τ, Q, µ, ρ), reduces to the de-
termination of a single function 	 of one composite parameter, the function
	(�1), since equation (1.39) can be written in the form

P = µ

τ
	

(
ρ

µτ Q−2/3

)
.

This means that all the experimental points should lie along a single curve
in the coordinates ρ/(µτ Q−2/3), P/(µτ−1). Von Kármán’s processing of the
measured data of E. Bose, Rauert and M. Bose confirmed this (Figure 1.6). It is
clear that if dimensional analysis had been carried out beforehand, the amount of
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Figure 1.7. When a punch is pressed into a block of fused silica, a conical crack is
formed (Benbow 1960).

experimental work required of the physico-chemists would have been reduced
by a large factor.

Problem 5. Derive, using dimensional analysis, the relation between the di-
ameter of the conical crack formed in a brittle block under a punch and the
applied load.

In the remarkable experiments of Roesler (1956) and Benbow (1960) a punch
with a small flat point was pressed slowly into the face of a cubic block of
transparent brittle material (fused silica, see Figure 1.7). A perfect conical crack
was formed under the punch and, as the load increased, the crack increased in
size. The diameter of the base of the conical crack rapidly became much larger
than the diameter of the flat point of the punch.

Solution. The conical crack under the punch is in a state of mobile equilibrium:
any increase in the load leads to its extension. It is known from the theory of
elasticity (see Broberg 1999) that the stress directly underneath the crack tip,
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σ , decreases in inverse proportion to the square root of the distance s from the
crack tip:

σ ∼ N√
s
,

where N is a constant. For a crack in a state of mobile equilibrium the principle
of autonomy, i.e. universality, is valid (Barenblatt 1959a, 1962; Broberg 1999),
according to which the elastic field near all crack tips in a given material under
identical external conditions is identical. From this principle it follows that the
stress intensity factor N is determined solely by the value of a constant of the
material:

N = K

π
.

The quantity K is called the cohesion modulus or fracture toughness; the factor
π is included for historical reasons.

From the above considerations, it is natural to assume that the diameter D
of the base of the conical crack depends on the load P and on the properties of
the material, its cohesion modulus or fracture toughness K and Poisson ratio
ν. (Young’s modulus E does not enter the set of governing parameters because
the loads are prescribed but not the displacements.) For an intermediate stage
when the loads are sufficiently large but not too large, the diameter of the punch
d is much smaller than the diameter D of the base of the cone and the size
� of the block is much larger than the diameter of the base of the cone, so
that the parameters d and � are assumed to be non-essential (compare with
G.I. Taylor’s idealization of the explosion problem in the Introduction).

In the LFT class we obtain for the dimensions of the quantities involved

[D] = L , [P] = F, [K ] = F

L3/2
, [ν] = 1.

(The dimension of the cohesion modulus K is obtained from the relation giving
the stress intensity factor N , σ ∼ N/

√
s, and the dimension of the stress, which

is the same as the dimension of the pressure, [σ ] = FL−2.)
The governing parameters P and K have independent dimensions, and the

standard procedures of dimensional analysis immediately yield

� = D

P2/3 K −2/3
= 	(ν), i.e. D =

(
P

K

)2/3

	(ν).

Benbow’s (1960) analysis of experimental data obtained for punches of various
sizes under various loads confirmed this relation (Figure 1.8).
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Figure 1.8. The experimental data on the propagation of a cone crack in a block of
fused silica confirm the scaling law D = const (P/K )2/3 (Benbow 1960).

The five examples just discussed demonstrate that the seemingly trivial con-
cepts of dimensional analysis are capable of producing results with a great
deal of content, especially when the difference between the the total number
of governing parameters and the number of governing parameters with inde-
pendent dimensions is not large. Thus, correctly choosing the set of govern-
ing parameters becomes the most important factor: it is important not only
to take all essential variables into account but also to exclude superfluous
ones! The set of governing parameters may be determined relatively easily
if a mathematical formulation of the problem is available.9 This must include
the governing variables and constant parameters of the problem, which appear
in the equations, boundary conditions, initial conditions and so forth and which
determine the unique solution to the problem. Correctly choosing the set of
governing parameters for problems that do not have an explicit mathematical
formulation depends primarily on the intuition of the researcher. In such prob-
lems, success in applying dimensional analysis involves a correct understand-
ing of which governing parameters are essential and which may be neglected.
Remember that each governing parameter that can be neglected reduces the
amount of work involved in investigating the problem by roughly an order of
magnitude!

9 As we shall see later, there are many subtle points even here.
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We note in concluding this section that our presentation of dimensional anal-
ysis is essentially different from those available in the literature, although it
follows in its general ideas the excellent book by P.W. Bridgman (1931).

1.3 Physical similarity

1.3.1 Physically similar phenomena

Before a large, expensive object (for example, a ship or aircraft) is constructed,
experimentation on models – modelling – is used to determine the best properties
under future operating conditions. Many different kinds of measurement are
carried out on models: for example, the lift and drag of an aircraft model as
air flows past it can be measured in a wind tunnel, as can the aerodynamic
loading that causes a model of a television tower to collapse. Clearly, one must
know how to scale the results of the experiment carried out on the model up
to the full-scale object being modelled. If one does not know how to do this,
modelling is a useless pursuit. The concept of physically similar phenomena is
central to correct modelling.

The concept of physical similarity is a natural generalization of the concept of
similarity in geometry. For example, two triangles are similar if they differ only
in the numerical values of the dimensional parameters, i.e. the lengths of the
sides, while the dimensionless parameters, the angles at the vertices, are identi-
cal for the two triangles. Analogously, physical phenomena are called similar
if they differ only in respect of the numerical values of the dimensional gov-
erning parameters, the values of the corresponding dimensionless parameters
�1, . . . , �m being identical. In accordance with this definition, the quantities
�1, . . . , �m are called similarity parameters.

We shall now imagine that we propose to model a certain phenomenon;
we shall call this phenomenon the prototype. We require that the model that
we use to determine the desired properties of the prototype be a phenomenon
physically similar to the prototype. We have for both phenomena the relationship
(1.19) between the parameter a to be determined and the governing parameters
a1, . . . , ak , b1, . . . , bm :

a = f (a1, . . . , ak, b1, . . . , bm).

The function f is the same for both phenomena because we require them to
be similar, though the numerical values of the governing parameters a1, . . . , ak,

b1, . . . , bm and the parameter a to be determined may differ. Thus, relationship
(1.19) for the prototype takes the form

aP = f
(
aP

1 , . . . , aP
k , bP

1 , . . . , bP
m

)
. (1.40)
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The superscript P will hereinafter be used to refer to the properties of the
prototype. Relation (1.19) for the model is similar in form, but the numerical
values of the governing and determined parameters are different:

aM = f
(
aM

1 , . . . , aM
k , bM

1 , . . . , bM
m

)
. (1.41)

The superscript M will hereinafter be used to refer to the properties of the
model. Via dimensional analysis, (1.24), we obtain

�P = 	
(
�P

1, . . . , �
P
m

)
, �M = 	

(
�M

1 , . . . , �M
m

)
, (1.42)

where the function 	 is the same in both cases, since it can be expressed in
terms of the function f in the same way in each case; �P, �M and the �P

i and
�M

i are dimensionless parameters.

1.3.2 The rule for scaling the results for a physically similar
model up to the prototype

Consider two similar triangles, one the prototype and one a model. For both of
them the dimensionless parameters – the angles at the vertices, �1 = α and
�2 = β, – are identical whereas the only dimensional governing parameter,
say the side opposite to angle α, of length �, takes different values, �P and �M.
The areas of the prototype and model triangles are expressed as

SP = (�P)2	(α, β), SM = (�M)2	(α, β),

so that

SP = SM

(
�P

�M

)2

.

A similar scaling rule can be obtained in the general case of physically similar
phenomena.

Since the model and prototype are similar, the following conditions on the di-
mensionless governing parameters must be satisfied, according to the definition
of physically similar phenomena given above:

�M
1 = �P

1, . . . , �M
m = �P

m . (1.43)

Conditions (1.43) are called the similarity criteria.
Hence, as stated above,

	
(
�M

1 , . . . , �M
m

) = 	
(
�P

1, . . . , �
P
m

)
;
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also, in accordance with (1.42), the dimensionless parameters to be determined
for the model and for the prototype are equal:

�P = �M. (1.44)

Returning to the dimensional parameters a, a1, . . . , ak using (1.22), we find
that

aP = aM

(
aP

1

aM
1

)p

· · ·
(

aP
k

aM
k

)r

, (1.45)

which is a simple rule for scaling the results of measurements on a similar model
up to the prototype. It was precisely in order to be able to use this relationship
that it was necessary to require that the model be similar to the prototype.

1.3.3 Choosing the governing parameters of the model

The model parameters aM
1 , . . . , aM

k may be selected arbitrarily, keeping in mind
maximum simplicity and convenience in modelling. Then the conditions for
similarity between the model and the prototype – equality of the similarity
parameters �1, . . . , �m for model and prototype, (1.43) – show how the re-
maining governing model parameters bM

1 , . . . , bM
m must be chosen in order to

ensure similarity between model and prototype. These conditions are as follows.

�M
1 = �P

1 ⇒ bM
1 = bP

1

(
aM

1

aP
1

)p1

· · ·
(

aM
k

aP
k

)r1

;

...
... (1.46)

�M
m = �P

m ⇒ bM
m = bP

m

(
aM

1

aP
1

)pm

· · ·
(

aM
k

aP
k

)rm

.

The simple definitions and statements presented above describe the entire con-
tent of the theory of similarity: we emphasize that there is nothing more to
this theory. The examples given below will demonstrate how to use the the-
ory. Along the way, the reader will become familiar with the most important
classical similarity parameters.

1.3.4 Problems

Problem 1. Derive the rules for modelling the steady motion of a body in a
fluid that fills a very large vessel.
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The velocity of the body is assumed to be small in comparison with the velocity
of sound in the fluid. Therefore the compressibility of the fluid may be neglected,
and its density is assumed to be constant.

Solution
(a) Geometric and kinematic similarity conditions. The model’s body shape
must be geometrically similar to the prototype’s body shape, and the direction
of the velocity vector with respect to the principal axes of the body must be
identical in the model’s motion and in the prototype’s motion.10

(b) Dynamic similarity condition. The dimensional governing parameters of
the motion are the characteristic length scale of the body, its maximum cross-
sectional diameter D, for example, the magnitude U of the body’s velocity,
the density ρ of the fluid and its viscosity µ. The dimensions of the governing
parameters in the LMT class are as follows:

[D] = L , [U ] = L

T
, [ρ] = L−3 M, [µ] = L−1MT−1. (1.47)

Clearly the number of parameters with independent dimensions k = 3, so that
there is only one dynamical similarity parameter in addition to the geometric
similarity parameters (which express the similarity of the model’s and proto-
type’s body shapes) and the kinematic similarity parameters (which express
the identical orientation of the velocity with respect to the principal axes of
the model and of the prototype); this parameter can be written in the following
form (cf. subsection 1.2.3):

�1 = ρUD

µ
= Re. (1.48)

As proposed by A. Sommerfeld, this parameter is called the Reynolds number
or Reynolds parameter.

The dimensionless drag force � acting on the body can be defined naturally
in the following way:

� = F
/(

1

2
ρU 2S

)
.

Here F is the drag force acting on the body, S ∼ D2 is the cross-sectional area
of the moving body and the factor 1

2 is introduced by convention.
The function �(Re) for the flow past a sphere is shown in Figure 1.9; to good

accuracy, the data from a large number of experiments lie on a single curve.

10 This follows from the identity of the corresponding geometric and kinematic similarity
parameters for the model and prototype.
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Figure 1.9. The dimensionless drag force on a sphere as a function of Reynolds
number. The data from the various experiments shown here turn out to lie on
a single curve, which indicates that the Reynolds number is the only parameter
that governs the global structure of the flow. The complicated nature of the curve
indicates that the flow regime changes with Reynolds number.

This curve appears to be very complicated: a large region in which �(Re) varies
smoothly gives way to sudden decreases and finally an increase, and there are
two regions where � is almost independent of Re. This all indicates that the
actual flow regimes vary with Reynolds number: Re is the only parameter that
governs the structure of the flow as a whole as the sphere is moving in the fluid.

The motion of a model is usually implemented in the same fluid as that in
which the prototype moves. The similarity condition that parameter (1.48) be
the same for the model and prototype motions indicates that, in this case, the
product UD must be identical for model and prototype: from this, we see that
the ratio of the model and prototype velocities must be the inverse of the ratio
of their linear dimensions. From this it follows that the drag forces must be
identical for the model and the prototype, so that the scaling coefficient for the
drag force is equal to unity in this case.

Problem 2. Derive the rules for modelling the steady motion of a streamlined
surface ship at high speeds.

We assume that the main contribution to the drag of a streamlined surface ship
in rapid motion comes from surface waves created by the ship. The contribution
from viscous drag for such a situation is assumed, in a rough first approximation,
to be small in comparison with the wave drag, so that it can be neglected.
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Solution. The governing parameters in the case at hand will be as follows: a
characteristic length for the ship, �, the gravitational acceleration g, the density
of the fluid ρ and the speed of the ship U . The parameter g is essential since
the gravitational force is one of the factors that controls the waves created by
the ship. The governing parameters have the following dimensions in the LMT
class:

[�] = L , [g] = LT−2, [ρ] = L−3 M, [U ] = LT−1, (1.49)

so that k = 3, m = 1, and the only dynamical similarity parameter (in addition
to the geometric and kinematic similarity parameters, see the previous problem)
is of the form

�1 = U

�1/2g1/2
. (1.50)

This parameter is called the Froude number or Froude parameter (the conven-
tional symbol is Fr) after the English shipbuilder William Froude.

Furthermore, the dimension of the drag force F in the same class, LMT, is
[F] = LMT−2, so that [F ] = [ρ][g][�]3. Thus, since the parameter g can be
varied only with a great deal of effort, by means of subtle tricks not normally
used, the law for scaling the drag force from the model up to the prototype in
the same fluid is of the form

FP = FM

(
�P

�M

)3

, (1.51)

so that the drag force is proportional to the cube of the modelling scale. Relation
(1.50) indicates that, in order to ensure dynamical similarity, the ratio of the
model velocity to the prototype velocity must be proportional to the square root
of the modelling scale:

U M = U P

(
�M

�P

)1/2

. (1.52)

If one does not neglect the role of viscosity, a second dynamical parameter
appears – the Reynolds number Re, which in the present notation is equal to
ρU�/µ. Modelling in which both similarity parameters – the Froude number
and Reynolds number – are taken into account turns out to be impossible in
a single fluid. Indeed, to do this, the products U� (see the previous problem)
and U 2/� would have to be identical for both model and prototype; this is only
possible when modelling to full scale, which makes no sense. This is precisely
why, for illustration, we have restricted ourselves to the case where the viscous
drag is small compared with the wave drag. Thus, in ship-building practice
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Figure 1.10. A nylon sphere moves in air at Mach number 7.6. A detached shock
wave is visible ahead of the sphere (van Dyke 1982).

the viscous-drag contribution is modelled separately from the wave drag using
specially developed techniques.

Problem 3. Derive the rules for modelling the steady motion at high velocity
of a body in a gas

Consider the simplest case: the motion of a sphere, an example of which is
shown in Figure 1.10. The drag acting on the sphere is obtained on the small
model and then scaled up to the prototype.

Solution. The drag F depends on the following governing parameters: the
gas density ρ, the velocity of the sphere U , its diameter D, and the velocity of
sound c:

F = f (ρ, U, D, c). (1.53)

The dimensions of the quantities involved in the LMT class are

[F ] = ML

T 2
, [ρ] = M

L3
, [U ] = L

T
, [D] = L , [c] = L

T
.

(1.54)
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Figure 1.11. The dimensionless drag on a sphere, � (times 2/π ), as a function of
the dimensionless governing parameter �1 = U/c, the Mach number (Chernyi
1961). The quantity � approaches a constant for large values of �1.

Three first governing parameters have independent dimensions. The standard
procedure of dimensional analysis gives

� = F
ρU 2 D2

= 	(M). (1.55)

Here

M = U

c
= 1

�1
(1.56)

is the Mach number, named in honour of the Austrian scientist who performed
pioneering experiments with shock waves in a gas. The function 	(M), for
the flow around a sphere, was obtained from experiments in a wind tunnel
(Figure 1.11). It is interesting to note that for large M, in fact for M ≥ 4, the
function 	(M) is close to a constant so that then the drag F is determined by
the relation

F = const ρU 2 D2. (1.57)

In fact very often, if a dimensionless parameter is large or small, the dependence
upon it is neglected too soon and the corresponding dimensional parameter, in
this case the sound velocity c, is dropped. In the special case which we have
considered this procedure is correct but as a rule, and as we will see further, it
is not.
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Problem 4. Derive the rules for modelling thermal convection in a horizontal
fluid layer.

We assume that the layer is bounded by smooth rigid isothermal walls: at
the upper wall a temperature T0 is maintained and at the lower wall a higher
temperature, T0 + δT .

Solution. The phenomenon of convection in the gravity field is due to the fact
that the density of a fluid usually decreases as it is heated; if this decrease is
large enough, the less dense fluid floats from bottom to top. We shall neglect the
variations with temperature in the viscosity, specific heat capacity and thermal
conductivity of the fluid because we intend to model the process of convection
in a basic way, not in detail. For small changes in temperature, the temperature
dependence of the fluid density can be assumed to be linear:

ρ = ρ0[1 + α(T0 − T )],

where ρ0 is the fluid density at temperature T0 and α is the coefficient of volume
expansion of the fluid. The variation in the density of the fluid as it is heated
is small, so that we need only take the density variation into account where
it is combined with the action of the gravitational force. This approximation
was suggested by the French scientist J. Boussinesq, and carries his name. The
Boussinesq approximation is related to the assumption that all the accelerations
in convective flow are small compared with the gravitational acceleration. This
is not so in strongly developed convection; here the Boussinesq approximation
is no longer valid. If we adopt the Boussinesq approximation then the coefficient
of volume expansion of the fluid, α, and the gravitational acceleration g do not
enter into consideration separately but only as a product. The product αg is
called the buoyancy parameter.

The governing parameters for the phenomenon of thermal convection in a
layer are as follows. The properties of the phenomenon must depend on the
buoyancy parameter αg, on the thickness of the layer H , on the dynamical
properties of the fluid, that is, its viscosity µ and density ρ0 at temperature T0,
on its specific heat capacity c and thermal conductivity λ and on the excess
temperature of the lower layer δT .

In principle, the contribution of viscous energy dissipation to the thermal
balance of the fluid should also be taken into account. To do this, one addi-
tional parameter must be included, the mechanical equivalent of heat J (cf. the
discussion at the end of subsection 1.1.3).

The dimensions of the governing parameters can be obtained in the following
way. The specific heat capacity c is, by definition, the quantity of heat necessary
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to increase the temperature of a unit mass of the fluid by one temperature unit.
Thus, the dimension of heat capacity is

[c] = Q

M�
, (1.58)

where Q stands for the independent dimension of the quantity of heat and �

stands for the independent dimension of temperature. The thermal conductivity
of the fluid, λ, is, by the fundamental law of heat conduction (the Fourier law),
the coefficient of proportionality in the expression for the heat flux through a
horizontal layer of quiescent fluid as a function of the temperature drop δT and
the thickness of the layer H :

q = −λ
δT

H
.

Now the heat flux is, by definition, the amount of heat that passes through unit
area of the plane layer boundary per unit time, so that [q] = QL−2T −1. From
this result and the preceding equation, we find that

[λ] = Q

LT�
. (1.59)

The dimension of the mechanical equivalent of heat is obviously equal to the di-
mension of mechanical energy divided by the independent dimension of thermal
energy:

[J ] = ML2

T 2 Q
. (1.60)

So, the dimensions of the governing parameters in the LMT�Q class are as
follows:

[αg] = L

�T 2
, [H ] = L , [µ] = M

LT
, [ρ] = M

L3
,

[c] = Q

M�
, [δT ] = �, [λ] = Q

LT�
, [J ] = ML2

T 2 Q
. (1.61)

Clearly n = 8, m = 3 and k = 5. Applying dimensional analysis, we obtain
the following three similarity parameters:

�1 = δT

(αg)−1 H−3µ2ρ−2
, �2 = λ

µc
, �3 = Jc

αgH
. (1.62)

In what follows, we shall discuss convective motion in thin layers, for which
the parameter �3 is large (�3 � 1), so that the effect of this parameter on the
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Figure 1.12. Uniform heating from below a fluid in a vessel shaped like a rectangular
parallelpiped with sides in the ratios 10 : 4 : 1 produces flow with rotating rolls
parallel to one of the sides. The rolls with dark and light centers rotate in opposite
directions. From van Dyke (1982).

similarity conditions may be neglected.11 It is useful to estimate the value of the
characteristic length � = Jc/(αg) in order to get an idea of the extent to which
this condition is restrictive. We have J = 4.2 × 107 erg/cal, c = 1 cal/g ◦C
and α = 2 × 10−4 for water, and g = 103 cm/s2, from which we find that
� 
 2×108 cm = 2000 km. Thus, when modelling convection in water, even a
layer one kilometer deep can be assumed to be thin, and so �3 can be neglected.
However, when modelling convection in the Earth’s mantle the parameter �3

is of order unity and cannot be neglected.
We should also note one significant fact that follows from the relations

(1.62) for the similarity parameters. If the contribution to the thermal bal-
ance from energy dissipation in the convective motion is neglected, it turns
out that the quantities λ and c enter into the discussion as a ratio rather than
separately.

The parameter �1 is called the Grasshof number, and the following combi-
nations of the parameters in (1.62) are frequently used in the literature:

�1

�2
= αg δTH3

µρ−2λc−1
= Ra,

1

�2
= µc

λ
= Pr. (1.63)

The parameter Ra, the Rayleigh number, is named after the great English physi-
cist who was the first to study the onset of convection in a horizontal layer
theoretically. When a critical value of this parameter,

Ra = Racr 
 657, (1.64)

is reached (Racr does not depend on the second parameter,12 the Prandtl number
Pr) the state in which the fluid in a horizontal layer is at rest becomes unstable,
and the so-called regime of buoyancy-driven convection rolls sets in. In this
regime, the layer breaks up into fluid rolls that rotate in opposite directions
(Figure 1.12). Until the Rayleigh number reaches this critical value, however,

11 We repeat that the correctness of neglecting the effect of a certain parameter is always a strong
assumption, no matter how large or small this parameter may be.

12 The critical value given here is calculated under the assumption that the tangential stresses
vanish at the boundaries of the layer.
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the equilibrium state for a quiescent fluid layer is stable. Later changes in the
convection regime in the horizontal layer are associated with the passage of the
Rayleigh number through other critical values.

The similarity parameters (1.62) indicate that if modelling is carried out in
the same fluid and same gravitational field as pertains for the prototype motion
then the following condition on the model’s temperature difference δT M must
be satisfied:

δT M = δT P

(
H P

H M

)3

. (1.65)

This condition ensures that the model’s convective motion is physically similar
to that of the prototype. Furthermore, as may easily be shown, the dimensionless
parameter for the heat flux q is of the form

� = q

(αg)−1 H−4µ3ρ−2c
. (1.66)

Thus, the rule for scaling the heat flux when modelling in a layer of the same
fluid as the prototype motion takes the following form:

qP = qM

(
H M

H P

)4

, (1.67)

so that the ratio of the heat fluxes in the prototype and in the model must be
inversely proportional to the fourth power of the modelling scale.

As was mentioned above, the influence of the similarity parameter �3 be-
comes appreciable for thick layers. Since this parameter is given by the ra-
tio of the characteristic length scale of the fluid, � = Jc/(αg), and the layer
thickness-, it is strictly speaking impossible to model the phenomenon in a layer
of the same fluid under identical conditions (compare this result with the second
problem).

The present example shows that one must be careful when determining the
similarity parameters. For example, if we assume that the dimensions of me-
chanical energy and thermal energy are independent and therefore do not take
the governing parameter for the mechanical equivalent of heat into considera-
tion then we will not notice the restrictions on the thickness of the model layer.
Meanwhile, the phenomena for thick and thin layers are substantially different;
they are not physically similar, and it is in general not possible to scale the heat
fluxes using the simple relation in (1.67).

Furthermore, it is obvious that if the thermal and mechanical energy were
measured in the same units, i.e., if we were to pass from the LMT�Q class to
the LMT� class, the conclusions reached above would not be affected in any
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respect. Indeed, the difference between the total number of governing param-
eters and the number of governing parameters with independent dimensions
would remain constant, even though the mechanical equivalent of heat had
been removed from consideration. A negligible contribution of viscous dis-
sipation to the thermal balance would then be interpreted to mean that the
phenomenon is not governed by the heat capacity c and thermal conductivity λ

separately. The governing parameter would be their ratio, which appears in the
so-called thermometric conductivity κ = λ/(ρc). This would lead to a decrease
in the number of governing parameters and the disappearance of the similarity
parameter �3.

Problem 5. Derive the rules for modelling the steady motion of row boats.
Compare the velocities of boats accommodating a varying number n of oarsmen,
one, two, four and eight (McMahon 1971).

Solution. It seems natural to make the following assumptions. (a) There is a
geometric similarity between the boats. (b) The volume of a loaded boat per
oarsman G is a constant, characteristic for boats of all classes. This follows from
assuming that the bulk weight of the boat per oarsman, including the oarsman’s
own weight, is constant; we shall consider the oarsmen to be indistinguishable
in weight. (c) The power per oarsman A is a constant, characteristic for all
classes, so the oarsmen are considered as indistinguishable also in power.

The principal forceF that hinders the motion of the boat through the water is,
unlike in the previous exercise, skin friction drag. Indeed, full-scale rowing-tank
tests have shown that the resistance due to leeway and wave-making constitute
together only a tiny part of the total drag. In the range of Reynolds numbers
characteristic for racing, the ‘drag coefficient’

λ = F
ρv2�2

can be considered as a constant. Here ρ is the water density, v is the velocity
of motion, assumed to be steady, and � is the characteristic length scale of the
wetted surface. Therefore the bulk power supporting the motion is

P = Fv = λρv3�2. (1.68)

Obviously the bulk power is proportional to the number n of oarsmen: P = An.
Thus, the velocity of the motion v is a function of the governing parameters

n, A, G and ρ. The dimensions of the parameters in the class RVLN (R is the
dimension of density, V is the dimension of velocity, L is the dimension of
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Figure 1.13. The −1/9 power-law dependence of the rowing time T on the number
of oarsmen n (solid line). This may be compared with racing times over 2000 m,
all at calm or near calm conditions: �, 1964 Olympics, Tokyo; �, 1968 Olympics,
Mexico City; ×, 1970 World Rowing Championships, Ontario; �, 1970 Lucerne
International Championships. After McMahon (1971).

length and N is the dimension of the number n of oarsmen;13 these four can be
considered as independent dimensions) are

[v] = V, [G] = L3

N
, [A] = RV3L2 N−1, [ρ] = R, [n] = N .

(1.69)

So, again referring back to (1.19), m = 0 and k = 4. Using dimensional analysis
we obtain

� = const, � = v

A1/3ρ−1/3G−2/9n1/9
(1.70)

and the final result for the velocity of the boat is

v = const
A1/3

ρ−1/3G−2/9
n1/9. (1.71)

According to (1.71) the time for a fixed distance, say 2000 m, should be inversely
proportional to n1/9. The validity of this result is well illustrated by Figure 1.13.

13 The units of the number of oarsmen in a boat are squad/N (or batallion/N etc.). Military units
are used and it is assumed that there are a fixed number of privates in each unit.
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The examples presented above14 show that dimensional considerations play a
decisive role in establishing rules for modelling and criteria for similarity. The
crucial step in modelling, as in any application of dimensional analysis to cases
where an exact mathematical formulation of the problem is missing, lies in the
proper choice of a system of governing parameters. Often the procedure is as
follows. An investigator takes as governing parameters all quantities that, in his
or her opinion, could possibly have an influence on the phenomenon, no matter
how hypothetical. As governing parameters with independent dimensions the
investigator takes those governing parameters that are definitely known to be
essential, and, with respect to the remaining ones, he or she looks at the nu-
merical values of the corresponding similarity parameters �i . If these values
are very small or very large, the corresponding dimensional parameter bi is
somewhat recklessly considered inessential and is discarded.

In many cases one can actually proceed in this way but it is very important to
note that in general this is not so, and one must be very careful about arguments
such as the above. One should see in them not a proof of the possibility of disre-
garding one parameter or another but a strong conjecture. This last assertion is
obvious: it is not necessarily true that a function � = 	(�1, . . . , �i , . . . , �m)
tends to a definite and moreover finite non-zero limit for small or large values
of the argument �i . Only the existence of such a limit (and in fact even of a
sufficiently rapid convergence to it) can justify neglecting a governing param-
eter when the corresponding similarity parameter is very large or very small.
Subsequent discussion will show us that crudeness of analysis here can lead to
serious mistakes.

14 Very instructive also are similarity considerations for atmospheres of planets (Golitsyn 1973).



Chapter 2

Self-similarity and intermediate asymptotics

The statement that a certain phenomenon is steady, i.e. time independent, is ob-
viously very significant: there is then no need to trace its evolution in time. Of
similar significance is the statement that the phenomenon is self-similar. This
means that the spatial distributions of the characteristics of the phenomenon
(such as flow velocity, stress, electric current, etc.), U(r, t), vary with time while
remaining geometrically similar. In other words, there exist time-dependent
scales U0(t) and r0(t) such that measured in these scales the phenomenon be-
comes time independent:

U(r, t) = U0(t)f
(

r
r0(t)

)
.

We considered a remarkable self-similar phenomenon in the Introduction:
the propagation of very intense blast waves. We will consider here, in detail,
groundwater flow after very intense flooding. Our goal is to demonstrate, us-
ing this transparent and mathematically very simple example, the application of
dimensional analysis for constructing self-similar solutions to the partial differ-
ential equations of mathematical models. In particular, we want to demonstrate
the principal difficulties which can arise in such an application.

2.1 Gently sloping groundwater flow. A mathematical model

Consider (Figure 2.1) a stratum consisting of porous rock, for example, sand-
stone, on top of an underlying horizontal impermeable bed and containing a
dome of groundwater or some other liquid, for example, liquid waste. The rock
is assumed to be a porous medium which is permeable for fluid flow. Therefore,
under the influence of gravity the groundwater dome will spread out along the
impermeable bed.

52
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Figure 2.1. A groundwater dome is formed in a porous stratum.

We will consider the one-dimensional case, when all flow characteristics
depend on the horizontal space coordinate x and the time t only.

The gently sloping fluid motion in the porous medium is slow, so that the
water pressure within the dome may be assumed to obey the hydrostatic law
p = ρg(h − z), where h is the groundwater level, ρ is the fluid density, g is
the gravitational acceleration and z is the vertical coordinate reckoned from
the bed. (We neglect the pressure of the gas in the porous medium above the
dome.) Thus the total ‘head’, i.e. the convenient quantity H = p + ρgz often
used in hydraulics, remains constant and equal to ρgh throughout every vertical
column of height h in the groundwater dome.

The fundamental law governing slow motions in a porous medium is the
Darcy law, named after the French engineer who discovered it in the middle of
the nineteenth century while investigating the public fountains in Dijon. Darcy’s
law claims that (for details see the classic books Polubarinova-Kochina 1962;
Bear 1972) the flux of fluid (the flow rate per unit time and per unit total cross-
sectional area1) is proportional to the gradient of the total head and inversely
proportional to the fluid viscosity µ. In the case under consideration, of gently
sloping flow, the groundwater head H is constant throughout any vertical in the
dome: H = H (x, t) and according to Darcy’s law the total flux q through an
area of unit width is equal to

q = − k

µ
h∂x H = − k

µρg
H∂x H. (2.1)

1 It is essential that the total cross-sectional area is considered, not just the cross-sectional area of
the pores open for fluid motion.
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h(x, t)

q(x, t)
h(x + dx, t)

q(x + dx, t)

m ∂t h dx dt

x + dxx

Figure 2.2. Diagram for deriving the equation describing gently sloping ground-
water motion.

Here k is the permeability coefficient, a constant property of a porous medium.
It has the dimension of area (squared length) and its magnitude usually lies in
the range 10−9 − 10−8 cm2. Further, we will use another property of the porous
medium, its porosity m, the fractional volume of the medium occupied by pores;
usually m is of order 10−1. It can be shown (Polubarinova-Kochina 1962; Bear
1972) that the fractional area of the pore cross-sections also can be taken as
equal to m. In calculating the flux we have divided the flow rate by the total
area, which is partly occupied by pore cross-sections. Therefore the average
fluid velocity in the pores is equal to

u = − 1

m

k

µ
∂x H. (2.2)

To derive the basic equation for the head H , or that for the groundwater level
h, we consider a section of the stratum between adjacent cross-sections at x and
x + dx (Figure 2.2). The change in the quantity of water in this section during
the time interval between t and t + dt , indicated by the shaded area, is equal
to m ∂t h dx dt . However, it is also equal to the difference −∂x q dx dt between
the fluxes over the cross-sections at x and x +dx because the inflow or outflow
within the volume of the section between them is assumed to vanish, i.e. for the
present we assume no absorption. Therefore we obtain, using expression (2.1)
for the total flux, the equation

m∂t h = k

µρg
∂x (H∂x H ) i.e. ∂t H = κ∂2

xx H 2 (2.3)

where

κ = k

2mµ
. (2.4)
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Equation (2.3) is named the Boussinesq equation after the French scientist
J. Boussinesq, who derived it in 1904. Equation (2.3) should be completed by
an initial condition

H (x, 0) = H0(x), (2.5)

where H0(x) is a non-negative function, and by appropriate boundary condi-
tions. Equation (2.3) and the initial and boundary conditions form the general
mathematical model of the phenomenon under consideration.

2.2 Very intense concentrated flooding:
the self-similar solution

Assume that at the moment t = 0 a groundwater dome is formed very quickly,
so we can consider it as formed instantaneously. The dome is formed between
sections x = −� and x = �, and it is concentrated, so that its horizontal extent
2� is assumed to be small in comparison with the horizontal extension of the
stratum. The initial integral head of the dome is equal to∫ �

−�

H (x, 0) dx = I. (2.6)

The flooding is very intense, so that the mean initial water head in the dome
I/(2�) is assumed to be large in comparison with the uniform initial water head
Hi in the stratum outside the dome. Without loss of generality it is possible to
represent the initial groundwater-head distribution in the following form, useful
for subsequent dimensional analysis:

H0(x) = I

�
f0

(
x

�

)
(2.7)

where f0 is a dimensionless function of its dimensionless argument. Thus the
groundwater head at a subsequent time t depends on the arguments t , I , κ , Hi ,
� and x , so that

H = f (t, I, κ, Hi , �, x). (2.8)

It is easy to show that the dimensions of the involved quantities are as follows:

[H ] = [Hi ] = M

LT 2
, [t] = T, [I ] = M

T 2
,

[κ] = L3T

M
, [�] = [x] = L . (2.9)

Three of the governing, parameters, t , I and κ , have independent dimensions.
The dimensions of the remaining parameters can be expressed in terms of the
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dimensions of the three parameters with independent dimensions:

[H ] = [Hi ] = [t]−1/3[I ]2/3[κ]−1/3, [x] = [�] = [
(Iκt)1/3

]
. (2.10)

The standard procedure of dimensional analysis, described in Chapter 1, gives
the following results:

� = H

I 2/3κ−1/3t−1/3
= � (�1, �2, �3) ,

(2.11)

�1 = x

(Iκt)1/3
, �2 = �

(Iκt)1/3
, �3 = Hi

I 2/3κ−1/3t−1/3

so that

H = I 2/3

(κt)1/3
�

(
x

(Iκt)1/3
,

�

(Iκt)1/3
,

Hi

I 2/3(κt)−1/3

)
. (2.12)

This result seems disappointing: instead of the two independent variables, x and
t , in the original problem formulation we have obtained, after using dimensional
analysis, three – a complication rather than a simplification of the problem!
However, following exactly the example of G.I. Taylor (see the Introduction),
we can replace the problem by an idealized one: assume that the flooding is
concentrated in the section x = 0, so that initially � = 0, and assume also that
the initial water head in the stratum is negligible, so that Hi = 0 (the flooding
is supposed to be very intense and concentrated). Then we obtain

H =
(

I 2

κt

)1/3

�(ξ, 0, 0) =
(

I 2

κt

)1/3

F(ξ ), ξ = x

(Iκt)1/3
, (2.13)

i.e. the solution of the idealized problem has the property of self-similarity;
see the equation at the start of the chapter. Substituting (2.13) into the basic
equation (2.3) we obtain an ordinary differential equation for the function F(ξ ):

d2(F2)

dξ 2
+ ξ

3

d F

dξ
+ F

3
= 0. (2.14)

This equation is in terms of total derivatives. We obtain easily by integration

d F2

dξ
+ ξ F

3
= const. (2.15)

The constant on the right-hand side of (2.15) must be equal to zero since
the solution must be finite and symmetric, so that F ′(0) = 0. The next
integration gives

F = 1

12

(
ξ 2

f − ξ 2
)
, (2.16)
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where for future convenience we denote the second constant of integration as
ξ 2

f /12; the subscript refers to the front of the flow. Thus the solution to the
ordinary differential equation (2.14) appears in the form

F =



1

12

(
ξ 2

f − ξ 2
)
, 0 ≤ |ξ | ≤ ξf

0, |ξ | ≥ ξf

(2.17)

so that the solution (2.13) to be obtained can be represented in the form

H =




1

12

(
I 2

κt

)1/3 (
ξ 2

f − x2

(Iκt)2/3

)
, 0 ≤ |x | ≤ xf = ξf(Iκt)1/3

0 |x | > xf = ξf(Iκt)1/3

(2.18)

Two points remain to be clarified: the value of the constant ξf has not yet
been determined and we need to explain the finite discontinuity of the derivative
∂x H at the water fronts x = ±xf, where the head H vanishes. We start from the
second point and note that for physical reasons both the head H and the total
flux q given by (2.1) must be continuous. (Mathematically this means that no
singularities such as δ(x − xf) or δ′(x − xf) on the right-hand side of (2.3) are
allowed during the spreading of the mound.) Therefore, where H �= 0 both H
and ∂x H should be continuous. However, at the water fronts, x = ±xf, H = 0
and therefore the finite discontinuity of the derivative ∂x H that we obtained
is allowed, because the flux H∂x H at this point remains continuous. Indeed,
at |x | > xf the head H is equal to zero (remember that an idealized problem
where Hi = 0 is being considered) and therefore H∂x H is zero at |x | > xf.
At the same time, according to (2.18) H∂x H = 0 at x = xf. To determine the
constant ξf we integrate equation (2.3) from x = −xf to x = xf. We obtain

d

dt

∫ xf

−xf

H (x, t) dx = κ ∂x H 2

∣∣∣∣
xf

−xf

= 0, (2.19)

so that the integral head at time t ,

I (t) =
∫ xf

−xf

H (x, t) dx, (2.20)

is constant in time. Therefore the integral head is equal to its initial value I ,
and we obtain

∫ xf

−xf

1

12

[
I 2

κt

]1/3 [
ξ 2

f − x2

(Iκt)2/3

]
dx = I, (2.21)
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so that

ξ 2
f

12

∫ ξf

−ξf

(
1 − ξ 2

ξ 2
f

)
dξ = 1. (2.22)

We conclude that ξf = 3
√

9, and the final form of the solution appears to be very
simple:

H =




3
√

3

4

(
I 2

κt

)1/3 (
1 − x2

(9Iκt)2/3

)
, 0 ≤ |x | ≤ xf,

0, |x | ≥ xf,

(2.23)

where the coordinate of the extending water front is given by

xf = (9Iκt)1/3. (2.24)

It is of importance that in contrast with the linear equation of heat conduction one
has here a finite speed of propagation: the perturbation zone −xf(t) ≤ x ≤ xf(t)
is bounded for any finite time.2 The solution (2.23) belongs to a more general
class of solutions obtained by Zeldovich and Kompaneets (1950) and Barenblatt
(1952). Later the solutions of this class were obtained also by Pattle (1959).

2 We consider here for comparison the solution, of concentrated-instantaneous-source type, for
the linear equation

∂t H = κ∂2
xx H (I)

satisfying the same initial condition (2.7) and Hi = 0, � = 0. The solution depends on the
parameters t , the integral head I determined by (2.6), x and κ . Their dimensions in this case are
as follows:

[H ] = M

LT 2
, [t] = T, [I ] = M

T 2
, [x] = L , κ = L2

T
. (II)

Dimensional analysis gives in the same way as previously

H = I√
κt

�(ξ ), ξ = x√
κt

. (III)

Substituting (III) into equation (I ) we obtain for the function � an ordinary differential equation,

d2�

dξ2
+ ξ

2

dφ

dξ
+ �

2
= 0. (IV)

Integration of this equation along the same lines as (2.14) gives

� = 1

2
√

π
e−ξ2/4, (V)

so that the well-known solution

H = I

2
√

πκt
e−x2/(4κt) (VI)

is obtained. Thus, we see that in the linear case the perturbation is different from zero
at arbitrarily large x for arbitrary small times – an infinite speed of perturbation propagation.
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In fact, the solution (2.23) is not, as we have already mentioned, a classi-
cal solution to the differential equation (2.3). Indeed, equation (2.3) contains
a space derivative of the second order; meanwhile even the first space deriva-
tive of solution (2.23) is discontinuous. Therefore an important mathematical
question appeared when solutions of the type (2.23) were first obtained: in
what sense is (2.23) a solution of the partial differential equation (2.3) and is it
unique? These questions were answered in the paper by Oleynik, Kalashnikov
and Chzhou Yui-lin (1958). They introduced the natural class of so-called weak
(generalized) solutions of the equations of the type (2.3) and proved the ex-
istence and uniqueness of such solutions. A very special property of solution
(2.23) is, as mentioned above, the finite speed of propagation. This property
was rigorously proved in the above-mentioned paper (note also an earlier paper,
Barenblatt and Vishik 1956). Later, investigation of the solutions to equations
of the type (2.3), now known in mathematical literature as the porous-medium
equations, became the subject of research for many mathematicians. The fun-
damental reviews by Kalashnikov (1987) and Aronson (1986) are highly rec-
ommended in this respect.

The solution (2.23) is a self-similar one: there exist time-dependent scales of
the head and length,

H0(t) = H (0, t) =
3
√

3

4

(
I 2

κt

)1/3

, xf(t) = (9Iκt)1/3,

such that the head distribution at various instants can be represented in the form

H = H0(t) f

(
x

xf(t)

)
. (2.25)

Hence it follows that if we describe this distribution in reduced, self-similar,
coordinates H/H0(t), x/xf(t) then the head distributions for any value of time
are represented by a single curve.

The same situation happens for G.I. Taylor’s self-similar solution to the
problem of a very intense explosion, considered in the Introduction: the distri-
butions of every property u can be represented in the self-similar form

u = u0(t) f

(
r

rf(t)
, γ

)
(2.26)

where γ is a constant adiabatic index, rf(t) = C(γ )(Et2/ρ0)1/5, u0(t) = ρ0 for
the density, u0(t) = ρ

3/5
0 E2/5t−6/5 for the pressure and u0(t) = (Et−3/ρ0)1/5

for the velocity.
Self-similar solutions are encountered in many branches of mathematical

physics. Obtaining a self-similar solution has always been regarded as a success
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by researchers. The basic point is that in many cases self-similarity allows one to
reduce a problem involving partial differential equations (which are frequently
nonlinear, so that this is especially important) to one involving ordinary dif-
ferential equations. According to the hierarchy of difficulties that existed in
the pre-computer era, this made certain studies easier to carry out. Moreover,
self-similar solutions have been widely used as standards for evaluating all
kinds of approximation method, irrespective of the immediate urgency of the
problems described by the self-similar solutions themselves. The appearance
of computers changed the attitude towards self-similar solutions but did not
reduce the need for, and interest in, them: self-similarity continued to attract
even more attention than before, but now as a deep physical property of a pro-
cess which indicates that it stabilizes itself in a certain way. The statement that
a phenomenon has stabilized or is entering a steady-state regime is, clearly,
highly informative. The statement that a phenomenon is entering a self-similar
regime is every bit as informative.

Self-similar solutions are always solutions to limiting, ‘idealized’, problems
for which the parameters having the same dimensions as the independent vari-
ables are equal to zero or infinity. Thus in the very-intense-explosion problem
the initial energy was assumed to be concentrated in a point, the explosion was
assumed to be instantaneous and the initial air pressure in the ambient atmo-
sphere to be negligibly small. Also, in the concentrated flooding problem con-
sidered above the horizontal extent of the initial dome was considered to be equal
to zero and the initial water head in the stratum to be negligibly small. If this had
not been the case, self-similarity would not have existed; see the relation (2.12).
Therefore, for a long time self-similar solutions were treated by most researchers
as though they were merely isolated ‘exact special solutions’ to very special
problems, elegant, sometimes useful but extremely limited in significance.

It was only gradually realized that these solutions were actually of much
broader significance. In fact, self-similar solutions turn out not only to describe
the behaviour of physical systems under some special conditions but also to de-
scribe the ‘intermediate-asymptotic’ behaviour of solutions to broader classes
of problems, i.e. the behaviour in the regions where these solutions have ceased
to depend on the fine details of the initial conditions or boundary conditions
but where the system is still far from its final equilibrium state. This situation
is common, and it greatly increases the significance of self-similar solutions.

2.3 The intermediate asymptotics

We will now give an exact definition of intermediate asymptotics. As a reminder,
an asymptotic representation, or an asymptotics for short, is an approximate
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representation of a function valid in a certain range of independent variables.
The intermediate asymptotics for a phenomenon is determined in the fol-
lowing way. Assume that in the phenomenon under consideration there exist
two values of an independent variable x, x1 and x2, having widely different
magnitudes:3

x1 �� x2.

Then the asymptotic representation of certain properties of the phenomenon in
the range

x1 � x � x2

corresponding to values of the independent variable x that are large in com-
parison with the first scale x1 but small in comparison with the second scale
x2 is called the intermediate asymptotics. More precisely, if in a problem we
have two widely different scales x1 and x2 in the values an independent variable
x then we call the intermediate asymptotics an asymptotic representation for
x/x1 → ∞ but x/x2 → 0.

As mentioned earlier, self-similar solutions are of intrinsic interest not only,
and not mainly, as exact solutions of isolated, albeit urgent, specific problems but
above all as intermediate-asymptotic representations of the solutions to much
wider classes of problems. We will demonstrate this point now for the problem of
groundwater dome evolution after very intense concentrated flooding, presented
in the previous section. In fact, the flooding is concentrated not in a single section
x = 0 of the stratum, as was assumed in the ideal-problem formulation, but in
a section of finite width 2�. Also, the initial water head in the stratum Hi is not
equal to zero. Therefore in addition to the dimensionless argument �1 = ξ =
x/(Iκt)1/3, two other arguments appeared for the function � in (2.12):

�2 = �

(Iκt)1/3
, �3 = Hi

I 2/3κ−1/3t−1/3
. (2.27)

It is intuitively clear that the fine details of the initial dome shape and its
formation have an effect only at the early stage when the dome is spread to a
distance of the order of its initial width �. We will abandon the consideration
of such details, i.e. we shall be interested in the dome spreading only when the
fluid front has travelled distances large in comparison with �. This means that
xf 	 �. However, according to (2.24) xf is of the order of (Iκt)1/3; it follows that
here we must have t 	 �3/(Iκ). For these values of t the parameter �2 is much

3 The symbol a �� b means that there exists an interval in the values of a variable y such that
y 	 a but at the same time y � b.
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smaller than unity. One ordinarily assumes that if some similarity parameter
has a value much smaller or much larger than unity then the dependence on that
parameter, and consequently also on the corresponding dimensional parameter
can be neglected. In the present case this turns out to be correct (see the next
chapter), so that for t 	 �3/(Iκ) = T1 the dependence of the solution on the
dimensionless parameter �2 = �/(Iκt)1/3, and therefore on the dimensional
parameter �, is unimportant.

Further, since the flooding is very intense, the head in the region traversed
by the dome is at first very large, much greater than the initial water head
in the stratum Hi . The head in the dome is of the order of I 2/3κ−1/3t−1/3,
therefore at t � I 2/(κ H 3

i ) = T2 the parameter �3 � 1 and the initial head
can be considered (the same logic!) as unimportant. Keeping in mind that for
such t values xf � I/Hi , we find that for sufficiently intense and sufficiently
concentrated flooding (large I and small �) the characteristic upper and lower
time scales of the problem,

T1 = �3

Iκ
, T2 = I 2

κ H 3
i

, (2.28)

and the upper and lower length scales of the problem,

L1 = �, L2 = I

Hi
, (2.29)

are strongly separated from each other, i.e. they are such that T1 �� T2 and
L1 �� L2. The self-similar solution (2.23) describes the phenomenon of very
intense and concentrated flooding at times and distances from the center of
flooding large enough to make the influence of the fine details of flooding,
including the initial width of the dome, disappear and at the same time small
enough to make the initial groundwater head in the stratum negligible:

�3

Iκ
� t � I 2

κ H 3
i

� � x � I

Hi
.

(2.30)

The situation is analogous to the problem of very intense blast waves formed
after an atomic explosion. In the latter case we must take into consideration
that the energy release occurs not at a point but in a sphere of radius r0 (r0

corresponds to the time when the intense shock wave outstrips the thermal
wave) and that outside this sphere the ambient gas of density ρ0 is under a
pressure that is not zero but has some finite value p0. The solution discussed in
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the Introduction represents an intermediate asymptotics for

T1 =
(

ρ0r5
0

E

)1/2

� t �
(

ρ0 E2/3

p5/3
0

)1/2

= T2,

(2.31)

L1 = r0 � r �
(

E

p0

)1/3

= L2,

i.e. for times, and at distances from the centre of the explosion, that are suffi-
ciently large that the influence of the size of the initial energy discharge disap-
pears and at the same time sufficiently small that the influence of the counter-
pressure p0 is not yet felt.4 It is recommended that the reader should check the
details of this example as an exercise: the discussion is completely analogous.

These examples clarify the basic idea of a self-similar solution as an inter-
mediate asymptotics. The idea has been widespread that obtaining self-similar
solutions is always connected with dimensional analysis, so that by applying
dimensional analysis to the formulation of an idealized problem that has self-
similar solutions one can always obtain the form of the solutions, i.e. a relation
for the self-similar variables. Then, after obtaining an exact solution it should
be easy to find a class of non-idealized problems for which the self-similar
solution considered is an intermediate asymptotics. In fact, this is actually the
situation for some self-similar solutions: we have considered examples and have
indicated a general approach which is applicable in such cases.

As a rule, however, the situation is different: there exist extensive classes of
problems for which a self-similar intermediate asymptotics exists but cannot be
obtained from the original formulation of the problem by dimensional analysis.
The form of self-similar variables, generally speaking, is obtained from the so-
lution of certain nonlinear eigenvalue problems. It is not a question here of rare
exceptions but rather of the rule: the set of self-similar solutions which cannot
be obtained from dimensional considerations is considerably richer than the set
of self-similar solutions whose form is completely determined by dimensional
analysis.

4 An historic note: Ya.B. Zeldovich once told the author that, sometime in the early 1940s,
L.D. Landau showed him (long before anything about this subject was published) the
asymptotic solution to a gas dynamics equation similar to one presented in the Introduction.
Zeldovich persuaded Landau that this solution had no terrestrial applications (perhaps only
some astrophysical ones?) because a ball of the strongest explosive known at that time,
tri-nitrotoluol, would be too large for there to be any niche for such a solution; using modern
language, there would be no interval for intermediate asymptotics. Traces of this discussion can
be found in an early book of Zeldovich (1946), where the ‘Landau asymptotics’ is mentioned.
Very soon both Zeldovich and Landau started to work in the Soviet analog of the Manhattan
project and their views definitely changed.
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Subsequent examination will clarify the situation here. Modifying the flood-
ing example considered above in such a way that at first glance all dimensional
considerations used, and hence also everything deduced from them, must re-
main valid, we will arrive at a contradiction. Resolving the contradiction will
lead us to a new class of self-similar solutions; we will call them self-similar
solutions of the second kind.

The concept of intermediate asymptotics was formally introduced into math-
ematical physics by Ya.B. Zeldovich and the present author (see Barenblatt
and Zeldovich 1971, 1972; Barenblatt 1959; Zeldovich and Raizer 1966, 1967)
although it was implicitly used long before. In fact, this concept has impor-
tant general significance. For instance, it is always used in our perception of
visual art; see, for example, the painting by Salvador Dali, reproduced as the
frontispiece. This painting has an instructive story. In Scientific American, in
1973, there appeared an article ‘The recognition of faces’ by Leon Harmon, a
computer scientist then working at IBM. In this article several pictures were
represented by sets of tiles, each one of which was a monochromatic square.
The first example used 560 such squares to represent, in color, Leonardo’s Mona
Lisa. I used this picture in an earlier book (Barenblatt 1996) as an instructive
example, illustrating the idea of intermediate asymptotics. But Harmon’s arti-
cle contained another example: a tiled black-and-white picture of Lincoln (see
Figure 2.3) composed of 252 monochromatic squares. Its basis is widely known:
the 1864 photograph used to make the $5 bill. And this same tiled picture in-
spired Salvador Dali to create the painting shown in the frontispiece, where he
used other tiles for different images, including Harmon’s original picture and
paintings of his wife Gala. This painting is an especially remarkable illustration
of the concept of inermediate asymptotics because it is also multiscale!

Indeed, generally we look at paintings from distances large enough not to see
the brush-strokes but at the same time small enough that we can enjoy not only
the painting as a whole but also its important details. Remember also Gulliver’s
Travels by Jonathan Swift. Gulliver’s impressions of the fine details of the skin
of a giant Brobdingnag beauty, who had the custom of putting him upon her
breast, are especially instructive. It is clear from Gulliver’s description that her
admirers restricted themselves to an intermediate asymptotic perception. Also,
the idea of intermediate asymptotics was well presented by the Russian poet
Alexander Block in his poem ‘The retribution’:

Rule out the accidental features
And you will see: the world is marvellous

(this stanza was translated from the Russian by Sir James Lighthill).
It is the same thing in any scientific study. The primary thing in which the

investigator is interested is the development of the phenomenon for intermediate
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Figure 2.3. The photograph of Abraham Lincoln on a $5 bill represented (Harmon
1973) by 14 × 18 = 252 tiles (monochromatic squares) is an example of an
intermediate asymptotics. Thus, at some intermediate distance Lincoln’s portrait
is easily recognizable. Close up, Lincoln’s image disappears and at large distances
the image becomes a blur – in effect it has disappeared again.

times and distances away from the boundaries such that the effects of accidental
features or fine details in the spatial structure of the boundaries have disappeared
but the system is still far from its ultimate equilibrium state. This is precisely
where the underlying laws governing the phenomenon appear most clearly;
therefore, a chosen intermediate asymptotics is of primary interest in every
scientific study.

2.4 Problem: very intense groundwater pulse flow – the
self-similar intermediate-asymptotic solution

Consider the groundwater flow at a bank of a river or channel after a short intense
surge (or the penetration of a dam separating a reservoir of liquid waste). The
bank is considered as a horizontal porous stratum lying on an impermeable bed,
its horizontal extent being large (Figure 2.4). At the vertical boundary x = 0 the
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0
(a) (b)

river stratum

h(0, t) h(x)

hmax

h0

−τ t 0 x

Figure 2.4. (a) The groundwater level at the boundary x = 0 as a function of time.
(b) The schematic shape of the groundwater dome in the river bank at an arbitrary
time t > 0.

river, channel or reservoir contacts the stratum, which is assumed to be semi-
infinite, 0 ≤ x < ∞. The problem is schematically formulated as follows. At
the initial moment, which we select as t = −τ , the water level at the vertical
boundary x = 0 starts to grow and quickly reaches a maximum level h0 much
larger than the initial groundwater level in the stratum. After a short time τ , i.e.
at t = 0, the water level at the boundary x = 0 has returned to its initial value.

Solution. We apply to the subsequent flow equation (2.3) for the water head
H = ρgh. The boundary condition at the vertical boundary of the stratum
x = 0 takes the form

H (0, t) = ρgh0 f (t/τ ) = ρgh0 f (θ ). (2.32)

Here the function f (θ ), θ = t/τ , is a non-dimensional function of its non-
dimensional argument; it is equal to zero at θ = −1, is non-negative at −1 <

θ < 0, reaching a maximum at a certain value of θ in this range and is equal to
zero at θ ≥ 0.

As before we consider the initial water head in the stratum to be negligible
and so assume an initial condition at t = −τ of the form

H (x, −τ ) ≡ 0, 0 ≤ x < ∞. (2.33)

An accurate description of the function f (θ ) is in fact not needed, because
we are interested in the flow at times t that are large enough that t 	 τ but not
so large that the water tongue has reached the outer boundary of the stratum.

Multiplying equation (2.3) by x and integrating from x = 0 to x = ∞ (in
fact, to the water front xf), we obtain using the boundary conditions that the
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‘dipole moment’ of the water head distribution,

J (t) =
∫ xf(t)

0
x H (x, t) dx, (2.34)

remains invariant for t > 0, so that J (t) = J (0) = J , where

J (0) =
∫ xf(0)

0
x H (x, 0) dx . (2.35)

The functions H (x, 0) and xf(0) are determined by the fluid inflow into the
stratum during the surge time −τ ≤ t ≤ 0.

The intermediate asymptotics of the solution is determined as before by the
the time t and the constant κ entering the basic equation (2.3). However, instead
of the total head I , which in this case is not conserved at t > 0 due to the outflow
of the fluid through the boundary x = 0, the solution is determined by the initial
‘dipole moment’ of the water head distribution J , which is conserved and whose
dimension is obviously L MT −2.

Arguments completely analogous to the derivation of the solution (2.23),
(2.24) show that the self-similar intermediate-asymptotic solution takes in this
case the form

H =
(

J

κt

)1/2

�(ζ ), ζ = x

xf(t)
, (2.36)

where

�(ζ ) =




√
5

3
ζ 1/2

(
1 − ζ 3/2

)
, 0 ≤ ζ ≤ 1

0, ζ ≥ 1.

(2.37)

Here xf(t) is the length of the water tongue, the horizontal extent of the ground-
water dome, and is equal to

xf(t) = 2(5Jκt)1/4. (2.38)

The solution (2.36), (2.37) is presented in Figure 2.5 in reduced coordinates
H (x, t)/Hmax(t), x/xf(t). Here Hmax(t) = ρghmax(t); hmax(t) is the maximum
height of the groundwater dome at time t . This solution was obtained by
Barenblatt and Zeldovich (1957); see also Zeldovich and Raizer (1967) and
Barenblatt et al. (1990).



68 2 Self-similarity and intermediate asymptotics

0
0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8
x/xf(t)

H(x, t)/Hmax(t)

Figure 2.5. The self-similar groundwater dipole solution in reduced coordinates.

It will be useful for the reader to show that the solution (2.36) is an interme-
diate asymptotics of the complete solution at

T1 = τ � t � T2 = J

κ H 2
i

,

(2.39)

L1 = (Jκτ )1/4 � x < L2 =
(

J

Hi

)1/2

.

In this intermediate time–space interval the formation details of the initial head
distribution do not play an essential role, and at the same time the maximum
value of the water head in the water dome still exceeds substantially the initial
water head in the stratum.



Chapter 3

Scaling laws and self-similar solutions that
cannot be obtained by dimensional analysis

To obtain the scaling law for very intense blast wave propagation,

rf = C(γ )

(
Et2

ρ0

)1/5

,

G.I. Taylor, as demonstrated in the Introduction, had to replace the actual prob-
lem by an idealized one, that of a point explosion in a gas under zero pressure. In
the problem of groundwater mound evolution considered in Chapter 2 we fol-
lowed exactly the same method: we replaced the actual problem by an idealized
one, that of infinitely concentrated instantaneous flooding with zero initial water
head in the stratum. For this idealized problem we were able to demonstrate us-
ing dimensional analysis alone that the solution is self-similar and to determine
the self-similar variables, i.e. the scaling laws. After obtaining the complete
solution to the idealized problem we demonstrated that this self-similar solu-
tion, like the solution to the idealized problem of a very intense explosion, is
an intermediate asymptotics of the solutions to a much more general class of
problems.

However, the situation when everything including scaling laws can be ob-
tained by dimensional analysis alone is in fact very rare. As a rule it turns out
that, although a problem may possess a self-similar solution and scaling laws,
dimensional analysis alone is insufficient to prove self-similarity starting from
an idealized formulation and to find the scaling laws. We will demonstrate this
more general case by modifying, seemingly slightly but in fact very essentially,
the problem of groundwater dome spreading.

3.1 Formulation of the modified groundwater flow problem

Assume now that during the motion of a groundwater dome some part of the
fluid is absorbed by the porous medium, for example by capillary imbibition.

69
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It is easy to see that the basic balance equation (2.3) should be replaced in this
case by the equation

m∂t h = k

µρg
∂x (H∂x H ) + Q. (3.1)

Here Q is the specific inflow or outflow rate, i.e. the volume of fluid generated
or absorbed per unit time per unit bulk volume of the medium.

Assume further that the quantity Q is proportional to the material derivative
of the fluid volume between x and x + dx (Figure 2.2):

Q = α
d(mh)

dt
, (3.2)

where α is a small constant. The material derivative of h is given by

dh

dt
= ∂t h + u∂x h,

where we emphasize that the fluid velocity u is different from the filtration
velocity (the flux per unit of the total cross-sectional area). Our next modification
of the model takes into account that the rock is fissurized. This means that in
the rock there exists a network of fissures, or cracks, separating porous blocks.
The fissures occupy a much smaller part of the total volume of the rock than the
pores, so that the ‘fissure porosity’ mf is much less than the porosity of the
blocks: mf � m. However, the fissures are much wider than the pores, so that
the fluid is contained in the porous blocks but flows between them mainly in
the fissures. Therefore the fluid velocity is determined by the relation

u = − 1

mf

k

µ
∂x H (3.3)

rather than by (2.2) as it was for purely porous rocks. We obtain

Q = α
d(mh)

dt

= αm∂t h − k

µ
α

m

mf
(∂x H )(∂x h)

= 1

ρg

[
αm∂t H − k

µ
α

m

mf
(∂x H )2

]
. (3.4)

Substituting (3.4) into (3.1) we obtain the modified equation

m(1 − α)∂t H = k

µ

[
H∂2

xx H +
(

1 − α
m

mf

)
(∂x H )2

]
.

Bearing in mind that α is small we neglect it on the left-hand side. On the
right-hand side α is multiplied by a large number, m/mf, the ratio of the block
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porosity to the fissure porosity. Therefore the term αm/mf = c on the right-
hand side remains, and we come to the modified equation for the groundwater
head H (x, t), the filtration–absorption equation:

∂t H = 2κ[H∂2
xx H + (1 − c)(∂x H )2]. (3.5)

Here the constantκ is, as before, determined by (2.4):κ = k/(2mµ). When there
is no absorption, c = 0 and we return to equation (2.3). The filtration–absorption
equation (3.5) has been the subject of deep mathematical investigation (see
Bertsch, Dal Passo and Ughi 1986, 1992 and the references therein).

We will try now to solve for the modified equation (3.5) the same idealized
problem, of very intense concentrated flooding. In this case, to account for
the modification of (2.3) the dimensionless constant c should be added to the
arguments of the function f in relation (2.8); this obviously cannot change
anything in an application of dimensional analysis.

3.2 Direct application of dimensional analysis
to the modified problem

Repeating exactly the same arguments as in the case of no absorption, we obtain
instead of (2.12) the following expression for the groundwater head:

H = I 2/3

(κt)1/3
�

(
x

(Iκt)1/3
,

�

(Iκt)1/3
,

Hi

I 2/3(κt)−1/3
, c

)
. (3.6)

The relation (3.6) within the frames of the proposed problem formulation is
indisputable; as yet we have made no assumptions. Now let us try to do exactly
as we did in the previous chapter for the case of no absorption. We replace the
problem by an idealized one, i.e. we assume that

1. the dome is concentrated initially at x = 0, i.e. � = 0, and
2. the initial groundwater head in the stratum is negligible, Hi = 0.

We obtain for the head H (x, t) and the water-front position xf(t),

H = I 2/3

(κt)1/3
�(ξ, 0, 0, c) = I 2/3

(κt)1/3
F(ξ, c),

ξ = 	1 = x

(Iκt)1/3
, xf = ξf(c)(Iκt)1/3. (3.7)

Relations (3.7) show readily that for c > 0 something is incorrect in our
arguments. Indeed, integrating relation (3.5) with respect to x from −xf to xf

and using the condition of no flux, H∂x H = 0, at the water fronts x = −xf and
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x = xf (the motion is symmetric), we obtain

d

dt

∫ xf

−xf

H (x, t) dx = −2κc
∫ xf

−xf

(∂x H )2dx < 0. (3.8)

Meanwhile according to (3.7) the integral head I (t) should be constant:

I (t) =
∫ xf

−xf

H (x, t) dx = I 2/3

(κt)1/3
(Iκt)1/3

∫ ξf

−ξf

F(ξ, c) dξ = const I, (3.9)

so that d I (t)/dt should be equal to zero.
This contradiction shows that a self-similar solution to the equation (3.5) in

the form (3.7) at c > 0 does not exist.

3.3 Numerical experiment. Self-similar
intermediate asymptotics

Thus, seemingly there appears a paradox. Using exactly the same arguments
which led us to a simple solution (2.23) for the case of no absorption, c = 0,
we came to the conclusion that for c > 0 the solution predicted by dimensional
analysis does not exist.

To understand what has happened let us turn to the results of numerical
experiment. The initial condition

H (x, 0) = I

�
f0

(
x

�

)
, I =

∫ �

−�

H (x, 0) dx (3.10)

for � = 0 is represented by a generalized function, a delta function, and this
cannot be introduced into the computer code. Therefore the initial condition
(3.10) is used, assuming � to be finite. The space coordinate x can be renor-
malized as well as the time t ; therefore we can take � = 1 in the numerical
experiments, and thus the function f0(ζ ) is assumed to be represented as a
rectangle slightly ‘smoothed’ at the edges:

f0(ζ ) =
{

1, |ζ | ≤ 1,

0, |ζ | > 1.
(3.11)

This means that I = 2, and the value 1/2 was taken for κ . The numerical ex-
periments were performed by Dr A.E. Chertock for the values c = 0, c = 1/2,
c = 2/3, and c = 3/4.

The results of the experiments (see Figures 3.1–3.3) are instructive. For all
values of c it was found that H (0, t) and xf tend at large times to scaling laws:

H (0, t) = A(κt)−λ, xf(t) = B(κt)µ. (3.12)



Figure 3.1. Time sequences for water head H (x, t) in the natural coordinate x, for various values of c: (a) c = 0, (b) c = 1/2, (c) c = 2/3,
(d) c = 3/4; –––, t = 0; ——, later times.
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Figure 3.2. (a) ln xf(t) and (b) ln Hmax(t) plotted against ln t for various values of c.
In the case c = 0 the asymptotic straight lines give the predicted values λ = −1/3,
µ = 1/3. In all other cases the values λ, µ are different from the values predicted
by dimensional analysis.
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Figure 3.3. Time sequences for the water head H (x, t) plotted in reduced coordinates H (x, t)/H (0, t) against x/xf(t) for various values of c:
(a) c = 0, (b) c = 1/2, (c) c = 2/3, (d) c = 3/4; –––, t = 0, ——, later times. It is seen that with increasing t the distributions in the reduced
coordinates collapse for all values of c to the same parabola, H (x, t)/H (0, t) = 1 − x2/x2

f .
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However (see Figures 3.2), only for the case of no absorption, c = 0, do the
calculated values λ and µ correspond to the predictions of dimensional analy-
sis, λ = 1/3, µ = 1/3. In other cases the following values were obtained with
high accuracy: λ = 1/2, µ = 1/4 for c = 1/2; λ = 3/5, µ = 1/5 for
c = 2/3; λ = 2/3, µ = 1/6 for c = 3/4. Moreover, the computations
showed (see Figures 3.3) that, in all cases, in the ‘reduced’ coordinates x/xf(t),
H (x, t)/H (0, t) the distributions of the groundwater head tend to the same
parabola as in the case c = 0:

H (x, t)

H (0, t)
= 1 − x2

x2
f

, |x | < xf; H (x, t) ≡ 0, |x | > xf. (3.13)

We have to explain now what has happened and especially why the asymp-
totics (3.12), the scaling laws, are different from the predictions based on di-
mensional analysis. In fact, the initial condition (3.10), (3.11) assumed in the
numerical computations is different from the initial condition for the idealized
problem: a new dimensional parameter �, the initial groundwater dome exten-
sion, is introduced explicitly. This parameter was absent in the formulation of
the idealized problem because it was assumed to be equal to zero. However, the
condition (3.10) with � = 0 and I > 0 cannot be introduced into the computer
code. Therefore the standard procedure of dimensional analysis gives for the
problem under consideration not the relations (3.7) but instead:

H = I 2/3

(κt)1/3
�(ξ, η, c), ξ = x

(Iκt)1/3
, η = �

(Iκt)1/3
; (3.14)

as before we assume Hi = 0. This relation is also valid for the case of no
absorption, c = 0: the self-similar solution (2.23) then corresponds to the
singular initial condition (3.10) at I > 0, � = 0. However, the solution (2.23)
is not merely an exact special solution to this singular initial-value problem.
Indeed, let us assume for c = 0 that � is finite. At t → ∞ the dimensionless
parameter η = �/(Iκt)1/3 tends to zero. At the same time we can always adjust
x in such a way that ξ = x/(Iκt)1/3 will remain constant with increasing t .
Therefore asymptotically, at t → ∞, the solution for c = 0 and � > 0 tends to
the solution (2.23), and so we conclude that the solution (2.23) is an asymptotics
for a class of initial-value problems, not just a special solution corresponding
to specific singular initial data.

This is so because at c = 0 the limit of the function �(ξ, η, 0) as η → 0
exists and is different from zero. The non-existence of a solution to the problem
with singular initial data for finite absorption, i.e. c > 0, means that, contrary
to the case c = 0, for c > 0 the function �(ξ, η, c) entering relation (3.14)
does not have a finite non-zero limit as η = �/(Iκt)1/3 → 0. However, the
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numerical experiment shows that there is something special for c > 0: the self-
similar asymptotics of the solution exists, although it cannot be represented
in the simple form (2.13). In fact, the numerical experiment suggests that the
function �(ξ, η, c) has a ‘scaling ’ asymptotics at η → 0 and that the scaling
law exists also for the water front:

�(ξ, η, c) = const1 ηp f (ζ, c), ζ = x

xf
, xf = const2 (Iκt)1/3ηq . (3.15)

Here const1, const2, p and q are constants; p and q are non-zero at c > 0.
Substituting (3.15) into the solution (3.14), we obtain that at small η, i.e. at
t � �3/(Iκ), (3.14) has a self-similar asymptotics

H = A(κt)−λ f (ζ, c), ζ = x

xf(t)
= x

B(κt)µ
. (3.16)

In (3.16) we have used the notation

λ = 1

3
+ p

3
, µ = 1

3
− q

3
,

A = const1 I 2/3−p/3�
p
, B = const2 I 1/3−q/3�

q
. (3.17)

Now substitute (3.16) into the basic equation for the groundwater head (3.5):

2
A

B2(κt)λ+2µ−1

[
f

d2 f

dζ 2
+ (1 − c)

(
d f

dζ

)2
]

+ µζ
d f

dζ
+ λ f = 0,

ζ = x

B(κt)µ
. (3.18)

The function f (ζ, c) does not depend on time explicitly, only via the variable
ζ . Therefore the time exponent λ + 2µ − 1 in (3.18) must vanish and so we
obtain λ = 1 − 2µ.

Also, we have the freedom to normalize arbitrarily the function f . Therefore
the factor const1 can be selected arbitrarily. We take A = B2µ and come to an
ordinary differential equation for f (ζ, c):

2

[
f

d2 f

dζ 2
+ (1 − c)

(
d f

dζ

)2
]

+ ζ
d f

dζ
+ 1 − 2µ

µ
f = 0. (3.19)

Writing ξf for const2 and using (3.16) and (3.17) we obtain

xf(t) = ξf I
µ �1−3µ(κt)µ. (3.20)
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3.4 Self-similar limiting solution. The nonlinear
eigenvalue problem

The scaling laws (3.15) observed in the numerical experiment suggest that at
large times the asymptotic representation of the solution to the actual problem
of concentrated but not infinitely concentrated flooding can be represented in
the form

H = B2µ

[κt]1−2µ
f

(
x

B[κt]µ
, c

)
, B = ξf

(
I�(1−3µ)/µ

)µ
(3.21)

where the function f (ζ, c) satisfies the ordinary differential equation (3.19).
The exponent µ is a priori unknown and is to be determined in the course of
solution.

Owing to the natural assumption of symmetry of the asymptotic solution
we can construct the solution of equation (3.19) at ζ ≥ 0 and assume a first
boundary condition,

d f

dζ
= 0 at ζ = 0. (3.22)

The second obvious boundary condition comes from the continuity of the water
head at the water front x = xf(t) : H (xf(t), t) = 0. This gives

f (1, c) = 0 at ζ = 1. (3.23)

The function f (ζ, c) must also satisfy another condition, which we will now
derive. According to the Darcy law, the finiteness of the filtration velocity at the
water front requires finiteness of the head gradient ∂x H at the front. Clearly this
condition provides continuity of the water flux at the front, which is proportional
to H∂x H . (At x ≥ xf the head and flux are identically zero, as discussed earlier.)
However, contrary to the case c = 0, in the case c > 0 the condition of the fluid
flux continuity at the front is not sufficient for the formulation of a well-posed
problem, and a stronger condition, that of the finiteness of the filtration velocity
at the water front, should be imposed. To show this, substitute into equation
(3.19) f = ζ 2φ(η, λ), where η = ln ζ , so that dη/dζ = 1/ζ . We obtain the
following equation, which does not contain an independent variable:

4φ2 + 6φ
dφ

dη
+ 2φ

d2φ

dη2
+ 8(1 − c)φ2 + 8(1 − c)φ

dφ

dη

+ 2(1 − c)

(
dφ

dη

)2

+ 2φ + dφ

dη
+ 1 − 2µ

µ
φ = 0.

According to a common rule we take ψ = dφ/dη as the new unknown, and
φ as the independent variable, so that d2φ/dη2 = ψ(dψ/dφ) and the previous
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equation is reduced to an equation of the first order,
dψ

dη
= − A

2φψ
,

where

A = [4 + 8(1 − c)]φ2 + [6 + 8(1 − c)]φψ + 2(1 − c)ψ2 + 1

µ
φ + ψ.

We are interested in the behaviour of the integral curves of (3.19) at the point
ζ = 1, f = 0. Therefore the behaviour of the integral curves of the equation
of the first order should be investigated at ψ � φ, when this equation can be
represented approximately in the form

dψ

dφ
= −2(1 − c)ψ + 1

2φ
.

It is easy to show by integration of the last equation that all the integral
curves of (3.19) at the point ζ = 1, f = 0, except for one, behave like f =
C(1 − ζ )1/(2−c)+ small quantities, where C > 0 is a constant parameter of the
family. For all these curves the velocity of filteration at the front, proportional
to d f/dζ at ζ = 1, is infinite. However, the flux, proportional to d f 2/dζ at
ζ = 1, is equal to zero, so that at c > 0 there is no discontinuity of flux when
matching one of these curves with f ≡ 0. Contrary to this, the exceptional curve,
a separatrix, corresponds to the condition 2(1 − c)ψ + 1 = 0, so that close to
φ = 0, ψ = −1/2(1 − c), and returning to the function f (ζ, c) we obtain that
the velocity of filtration at the front, proportional to d f/dζ at ζ = 1, is finite
and the condition holds:

d f

dζ
(1, c) = − 1

2(1 − c)
. (3.24)

Therefore the solution corresponding to the exceptional curve should be
selected.

We emphasize that the condition (3.24) does not follow automatically from
equation (3.19). It required an additional physical assumption, of the finiteness
of the fluid velocity at the water front. We repeat that for the classic Boussinesq
equation (c = 0) the condition of continuity of flux at the groundwater front
was enough to come to a unique solution. For c > 0 this is not the case, and a
more subtle condition, the finiteness of the filtration velocity, is needed. This
important argument is due to J.L. Vázquez.

Thus we have obtained for the second-order equation (3.19) three boundary
conditions, (3.22), (3.23) and (3.24). For arbitrary values of the parameter µ

a solution to the equation (3.19) satisfying these three boundary conditions
does not exist. However, the parameter µ is a priori unknown and must be
determined. Therefore we have to find not only the solution f (ζ, c) but also the
value of the parameter µ – the eigenvalue – for which the solution does exist.
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Thus our problem of finding the intermediate asymptotics of the water head
after a concentrated flooding is reduced to a nonlinear eigenvalue problem: that
of solving the second-order equation (3.19) with three boundary conditions
(3.22), (3.23), and (3.24) and determining the eigenvalue µ – the value of the
parameter entering the equation for which such a solution exists. In fact the
solution to this problem is very simple. As is easy to check,

f (ζ, c) = C(1 − ζ 2), µ = 1 − c

3 − 2c
, (3.25)

where

C = 1

4(1 − c)
. (3.26)

So, the intermediate-asymptotic solution for which we were searching takes
the following form:

H = B2

4(3 − 2c)[κt]1/(3−2c)

[
1 − x2

x2
f

]
at |x | ≤ xf,

H ≡ 0 at |x | ≥ xf, xf = ξf

[
I�c/(1−c) κt

](1−c)/(3−2c)

,

B = ξf
(
I�c/(1−c)

)(1−c)/(3−2c)
. (3.27)

Here we use the dimensionless constant ξf to replace the dimensional constant B.
We make several comments. At c = 0 the intermediate-asymptotic solution

(3.27) gives us the solution (2.23), (2.24) to the idealized problem of infinitely
concentrated flooding considered in Chapter 2. To simplify comparison we note
that the function F(ξ ) entering equation (2.13) is related to the function f (ζ, 0),
(3.25), in the following way:

F(ξ ) = ξ 2
f µ f

(
ξ

ξf
, 0

)
, µ = 1

3
.

Therefore, according to (2.16),

F(ξ ) = ξ 2
f

12
f

(
ξ

ξf
, 0

)
, 0 ≤ ξ ≤ ξf,

f (ζ ) = 1

4
(1 − ζ 2), ζ = ξ

ξf
.

Obviously this function satisfies the condition f ′(1) = −1/2, obtained from
(3.24) at c = 0. Furthermore, for c > 0 the solution (3.27) is self-similar;
however, this solution does not correspond to an infinitely concentrated source
and cannot be obtained from dimensional considerations – we had to solve a
nonlinear eigenvalue problem to obtain the exponent µ entering the self-similar
variables. Again, as in the classical case c = 0, for c > 0 in (3.27) we can pass
to the limit � → 0, for fixed values x and t . If in this passage to the limit
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the initial integral head I remains fixed then the solution (3.27) tends to zero.
Equation (3.27) also shows that, for c > 0, to obtain the same limiting solution
as was obtained for finite � and t → ∞ it is necessary to proceed to the limit
� → 0 with the initial head I simultaneously growing in such a way that the
product I�c/(1−c) remains finite. Physically, it is transparent: when reducing �

we need to compensate properly for the reduction in fluid volume which takes
place in reaching a larger value of x , equal to the previous �. It is instructive to
see that the way in which to compensate for this reduction cannot be obtained
from dimensional analysis.

Furthermore, for the case of no absorption, c = 0, there exists an integral
conservation law for the current integral head I (t),

I (t) =
∫ xf

−xf

H (x, t) dx = I (0) = I. (3.28)

As we have seen, such an integral conservation law does not exist in the case
of non-zero absorption, c > 0. However, this law is replaced by a certain
asymptotic non-integral conservation law. Indeed, as already discussed, at the
stage t � �3/(Iκ) the solution is represented by the self-similar asymptotics
(3.27). Therefore at this stage

I (t) =
∫ xf

−xf

H (x, t) dx = B2

4(3 − 2c)[κt]1/(3−2c)

∫ xf

−xf

[
1 − x2

x2
f

]
dx

= ξ 3
f

(
I�c/(1−c)

)3(1−c)/(3−2c)

3(3 − 2c)[κt]c/(3−2c)
.

Multiplying I (t) by xc/(3−2c)
f we obtain the conservation law

I (t)xc/(1−c)
f = ξ

(3−2c)/(1−c)
f I�c/(1−c) = const, (3.29)

valid at large times t �� �3/(Iκ). For c > 0 the quantity ξf cannot be obtained
from the integral conservation law as was done for the case of no absorption,
c = 0. It can be obtained, however, by matching (for example numerically) the
pre-self-similar solution to the asymptotics (3.27). The quantity ξf which enters
the asymptotics (3.27) and the conservation law (3.29) is an invariant of the
entire pre-self-similar solution. This means that if we take as an initial condi-
tion the head distribution H (x, t∗) at an arbitrary time t = t∗ then ξf remains
the same. Following Lax (1968) we call such invariant quantities integrals.
However, in contrast to the case of no absorption, c = 0, the value of these
integrals cannot be obtained from integral conservation laws valid during the
entire process. We will call them therefore implicit integrals. The general idea
and similar conservation laws for some other problems were suggested by G.K.
Batchelor and E.J. Hinch at the Fluid Mechanics Seminar at Cambridge.



Chapter 4

Complete and incomplete similarity. Self-similar
solutions of the first and second kind

4.1 Complete and incomplete similarity

In Chapters 2 and 3 we considered two instructive and fundamentally differ-
ent, albeit seemingly analogous, problems. In the problem of very intense,
instantaneous and infinitely concentrated flooding considered in Chapter 2, fol-
lowing exactly the basic idea demonstrated in the Introduction for a very intense
explosion, we arrived at an idealized statement of infinitely concentrated flood-
ing. Applying to this idealized problem the standard procedure of dimensional
analysis presented in Chapter 1 we were able to reveal the self-similarity of the
solution, to find the self-similar variables and to obtain the solution in a simple
closed form.

Deeper consideration showed, however, that this simplicity is illusory and
that in making the assumption of an infinitely concentrated flooding we went,
we might say, to the brink of an abyss. We demonstrated this when in Chapter 3
we modified the formulation of the problem, seemingly only slightly, by in-
troducing fluid absorption. It would seem that in the modified formulation the
same ideal problem statement would be possible and that all our dimensional
reasoning would preserve its validity. However, in proceeding with the modi-
fied formulation we arrived at a contradiction. It turned out that in the modified
formulation the solution to the ideal problem of very intense, instantaneous and
infinitely concentrated flooding does not exist. More detailed analysis demon-
strated that in trying to find a solution to the modified problem and blindly
following G.I. Taylor’s path in the formulation of an idealized problem we
came to a dead end, because the very statement of the problem was improper.
What was actually needed was not an exact solution of the simply formu-
lated idealized problem of instantaneous infinitely concentrated flooding but
the asymptotics of the solution to the non-idealized problem where the ground-
water dome is initially concentrated in a section of finite extent. Naturally, the

82
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solution to the latter problem turned out to be non-self-similar. The passage to
the limit as the width of the initially flooded section tends to zero led to an empty
result – the solution tends to zero. Then we addressed numerical analysis. Its
results demonstrated that a meaningful intermediate asymptotics exists and that
it is self-similar although different from what was expected. It was revealed that
this intermediate asymptotics, and not the solution to a limit problem, was pre-
cisely what we actually need. It turns out that we cannot consider the flooding
as concentrated at a single plane section. On the contrary, when reducing the
width of the section of stratum in which the flooding initially takes place, in
order to obtain a proper asymptotics to the solution of the original non-self-
similar problem, we must increase the amount of fluid released initially, and in
such a way that a certain ‘moment’ of the initial distribution of the water head
remains constant. It is important that the power to which the size of the flooding
section appears in the expression of this ‘moment’ cannot be found in advance
and that in principle it is impossible to determine this power from dimensional
analysis. The power appears as an ‘eigenvalue’, which must be found in the
course of construction of the self-similar asymptotics. Thus we came to the con-
clusion that the self-similar solutions are divided into two principally distinct
types.

We will now give a formal classification of similarity rules, scaling laws and,
in particular, self-similar solutions.

Recall from Chapter 1 that any physically significant relation1 among dimen-
sional (generally speaking) parameters,

a = f (a1, . . . , ak, b1, . . . , bm), (4.1)

can be represented in the form

� = �(�1, . . . , �i , . . . , �m), (4.2)

where the dimensionless parameters in (4.2) are defined using (see (1.20)) the
expressions for the dimensions of a, b1, . . . , bm via the powers of the dimen-
sions of a1, . . . , ak :

� = a

a p
1 · · · ar

k

, . . . , �i = bi

a pi

1 · · · ari
k

, . . . , i = 1, . . . , m.

(4.3)

From relations (4.2) and (4.3) it follows that every function f which enters a
physically significant relationship of the general type (4.1) has the property of

1 We remind the reader that a physically significant relationship expresses a law valid for various
observers, in particular observers whose units of measurement are of different magnitudes.



84 4 Similarity classifications. A recipe for analysis

generalized homogeneity:

f (a1, . . . , ak, b1, . . . , bm) = a p
1 · · · ar

k �

(
b1

a p1
1 · · · ar1

k

, . . . ,
bm

a pm

1 · · · arm
k

)
.

(4.4)

Usually, the parameters a1, . . . , ak designated as having independent dimen-
sions are chosen to be those governing parameters which are definitely signifi-
cant for the phenomenon under consideration.

Now consider the remaining governing parameters, b1, . . . , bm . In a tradi-
tional argument ‘on a physical level’ a parameter bi is considered as essential,
i.e. actually governing the phenomenon, if the value of the corresponding di-
mensionless parameter �i is not too large and also not too small, to be specific,
between about 1/10 and 10.

Thus, if some of the dimensionless governing parameters ��+1, . . . , �m

corresponding to the dimensionless parameters b�+1, . . . , bm are small or large,
it is assumed by a tacit convention that the influence of these dimensionless
parameters, and consequently of the corresponding dimensional parameters,
can be neglected.

Actually, this argument is valid sometimes but not always. It is valid if there
exists a finite non-zero limit of the function � in (4.2) when the parameters
��+1, . . . , �m all go to zero or infinity while the other similarity parameters
�1, . . . , �� remain constant. In fact even more is required: the function � must
converge sufficiently fast to a finite non-zero limit as ��+1, . . . , �m go to zero
or infinity. If these conditions are actually satisfied then, for sufficiently small
or sufficiently large ��+1, . . . , �m , the function � in (4.2) can be replaced by
a function of a smaller number of arguments:

� = �1(�1, . . . , ��). (4.5)

We met such a situation in the problem of very intense concentrated flood-
ing with no absorption, considered in Chapter 2, where the finite non-zero
limit of the function �(�1, �2, �3) at vanishing �2 = �/(Iκt)1/3 , �3 =
Hi/(I 2/3κ−1/3t−1/3) did exist, and the limit happened to be a function of a
single parameter �1 = ξ = x/(Iκt)1/3.

In such cases we speak of the complete similarity, or similarity of the first
kind, of a phenomenon in the parameters ��+1, . . . , �m .

It is quite obvious that such a situation is far from being the general case.
Usually, when the dimensionless governing parameters ��+1, . . . , �m go to
zero or infinity the function �(�1, . . . , ��, ��+1, . . . , �m) does not necessar-
ily tend to a limit, let alone a finite and non-zero one. Therefore, in general
the parameters b�+1, . . . bm remain essential no matter how small or large the



4.1 Complete and incomplete similarity 85

values of the corresponding dimensionless parameters ��+1, . . . , �m are. This
statement is correct but trivial and non-constructive.

The fact of crucial importance is that there exists another class of phenom-
ena, which also comprises exceptions. This class is, however, much wider than
the class of complete-similarity phenomena; for phenomena in this class the
function � entering (4.2) possesses at large or small values of ��+1, . . . , �m

the property of generalized homogeneity in its own dimensionless arguments:

� = �
α�+1
�+1 · · · �αm

m �1

(
�1

�
β1
�+1 · · · �δ1

m

, . . . ,
��

�
β�

�+1 · · · �δ�
m

)
(4.6)

where α�+1, . . . , δ� are constants. This is exactly the same form of generalized
homogeneity as for the basic function f in relations (4.1) and (4.4). However,
there is a fundamental difference. The generalized homogeneity of the function
f in (4.1), (4.4) follows from the general physical covariance principle, and
the constants p, . . . , rm, in (4.4) are obtained by simple rules of dimensional
analysis. In contrast, the generalized homogeneity of the function � in (4.6) is
a special property of the problem under consideration. Therefore the constants
α�+1, . . . , δ� in principle cannot be obtained by using dimensional analysis:
relation (4.2) is the most that dimensional analysis can give.

In such exceptional cases, relation (4.1) can be represented in the form,
comparable with (4.5),

�∗ = �1(�∗
1, . . . , �

∗
�), (4.7)

where

�∗ = �

�
α�+1
�+1 · · · �αm

m

= a

a p−α�+1 p�+1−···−αm pm

1 · · · ar−α�+1r�+1−···−αmrm

k bα�+1
�+1 · · · bαm

m

(4.8)

and, for i = 1, . . . , l,

�∗
i = �i

�
βi

�+1 · · · �δi
m

= bi

a pi −βi p�+1−···−δi pm

1 · · · ari −βi r�+1−···−δi rm

k bβi

�+1 · · · bδi
m

. (4.9)

Two special cases of the general relation (4.7) that have appeared frequently in
recent current research are: (i) � + 1 = m, α�+1 = α, β1 = β and other powers
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entering �i equal to zero, so that

� = �α
�+1�1

(
�1

�
β

�+1

, �2, . . . , ��

)
; (4.10)

and (ii) an even more special case, β = 0, for which

� = �α
�+1�1(�1, �2, . . . , ��). (4.11)

We met the special case (4.10) in the problem considered in Chapter 3. In
these special cases only one small or large governing parameter ��+1 violates
complete similarity.

The function f which enters the basic relation (4.1) in these two special cases
assumes the form

f = a p−αpm

1 · · · ar−αrm
k bα

m

× �

(
b1

a p1−βpm

1 · · · ar1−βrm
k bβ

m

,
b2

a p2
1 · · · ar2

k

, . . . ,
bm−1

a pm−1
1 · · · arm−1

k

)
, (4.12)

which illustrates the general statement: the exponents cannot generally be
found from dimensional analysis; the parameter bm , which violated self-
similarity, does not disappear although it enters in combination with param-
eters a and b1 only.

Equation (4.6) shows that in these special cases there is a reduction in the
number of arguments of the function � that defines the relationship in which
we are interested, exactly as in the case of complete similarity. These arguments
also are power monomials. However, the governing parameters b1, . . . , bm do
not disappear from the resulting relations; they remain essential and continue
to influence the phenomenon no matter how small or large the corresponding
similarity parameters are. Moreover, the powers in which these dimensional
parameters enter the dimensionless parameters cannot be obtained from dimen-
sional analysis. In such cases we speak of incomplete similarity, or similarity
of the second kind of a phenomenon in the relevant parameters.

The conclusion at which we have arrived is entirely natural: if the values
of certain dimensionless parameters �i are small or large then there are three
possibilities.

1. The limits of the corresponding functions � as the �i tend to zero or
infinity exist and are finite and non-zero. The corresponding governing
parameters, the dimensional bi or the dimensionless �i , can be excluded
from consideration and the number of arguments of the functions �

therefore decreases. All the similarity parameters can be determined by
means of the regular procedures of dimensional analysis. This case
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corresponds to complete similarity of the phenomenon in the similarity
parameters �i .

2. No finite limits exist for the functions � as the �i tend to zero or infinity,
but one of the special cases indicated above holds.2 If so, the number of
arguments of the functions � can be decreased, but not all the parameters
�, �i can be obtained from dimensional analysis and the governing
parameters bi remain essential no matter how small (or large) the
corresponding similarity parameters. This case corresponds to incomplete
similarity in the parameters �i .

3. No finite limits exist for the functions � as the �i → 0 or ∞, and the
indicated exceptions do not hold. This case corresponds to lack of
similarity of the phenomenon in the parameters �i . It has already been
remarked that, no matter how large (or small) the values of the parameters
�i , in this case we cannot obtain a relation of the form (4.5) between
power-type combinations of the governing and determined parameters that
has a smaller number of arguments for the functions �.

The difficulty is that a priori, until we have obtained a non-self-similar solu-
tion of the complete non-idealized problem (in which case we do not need to
use similarity methods), we do not know with which of these three cases 1–3 we
are dealing, irrespective of whether we have an explicit mathematical formu-
lation of the problem. Hence one can only recommend assuming in succession
each of these possible situations for small (or large) similarity parameters –
complete similarity, incomplete similarity, lack of similarity – and then com-
paring the relations obtained under each assumption with data from numerical
calculations, experiments or the results of asymptotic analytic investigations.
The term ‘experimental asymptotics’ proposed for such analysis by Professor
Norman Zabusky seems to be very appropriate.

4.2 Self-similar solutions of the first and second kind

We now consider some problem in mathematical physics that describes certain
phenomenon; let the quantity a be an unknown in this problem and let the

2 The question can arise of why one regards as exceptional only asymptotic representations of the
power-type forms (4.6), (4.8), (4.9), (4.10) and (4.11); is it impossible to factorize the function
� by another function of �i , for example, log �i ? In fact, in the case where � is factorizable
by log �i one no longer gets relations among power-type combinations of dimensional
parameters, yet products of their powers give, upon multiplication, power-type combinations of
the same form. As was proved in Chapter 1, dimensions are always power-type monomials. It
can be obtained, by exactly the same argument, that a power-type asymptotics follows from the
lack of characteristic distinguished values of the parameters b�+1, . . . , bm .
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quantities a1, . . . , ak, b1, . . . , bm be the independent variables and parameters
appearing in the equations and the boundary, initial and other conditions that
determine solutions.

Self-similar solutions are always solutions of idealized (degenerate) prob-
lems obtained if certain parameters bi and the dimensionless parameters �i

corresponding to them assume zero or infinite values. They are simultaneously
exact solutions of degenerate problems and asymptotic (generally intermediate-
asymptotic) representations of the solutions of wider classes of non-idealized
non-self-similar problems as the parameters bi tend to zero or infinity.

It is clear that if an asymptotics is self-similar, and if the self-similar variables
are power-law monomials, then one of the two special cases mentioned above,
complete and incomplete similarity, must hold. Correspondingly, self-similar
solutions are divided into solutions of the first and second kind.

Self-similar solutions of the first kind are obtained when passage to the limit,
from a non-self-similar non-idealized problem to the corresponding self-similar
idealized problem, gives complete similarity in the parameters that made the
original problem non-idealized and its solution non-self-similar. Expressions
for all the self-similar variables, independent as well as dependent, can be
obtained here by applying dimensional analysis.

Self-similar solutions of the second kind are obtained in the case where the
idealization of the original problem is such that there is incomplete similarity in
the similarity parameters. Then expressions for the self-similar variables cannot
in general be obtained from dimensional considerations. The parameters that
make the problem non-idealized, and its solution non-self-similar, remain in
the expressions for the self-similar variables.

In the direct construction of a self-similar solution of the second kind, de-
termination of the exponents of the self-similar variables leads to a nonlinear
eigenvalue problem. The constant multipliers appearing in the self-similar vari-
ables are left undetermined in the direct construction of self-similar solutions
of the second kind. These constants can be found by following, for example by
means of numerical calculations, the entire process of evolution of a solution
of the non-idealized problem into a self-similar asymptotics.

If the constants can be found from integral conservation laws, this means that
for an appropriate choice of governing parameters the problem can be refor-
mulated and reduced to a problem of the first kind. For example, the classical
problem of a very intense explosion is found to be represented as a self-similar
solution of the second kind if one chooses the governing parameters of the non-
idealized pre-self-similar problem inappropriately. The possibility of obtaining
solutions to this problem as self-similar solutions of the first kind is connected
with the choice, as a governing parameter, of the energy of the explosion; this,
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by virtue of the corresponding integral conservation laws, does not vary with
time.3

The problem of water-dome spreading in a porous stratum, considered in
Chapter 2, has an intermediate asymptotics which is a self-similar solution
of the first kind. In Chapter 3 a self-similar solution of the second kind ap-
peared as an intermediate asymptotics for the solution to the problem of dome
spreading when absorption is taken into account. Seemingly the formulations of
both problems are very close, but the intermediate asymptotics are essentially
different.

Complete similarity makes it possible to obtain meaningful scaling laws
directly by dimensional analysis, without solving the whole problem. A classical
example is the scaling law for very intense shock-wave propagation obtained by
G.I. Taylor (see the Introduction). Another example: let us take the problem of
water-dome spreading considered in Chapter 2 and try to find, without solving
the whole problem, the law for decay of the maximum water head Hmax. Clearly
the maximum water head is at the center, x = 0. Assuming that the dome is
concentrated initially at the section x = 0 and that the initial water head in the
stratum is negligible, we find using dimensional analysis

Hmax = f (I, t, κ), �max = Hmax

I 2/3(κt)−1/3
= const,

whence

Hmax = const

(
I 2

κt

)1/3

(4.13)

(Our calculation in Chapter 2 showed that const = 31/3/4). Such an argument
is valid in this case because for the non-idealized problem

Hmax = f (I, t, κ, �), �max = �max(�2), (4.14)

3 In contrast, an integral conservation law valid also for the pre-self-similar stage is not a
necessary property of the self-similar solution of the first kind. An elegant example illustrating
this point was given by Entov (1994). The self-similar intermediate asymptotics to the solution
to the equation of heat conduction with absorption,

∂tθ = κ∂2
xxθ − αθn

where n > 3 is a constant, describing the decay of an amount of heat concentrated initially in a
finite domain, is, as previously, the point-source self-similar solution of the first kind

θ = Q√
κt

e−x2/4κt .

For this distribution obviously the integral M(t) = ∫ ∞
−∞ θ (x, t)dx = M0 is preserved in time.

However, it is not preserved at the pre-self-similar stage, so that M0 cannot be obtained from
the initial data. The numerical computation of a source-type initial-value problem can be
recommended as an exercise.
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and at the limit �2 = �/(Iκt)1/3 → 0, which occurs when t → ∞, a finite
non-zero limit of the function �max(�2) does exist.

A researcher could easily be tempted to try to obtain in the same way, by
dimensional analysis, a scaling law for the case of dome spreading with ab-
sorption. Indeed, in this case

Hmax = f (I, t, κ, �, c), �max = �max(�2, c) (4.15)

and it seems very natural to neglect �2 at large t and obtain the same law (4.13)
with a constant depending on the absorption coefficient c. However, as follows
from the results obtained in Chapter 3, at t → ∞ there is a different scaling
law, which cannot be obtained from dimensional analysis:

Hmax = const

(
I 2(1−c)�2c

κt

)1/(3−2c)

. (4.16)

This scaling law for the decay in Hmax is determined not just by the initial
integral head I but by the moment I�c/(1−c), and the power of � in this moment
cannot be obtained by dimensional analysis. Also, the constant in the scaling
law can be obtained only by matching to the pre-self-similar solution.

The same situation exists with the spreading law for the water front. ‘Naive’
dimensional analysis gives the scaling law

xf = const (Iκt)1/3 (4.17)

in both cases. However, a proper treatment (see Chapter 3) shows that the scaling
law in the case of absorption is different:

xf = const
(
I�c/(1−c)κt

)(1−c)/(3−2c)
. (4.18)

Again, it is determined by κ , the time t and the same combined invariant
I�c/(1−c).

The examples considered in Chapters 2 and 3 and discussed here are instruc-
tive. When we turn to the solution of a certain problem, and in particular to
scaling laws, we do not know in advance to which type the solution belongs.
The comparison of the cases of water-dome spreading with and without absorp-
tion considered above shows that the situation can be rather deceiving: from
the point of view of whether it is possible to apply dimensional analysis these
cases superficially do not differ from one another. But, as a matter of fact, as
we have seen the scaling laws are quite different. Therefore it is necessary to
keep in mind that it is a very strong hypothesis to assume the unimportance of
certain governing parameters that would make the problem formulation non-
idealized and its solution non-self-similar (in our case the initial dome width).
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These governing parameters may be essential and yet self-similarity may never-
theless hold. Distinguishing between possible cases of self-similarity requires,
in fact, a sufficiently deep mathematical investigation, which is unattainable
in more complicated (especially nonlinear) problems. Therefore in obtaining
self-similar solutions or scaling laws on the basis of dimensional analysis one
should take care to verify, if only by means of numerical calculations or even ex-
periments, that the solutions or scaling laws found actually reflect the required
asymptotic behavior of the phenomenon under investigation. The situation is
much more complicated if a mathematical formulation of the problem is lack-
ing. In this case comparison with experimental data is of crucial importance. We
will see this when considering the example of turbulent shear flow in Chapter 8.

4.3 A practical recipe for the application
of similarity analysis

We have discussed above the fundamentals of dimensional analysis, similarity
theory, scaling laws and self-similar phenomena. This discussion now allows us
to provide a recipe for similarity analysis, i.e. for applying dimensional analysis
and dealing with self-similarities and scaling laws. We emphasize that the basic
difficulty always lies in finding an appropriate model, even a preliminary one.
This is a matter of art, and no general recipe can be offered here. But when a
researcher arrives at a particular model, and has the intention of working with
this model, a certain general system of rules can be recommended.

Suppose that we are interested in a property a of some phenomenon (a may be
a vector, i.e. there may be several such properties). We proceed in the following
way.

1. We specify a system of governing parameters a1, . . . , ak with independent
dimensions and b1, . . . , bm with dependent dimensions such that a relation
of the form

a = f (a1, . . . , ak, b1, . . . , bm)

can be assumed to hold. If the model of the phenomenon has an explicit
mathematical formulation then the independent variables and the constant
parameters that appear in the equations, boundary conditions and initial
conditions etc. are adopted as the governing parameters. If, however, there
is no explicit mathematical formulation of the model then the governing
parameters must be chosen on the basis of a qualitative model of the
phenomenon, to be constructed by each investigator using his/her own
experience and intuition as well as an analysis of previous studies.
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2. We choose an appropriate class of systems of units and determine the
dimensions of the quantities under investigation, and of the governing
parameters, in this class. We then decide upon a system of governing
parameters with independent dimensions: it is preferable to select those
parameters whose importance to the phenomenon being studied is most
firmly established.

3. We express the dimensions of the quantities under investigation, and of the
governing parameters with dependent dimensions, as products of powers
of the dimensions of the governing parameters with independent
dimensions. We determine the similarity parameters and put the function
under study into a dimensionless form, the similarity law

� = �(�1, . . . , �m).

4. We estimate the numerical values of the governing similarity parameters.
We select those that are large or small. In some cases, it turns out to be
convenient at this stage to choose new similarity parameters that are
products of powers of the similarity parameters obtained in the previous
step: this sometimes makes it easier to perform these estimates.

5. We try to formulate limiting similarity and scaling laws under the
assumption of complete similarity in any large (or small) similarity
parameters. This means simply discarding these dimensionless governing
parameters and the corresponding dimensional parameters. We compare
the limiting similarity laws then obtained against the available
experimental data and/or numerical calculations. If discrepancies are
observed, we proceed as follows.

6. We try to formulate limiting similarity laws under the assumption of
incomplete similarity in the large (or small) similarity parameters. This
means that we assume a generalized homogeneity representation of the
function �(�1, . . . , �m) in terms of the small (or large) similarity
parameters. Once again, we compare the similarity laws then obtained
against the available experimental data, numerical calculations etc. If
discrepancies are again observed, we can conclude that the phenomenon is
not self-similar in the small (or large) similarity parameters. So, finally,

7. We formulate general similarity laws and scaling laws using as few
similarity parameters as possible.

The use of this recipe will be demonstrated below in Chapters 7 and 8 with
examples that are important in their own right, not merely as illustrations. It
should be borne in mind that our attempt, in this section, to formalize the very
informal procedure of finding ultimate similarity rules should be considered,
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naturally, as a general guide only. Here is another example of an attempt to for-
malize a very informal procedure. The Lawrence Berkeley National Laboratory,
where the author is working, is situated in the East Bay Hills in Northern
California. A few families of lions are also known to inhabit this place, there-
fore the Administration of the Laboratory issued a document giving rules for
those who encounter a lion:

1. Do not hike alone.
2. Keep children close to you.
3. Do not approach the lion.
4. Do not run from the lion.
5. Do all you can to appear larger, and
6. Fight back if attacked.



Chapter 5

Scaling and transformation groups.
Renormalization group

5.1 Dimensional analysis and transformation groups

We recall the definition of a transformation group. Suppose we have a set of
transformations with k parameters,

x ′
ν = fν(x1, . . . , xn; A1, . . . , Ak), ν = 1, . . . , n, (5.1)

where the fν are smooth functions of their arguments in a certain domain. We
say that this set forms a k-parameter group of transformations if the following
conditions are satisfied.

1. Among the transformations (5.1) there exists the identity transformation.
2. For each transformation of the set (5.1) there exists an inverse

transformation that also belongs to the set (5.1).
3. For each pair of transformations of the set (5.1), i.e. a transformation A

with parameters A1, . . . , Ak and a transformation B with parameters
B1, . . . , Bk , a transformation C with parameters C1, . . . , Ck , which also
belongs to the set (5.1), exists and is uniquely determined such that
successive realization of the transformations A and B is equivalent to the
transformation C. The transformation C is called the product of the
transformations A and B.

Dimensional analysis, which was considered in detail in Chapter 1, has a
transparently group-theoretical nature. Group considerations can turn out to
be useful also in those cases where dimensional analysis alone becomes in-
sufficient to establish scaling laws and the self-similarity of a solution and to
determine self-similar variables. A special place belongs here to the renormal-
ization group, a concept now popular in theoretical physics.

Dimensional analysis is based on the �-theorem (see Chapter 1). This
theorem allows one to express a dimensional, generally speaking, function of

94
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n = k + m dimensional governing parameters, i.e. the physically meaningful
relationship

a = f (a1, . . . , ak, b1, . . . , bm) (5.2)

where a1, . . . , ak are the governing parameters with independent dimensions,
as a dimensionless function of m dimensionless parameters

� = �(�1, . . . , �m),

where

� = a

a p
1 · · · ar

k

, �1 = b1

a p1
1 · · · ar1

k

, . . . , �m = bm

a pm

1 · · · arm
k

.

This means that the function f in (5.2) possesses the property of generalized
homogeneity:

f (a1, . . . , ak, b1, . . . , bm) = a p
1 · · · ar

k �

(
b1

a p1
1 · · · ar1

k

, . . . ,
bm

a pm

1 · · · arm
k

)
.

We note now that, for any positive numbers A1, . . . , Ak , the scaling trans-
formation of the governing parameters with independent dimensions

a′
1 = A1a1, a′

2 = A2a2, . . . , a′
k = Akak (5.3)

can be obtained by changing from the original system of units to some other
system belonging to the same class. At the same time the values of the remaining
parameters a, b1, . . . , bm vary in accordance with their dimensions:

a′ = Ap
1 · · · Ar

ka,

b′
1 = Ap1

1 · · · Ar1
k b1, (5.4)

...
b′

m = Apm

1 · · · Arm
k bm .

Direct verification shows easily that the transformations (5.3), (5.4) form a
k-parameter group. Indeed, if A1 = A2 = · · · = Ak = 1 then the transformation
(5.3), (5.4) becomes an identity transformation. For each transformation A in
the set (5.3), (5.4) there exists an inverse transformation B with parameter values

B1 = 1

A1
, B2 = 1

A2
, . . . , Bk = 1

Ak

which also belongs to the set (5.3), (5.4) and such that the successive realization
of transformations A and B returns the variables to their original values. For
each pair A, B of transformations (5.3), (5.4), with parameter values A1, . . . ,Ak

and B1, . . . , Bk , there exists one and only one transformation C, with parameter
values C1 = A1 B1, C2 = A2 B2 . . . , Ck = Ak Bk , also belonging to the class



96 5 Scaling and transformation groups. Renormalization group

(5.3), (5.4) and such that the successive realization of transformations A and B
is equivalent to the transformation C.

The quantities �, �1, . . . , �m remain unchanged for all transformations of
the group (5.3), (5.4), i.e. they are invariants of this group. Thus, the �-theorem
is a simple consequence of the covariance principle: relations with a physical
meaning among dimensional quantities of the form (5.2) can be represented in
a form invariant with respect to the group of similarity transformations of the
governing parameters with independent dimensions (5.3), (5.4), each transfor-
mation corresponding to a transition to a different system of units (within a given
class). The number of independent invariants of the group is less than the total
number of governing parameters by the number k of parameters of the group.

The invariance of the formulation, and hence the solution, of any physically
meaningful problem with respect to the group of transformations (5.3), (5.4)
is thus necessary according to the general physical covariance principle. It can
turn out, however, that there exists a richer group with respect to which the
formulation of the special problem considered is invariant. Then the number of
arguments of the function � in the universal (invariant) relation obtained after
applying the �-theorem in its own right should be reducible by the number of
parameters of the supplementary group. Here the solution can turn out to be self-
similar, and the self-similar variables can be determined as a result of using the
invariance with respect to the supplementary group, although this self-similarity
is not implied by dimensional analysis (which exploits invariance with respect
to the group of similarity transformations of the governing parameters with
independent dimensions). We consider below an instructive example that will
clarify this idea.

5.2 Problem: the boundary layer on a flat plate
in a uniform flow

The problem of steady viscous incompressible flow past a semi-infinite flat plate
placed along a uniform stream (Figure 5.1) leads to a system of Navier–Stokes
equations and the equation of continuity (see Batchelor 1967; Germain 1986;
Landau and Lifshitz 1987):

u∂x u + v∂yu = − 1

ρ
∂x p + ν

(
∂2

xx u + ∂2
yyu

)
,

u∂xv + v∂yv = − 1

ρ
∂y p + ν

(
∂2

xxv + ∂2
yyv

)
, (5.5)

∂x u + ∂yv = 0.
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U

y

0 x

Figure 5.1. Viscous flow past a thin semi-infinite plate.

Here x and y are the longitudinal and transverse Cartesian coordinates, u(x, y)
and v(x, y) are the corresponding velocity components, p is the pressure, ν is
the kinematic viscosity coefficient and ρ is the density of the fluid.

The boundary conditions for the problem under consideration can be repre-
sented in the form

u(x, 0) = v(x, 0) = 0, x ≥ 0,

u(x, y) → U, v(x, y) → 0 for y2 → ∞ and arbitrary x
and for x → −∞ and arbitrary y.

Here U is the constant speed of the uniform exterior flow; the origin of coor-
dinates x = 0, y = 0 corresponds to the tip of the plate. Up to now no single
problem of viscous flow past a body has been solved analytically; the problem
of the flow past a semi-infinite plate presented above, in spite of its seeming
simplicity, does not constitute an exception.

At the beginning of the last century Prandtl (1904) proposed the idea of
the boundary layer, which revolutionized fluid mechanics as a whole and, in
particular, led to an asymptotic approximate analytic solution of the problem
of viscous flow past a plate. This solution was obtained by Prandtl’s student
Blasius (1908) and modified by Toepfer (1912). The basic model of Prandtl
in application to this problem is that at large Reynolds number the effects of
viscosity are concentrated in a thin layer surrounding the plate only. Prandtl’s
hypothesis and certain qualitative considerations allowed a reduction of the
model to a simplified one (see Batchelor 1967; Schlichting 1968; Germain
1986; Landau and Lifshitz 1987), the system of equations

u∂x u + v∂yu = ν∂2
yyu, ∂x u + ∂yv = 0 (5.6)

under boundary conditions at x > 0, y > 0

u(0, y) = U, u(x, ∞) = U, u(x, 0) = v(x, 0) = 0. (5.7)
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Two comments: first, no one has been able, up to now, to give a rigorous math-
ematical derivation of the system (5.6), (5.7) from the Navier–Stokes equations
at large Reynolds numbers without additional assumptions – this system re-
mains a result of Prandtl’s intuition. The second comment concerns the second
of the boundary conditions (5.7), which seems paradoxical: it is claimed that
the boundary layer is thin yet the condition is taken at infinity. In fact, this para-
dox is explained by the asymptotic character of the qualitative derivation of the
system (5.6), (5.7). This derivation is based on a ‘stretching’ of the system of
coordinates, an asymptotic analysis of the problem in the stretched coordinates
and a subsequent return to the original coordinates. This asymptotic procedure
is illuminated by an original example proposed by Friedrichs (1966).

We apply to the problem in the boundary-layer approximation (5.6), (5.7)
the standard procedure of dimensional analysis. The governing parameters are
ν, x , U and y, so that

u = fu(ν, x, U, y), v = fv(ν, x, U, y). (5.8)

The dimensions of the involved quantities are

[u] = [v] = [U ] = L

T
, [x] = [y] = L , [ν] = L2

T
(5.9)

so that, according to the standard procedure of dimensional analysis,

�u = u

U
= �u(�1, �2), �v = v

U
= �v(�1, �2). (5.10)

Here

�1 = ξ = U x

ν
, �2 = η = U y

ν
. (5.11)

In the new variables the relations (5.6), (5.7) are reduced to the form

�u∂ξ�u + �v∂η�u = ∂2
ηη�u, ∂ξ�u + ∂η�v = 0

�u(0, η) = �u(ξ, ∞) = 1, �u(ξ, 0) = �v(ξ, 0) = 0 (5.12)

We see that the direct application of dimensional analysis does not give any
simplification of the problem. In fact, the only distinction between the system
(5.6), (5.7) and the system (5.12) is that in the latter the constants ν and U are
equal to unity: a purely cosmetic transformation.

It is instructive, however, that the system (5.12) is invariant with respect to an
additional transformation group. Indeed, let �u(ξ, η), �v(ξ, η) be a solution of
the system (5.12) which exists and is unique. Let us consider a one-parameter
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transformation group:

ξ ′ = α2ξ, η′ = αη;

�′
u(ξ ′, η′) = �u(ξ, η), �′

v(ξ ′, η′) = α−1�v(ξ, η), (5.13)

where α > 0 is the parameter. It is easy to verify by direct substitution that the set
of transformations (5.13) is a group: α = 1 gives the identical transformation,
β = α−1 gives the transformation inverse to α and γ = αβ gives the product of
the transformations with parameters α and β. Substituting (5.13) into (5.12), we
obtain for arbitrary positive α the same problem as (5.12) but in the variables
ξ ′, η′, �′

u, �
′
v . In view of the uniqueness requirement, the solution �′

u, �
′
v

should also be unique, so that

�u(ξ, η) = �′
u(ξ ′, η′) = �u(α2ξ, αη),

�v(ξ, η) = α�′
v(ξ ′, η′) = α�v(α2ξ, αη). (5.14)

Furthermore, after establishing the relations (5.14) the value of the parameter
α can be taken as equal to an arbitrary positive number, in particular

α = 1√
ξ
.

Substituting this relation into (5.14), we obtain that the determination of the
functions �u, �v of two variables is reduced to the determination of functions
of a single variable

�u(ξ, η) = �u

(
1,

η√
ξ

)
= fu

(
η√
ξ

)
= fu

(
y√

νx/U

)

and

�v(ξ, η) = 1√
ξ

�v

(
1,

η√
ξ

)
= 1√

ξ
fv

(
η√
ξ

)
=

√
ν

U x
fv

(
y√

νx/U

)
.

(5.15)

As we see, the solution is self-similar. Thus the self-similarity of the solution to
the boundary-layer problem (5.6), (5.7) is established and the expressions for
the self-similar variables are obtained. However, it has been achieved as a result
of the application of not only dimensional analysis but also the invariance of
the problem with respect to an additional transformation group (5.13).

Introducing a new function

ϕ(ζ ) =
∫ ζ

0
fu(ζ ) dζ, ζ = η√

ξ
= y√

νx/U
,
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we obtain from (5.6), (5.7) and the definition of the function ϕ(ζ ) the relations

fv = 1

2
(ζϕ′ − ϕ), (5.16)

ϕϕ′′ + 2ϕ′′′ = 0, ϕ(0) = ϕ′(0) = 0, ϕ′(∞) = 1; (5.17)

here a prime indicates differentiation. The relationships (5.17) present a
boundary-value problem for the ordinary equation ϕϕ′′ + 2ϕ′′′ = 0, with
boundary-value data at both ζ = 0 and ζ = ∞. This is inconvenient, and
here also a simple group-theoretical consideration is helpful. Indeed, let us
consider the family of solutions to the equation ϕϕ′′ + 2ϕ′′′ = 0 satisfying the
two boundary conditions at ζ = 0, ϕ(0) = ϕ′(0) = 0. It is easy to check that
this family is invariant with respect to the transformation group:

ϕ1(ζ1) = α−1ϕ(ζ ), ζ1 = αζ, (5.18)

so that if ϕ(ζ ) is a solution to the equation ϕϕ′′ + 2ϕ′′′ = 0 satisfying the first
two boundary conditions in (5.17), then for any positive α the function αϕ(αζ )
also satisfies the equation and these two boundary conditions.

Now consider the solution ϕ0(ζ ) to the Cauchy (not the boundary-value) prob-
lem for which the third boundary condition in (5.17), the condition at infinity,
is replaced by a condition at zero, ϕ′′

0 (0) = 1. For the solution ϕ0(ζ ), which is
easy to calculate numerically, the value of the derivative at infinity, ϕ′

0(∞), is
3.02. Therefore the solution ϕ(ζ ) = αϕ0(αζ ), where α = 1/

√
2.086 = 0.6925,

satisfies all the conditions of problem (5.17).
For the drag F on a section of unit width and length l of the flat plate in a

uniform stream of velocity U we obtain from the previous relations, using the
results of numerical calculation of the function ϕ,

F = 2
∫ l

0
(σxy)y=0 dx = 2U

√
U

ν
ρν

∫ l

0
f ′
u(0)

dx√
x

= 4

√
U 3l

ν
ρνϕ′′(0) = 4α3ρ

√
U 3lν

= 1.328ρ
√

U 3lν.

Here (σxy)y=0 is the shear stress on the plate.
Introducing the dimensionless parameter � = F/(ρU 2l) corresponding to

the drag F , we get

� = �(Re) = 1.328√
Re

, Re = Ul

ν
.

We note in passing that one can also see that at this well-known relation reveals
incomplete similarity in the Reynolds number. In fact, the drag F is determined
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by the following quantities: the length l of the plate, the viscosity ν and density
ρ of the fluid and the velocity U of the stream. Application of the standard
procedure of dimensional analysis gives

� = �(Re).

For the high Reynolds numbers characteristic of the boundary layer there is
no complete similarity with respect to Reynolds number, since there does not
exist a non-zero limit of the function � = 1.328Re−1/2 as Re → ∞. Hence the
relations

� = const, F = const ρU 2l

that would have to hold in the case of complete similarity in the Reynolds
number cannot be expected to be true, no matter how high the Reynolds number.
Nevertheless, one has the relation

�∗ = F

ρ
√

U 3lν
= const = 1.328,

corresponding to incomplete self-similarity: the parameter �∗ cannot be ob-
tained from standard dimensional analysis and contains the dimensional pa-
rameter ν whose explicit introduction into the problem violates self-similarity.

The example of boundary-layer flow past a flat plate which we have just
considered is instructive also in the following aspect: the application of a more
general group of transformations can here be given the form of generalized
dimensional analysis, and this device turns out to be useful in many other
special cases (but, it should be emphasized, not always).

Namely, we shall use different units to measure length in the x-direction and
length in the y-direction. So, we introduce two different units of length, lx and
ly , and consider x and y as having different dimensions Lx and L y . Let us use
this in the boundary-layer problem (5.6), (5.7). In this case all terms entering
the boundary-layer equations and boundary conditions of the problem have
identical dimensions if we take [u] = [U ] = Lx/T , [ν] = L2

y/T , [v] = L y/T ,
[x] = Lx and [y] = L y . Thus, among the governing parameters v, x , U and
y not two but three have independent dimensions and the single independent
dimensionless similarity parameter will be

�′
1 = ζ = y√

νx/U
, (5.19)

whence follows immediately the self-similarity of the solution

u = U fu(ζ ), v =
√

νU/x fv(ζ ). (5.20)
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It is instructive that using such independent units for longitudinal and trans-
verse lengths is impossible for the full Navier–Stokes equations (5.5). In these
equations the terms ν∂2

yyu and ν∂2
yyv appear in sum with the terms ν∂2

xx u
and ν∂2

xxv, so that if we measure x and y in different units these terms will
have different dimensions, and this is impossible for equations having physical
meaning. Consequently, the full Navier–Stokes equations, unlike the bound-
ary layer equations, are not invariant with respect to the transformation group
(5.13).

A natural question arises: is there an algorithm for seeking a maximally broad
group of transformations with respect to which a given system of differential
equations is invariant? Such an algorithm does exist. The basic ideas here be-
long to the Norwegian mathematician of the nineteenth century Sophus Lie. In
recent times a series of general results and applications to particular systems
of equations encountered in applied mathematics have been obtained; we refer
the reader to the valuable books by Birkhof (1960), Bluman and Cole (1974)
and Olver (1993).

5.3 The renormalization group and incomplete similarity

5.3.1 The renormalization group and intermediate asymptotics

Among the groups additional to the group of scaling transformations of quan-
tities with independent dimensions that lead to scaling laws and self-similarity,
a special and very important place belongs to the renormalization group. The
renormalization group approach, following the ideas of Stückelberg and
Peterman (1953), Gell-Mann and Low (1954), Bogolyubov and Shirkov (1955,
1959), Kadanoff (1966), Kadanoff et al. (1967), Patashinsky and Pokrovsky
(1966) and Wilson (1971), has found extensive applications in modern theoret-
ical physics. N. Goldenfeld, O. Martin and Y. Oono demonstrated a deep relation
between the renormalization group method as traditionally used by physicists
and the intermediate-asymptotics approach, developed independently and pre-
sented in this book. They did this by using the renormalization group method,
in the form in which it is usually applied by physicists to solve some typi-
cal problems whose solution had been obtained previously by the method of
intermediate asymptotics. Vice versa, they solved by the method of intermedi-
ate asymptotics some classical problems in statistical physics solved earlier by
the renormalization group approach (Goldenfeld 1989; Goldenfeld, Martin and
Oono 1989, 1991; Goldenfeld et al. 1990; Goldenfeld and Oono 1991; Chen,
Goldenfeld and Oono 1991; Chen and Goldenfeld 1992; the book Goldenfeld
1992 is especially recommended).
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We recall, see Chapters 1 and 4 and section 5.1 of this chapter, that any phys-
ically significant relation among dimensional (generally speaking) parameters

a = f (a1, . . . ak, b1, . . . , bm)

can be represented in the form of a relation between normalized dimensionless
parameters �, �i , i = 1, . . . , m:

� = �(�1, . . . , �m).

This is due to the compulsory invariance of physically significant relations with
respect to the transformation group (5.3), (5.4) corresponding to a transition
from the original system of units of measurement to an arbitrary system of
units belonging to the same class of systems of units, i.e. having basic units of
the same physical nature but different magnitude.

This means, we repeat, that every function f which enters a physically sig-
nificant relation possesses the property of generalized homogeneity:

f (a1, . . . , ak, b1, . . . , bm) = a p
1 · · · ar

k�

(
b1

a p1
1 · · · ar1

k

, . . . ,
bm

a pm

1 · · · arm
k

)
.

In the general case of incomplete similarity the function � possesses at
large or small values of the dimensionless parameters ��+1, . . . , �m the same
property of generalized homogeneity in its own renormalized dimensionless
arguments:

�(�1, . . . , ��, ��+1, . . . , �m)

= �
α�+1
�+1 · · · �αm

m �1

(
�1

�
β1
�+1 · · · �δ1

m

, . . . ,
��

�
β�

�+1 · · · �δ�
m

)
(5.21)

where the powers α�+1, . . . , δ� are certain constants, which cannot be obtained
by dimensional analysis even in principle.

The property of incomplete similarity also has a group-theoretical nature.
It means that in addition to the compulsory group of transformations (5.3),
(5.4) the problem at large or small values of the dimensionless parameters
��+1, . . . , �m has the property of invariance with respect to the set of trans-
formations

a′
1 = a1, a′

2 = a2, . . . , a′
k = ak,

b′
1 = Bβ1

�+1 · · · Bδ1
m b1, . . . , b′

� = Bβ�

�+1 · · · Bδ�

m b�,
(5.22)

b′
�+1 = B�+1b�+1, . . . , b′

m = Bmbm,

a′ = Bα�+1
�+1 · · · Bαm

m a.
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Here the parameters B�+1, . . . , Bm are certain positive numbers. Naturally, the
values of these parameters should not be too large or too small, otherwise the
applicability of the asymptotics (5.21) will be violated. The set (5.22) has the
properties of a transformation group with parameters B�+1, . . . , Bm . Indeed, if
all the B�+1, . . . , Bm are equal to unity then the transformation (5.22) is an iden-
tity transformation. For every transformation in the set (5.22) there exists an in-
verse transformation with parameters B−1

�+1, . . . , B−1
m , also belonging to this set.

Finally, the product of two transformations with parameters B(1)
�+1, . . . , B(1)

m and

B(2)
�+1, . . . , B(2)

m , which has parameters B�+1 = B(1)
�+1 B(2)

�+1, . . . , Bm = B(1)
m B(2)

m ,
also exists in the set (5.22) and is uniquely determined. We will identify the
group (5.22) with the renormalization group and so establish a link between this
concept and the concepts of intermediate asymptotics and incomplete similarity
considered earlier in this book.

More precisely, we will prove that the statement of the asymptotic invariance
to the renormalization group (5.22) of the basic relation obtained after the
application of dimensional analysis,

� = �(�1, . . . , ��, ��+1, . . . , �m), (5.23)

is equivalent to the statement of incomplete similarity.
Indeed, assume that there is incomplete similarity in the parameters

��+1, . . . , �m at small values, for definiteness sake, of these parameters, i.e.
that the relation (5.21) holds for the function �. Let us perform the transforma-
tions (5.22). We form the quantities

�′
1 = b′

1

a
′ p1
1 · · · a

′r1
k

= Bβ1
�+1 · · · Bδ1

m

b1

a p1
1 · · · ar1

k

= Bβ1
�+1 · · · Bδ1

m �1;

...

�′
� = b′

�

a
′ p�

1 · · · a
′r�

k

= Bβ�

�+1 · · · Bδ�

m

b�

a p�

1 · · · ar�

k

= Bβ�

�+1 · · · Bδ�

m ��,

�′
�+1 = b′

�+1

a
′ p�+1
1 · · · a

′r�+1
k

= B�+1
b�+1

a p�+1
1 · · · ar�+1

k

= B�+1��+1;

...

�′
m = b′

m

a
′ pm

1 · · · a
′rm
k

= Bm
bm

a pm

1 · · · arm
k

= Bm�m,

�′ = Bα�+1
�+1 · · · Bαm

m

a

a p
1 · · · ar

k

= a′

a
′ p
1 · · · a

′r
k

= Bα�+1
�+1 · · · Bαm

m �.
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Clearly, for every i = 1, . . . , � we have by construction

�′
i

�
′βi

�+1 · · · �′δi
m

= �i

�
βi

�+1 · · · �δi
m

and also

�′

�
′α�+1
�+1 · · · �′αm

m

= �

�
α�+1
�+1 · · · �αm

m
.

We obtain using (5.21),

�′ = Bα�+1
�+1 · · · Bαm

m � = Bα�+1
�+1 · · · Bαm

m �(�1, . . . , ��, ��+1, . . . , �m)

= Bα�+1
�+1 · · · Bαm

m �
α�+1
�+1 · · · �αm

m �1

(
�1

�
β1
�+1 · · · �δ1

m

, . . . ,
��

�
β�

�+1 · · · �δ�
m

)

= �
′α�+1
�+1 · · ·�′αm

m �1

(
�′

1

�
′β1
�+1 · · ·�′δ1

m

, . . . ,
�′

�

�
′β�

�+1 · · · �′δ�
m

)

= �
(
�′

1, . . . �
′
�, �

′
�+1, . . . , �

′
m

)
.

Thus, from incomplete similarity, (5.21), follows the invariance of the basic
relation (5.23) with respect to the renormalization group (5.22). And now, vice
versa, assume that there is invariance of the basic relation (5.23) with respect
to the group (5.22). This means that for every B�+1, . . . , Bm the relation (5.23)
preserves its form. Without loss of generality we can rewrite (5.23) in the form

�′

�
′α�+1
�+1 · · · �′αm

m

= �

(
�′

1

�
′β1
�+1 · · · �′δ1

m

, . . . ,
�′

�

�
′β�

�+1 · · · �′δ�
m

, �′
�+1, . . . , �

′
m

)
.

Returning to the previous variables we obtain

�′

�
′α�+1
�+1 · · · �′αm

m

= �

�
α�+1
�+1 · · · �αm

m

= �(�1, . . . , ��, ��+1, . . . , �m)

�
α�+1
�+1 · · · �α

m

= �

(
�1

�
β1
�+1 · · ·�δ1

m

, . . . ,
��

�
β�

�+1 · · · �δ�
m

, B�+1��+1, . . . , Bm�m

)
.

From this relation it follows (compare the proof of the basic theorem of di-
mensional analysis in Chapter 1) that the function � does not depend on the
arguments �′

�+1, . . . , �
′
m . Indeed, let us fix all parameters Bi , i = �+1, . . . , m,

except for one, say B j , and vary B j arbitrarily. The result will not depend on B j .
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Therefore

� = �1

(
�1

�
β1
�+1 · · · �δ1

m

, . . . ,
��

�
β�

�+1 · · · �δ�
m

,

)
.

Thus the function � has the property of generalized homogeneity (5.21) and
we have a case of incomplete similarity. We have proved the equivalence of
incomplete similarity and invariance with respect to the renormalization group.

5.3.2 The perturbation expansion

The basic relation (5.2) in which we are interested can be written in a dimen-
sionless form as

� = �(�1, . . . , �m, c).

Here we have added an additional constant dimensionless parameter c on which
the phenomenon is also assumed to depend. Its use will become clear shortly.
Again let the parameters ��+1, . . . �m be small for the sake of definiteness and
assume that generally speaking, incomplete similarity holds, so that

� = �(�1, . . . , ��, ��+1, . . . , �m, c)

= �
α�+1
�+1 · · · �αm

m �1

(
�1

�
β1
�+1 · · · �δ1

m

, . . . ,
��

�
β�

�+1 · · · �δ�
m

, c

)
;

it follows that at least one of the powers α�+1, . . . , δ� is different from zero. Gen-
erally speaking, α�+1, . . . , δ� depend on the parameter c. Let us assume further
that all the powers α�+1, . . . , δ� vanish at c = 0, i.e. that at c = 0 we have a case
of complete similarity . Then, for sufficiently small ��+1, . . . , �m , the func-
tion �(�1, . . . , ��, ��+1, . . . , �m) can be replaced by its finite non-zero limit
�(�1, . . . , ��, 0, . . . , 0), so that the dimensional parameters b�+1, . . . , bm dis-
appear from consideration. We can say, therefore, that at sufficiently small
values for ��+1, . . . , �m the phenomenon is asymptotically invariant to the
transformation group

a′ = a, a′
1 = a1, . . . , a′

k = ak,

b′
1 = b1, . . . , b′

� = b�; b′
�+1 = B�+1b�+1, . . . , b′

m = Bmbm,

(5.24)

where B�+1, . . . , Bm are the group parameters. In the case of incomplete simi-
larity the problem is asymptotically invariant with respect to a more complicated
renormalization group, (5.22).
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The next step and, we emphasize, an independent one, is to obtain the pa-
rameters α�+1, . . . , δm by a perturbation expansion, using some quantitative
relations concerning the phenomenon, in particular, the non-integrable conser-
vation laws. The latter point is crucial: if no further information concerning the
phenomenon under consideration is available then the parameters α�+1, . . . , δ�

entering the renormalization group (5.22) and the incomplete similarity relation
(5.21) cannot be determined.

As an example we will consider a perturbation expansion for the problem of
groundwater dome spreading with absorption considered in Chapter 3.

From the basic equation for the water head (3.5) the non-integrable (generally
speaking) conservation law (3.8) was obtained:

d

dt

∫ xf

−xf

H (x, t) dx = −2κc
∫ xf

−xf

(∂x H )2dx .

The limiting self-similar solution was represented in the form (3.21):

H = ξ 2
f

(
I�(1−3µ)/µ

)2µ
µ

(κt)1−2µ
f (ζ, c),

ζ = x

xf
, xf = ξf

(
I�(1−3µ)/µκt

)µ
.

(5.25)

Therefore

∫ xf

−xf

H (x, t) dx = ξ 3
f

(
I�(1−3µ)/µ

)3µ
µ

(κt)1−3µ

(∫ 1

−1
f (ζ, c) dζ

)
,

∫ xf

−xf

(∂x H )2dx = ξ 3
f

(
I�(1−3µ)/µ

)3µ
µ2

(κt)2−3µ

(∫ 1

−1
[ f ′(ζ, c)]2dζ

)
.

At c = 0, µ = 1/3; therefore the value of 1 − 3µ is small at small values of c.
To the accuracy of the leading terms we obtain

d

dt

∫ xf

−xf

H (x, t) dx = 1 − 3µ

3(κt)2−3µ
κξ 3

f I
∫ 1

−1
f (ζ, 0) dζ,

∫ xf

−xf

(∂x H )2dx = ξ 3
f I

9(κt)2−3µ

∫ 1

−1
[ f ′(ζ, 0)]2dζ.
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Now we need to use the relations

f (ζ, 0) = 1

4
(1 − ζ 2), f ′(ζ, 0) = −1

2
ζ,

∫ 1

−1
f dζ = 1

3
,

∫ 1

−1
( f ′)2dζ = 1

6
.

We substitute these relations into the non-integrable conservation law (3.8) and
obtain

− 1
9 (1 − 3µ) = − 1

27
c, so that µ = 1

3

(
1 − 1

3
c

)
.

The same relation is obtained in the first approximation by expansion of the
eigenvalue µ = (1 − c)/(3 − 2c). This simple example illustrates the basic
idea of the renormalization-group-with-perturbation-expansion approach. The
following basic points should be noted. A scaling law, in our terms incomplete
similarity, is assumed; this scaling law depends on a parameter. For the value
zero of the parameter the solution is known. An asymptotic expansion is then
used to find the solution for small but finite values of the parameter.

If there is no value of the parameter for which there exists complete similarity
then the expansion cannot be performed. The only ways to obtain the ‘anoma-
lous dimensions’, α�+1, . . . , δ�, are to solve the nonlinear eigenvalue problem
or to perform an experiment, physical or numerical.



Chapter 6

Self-similar phenomena and travelling waves

6.1 Travelling waves

In various problems in applied mathematics an important role is played by trav-
elling waves. These are phenomena for which distributions of the properties of
motion at different times can be obtained from one another by a translation,
rather than by a similarity transformation as in the case of self-similar phe-
nomena. In other words, one can always choose a moving Cartesian coordinate
system such that the distribution of properties of a phenomenon of travelling-
wave type is stationary in that system.

In accordance with the definition given above, solutions of travelling-wave
type can be expressed in the form

v = V(x − X (t)) + V0(t). (6.1)

Here v (generally speaking, a vector) is the property of the phenomenon being
considered; x is the spatial Cartesian coordinate, an independent variable of
the problem; t is another independent variable, for definiteness identified with
time, although this is not necessary, and X (t) and V0(t) are time-dependent
translations along the x- and v-axes. In particular, if the properties of the process
do not depend directly on time, so that the equations governing the process do
not contain time explicitly, the travelling wave propagates uniformly:

v = V(x − λt + c) + µt. (6.2)

Here λ, µ and c are constants; c is the phase shift and λ and µ represent
the speeds of translation along the x- and v-axes. For an important class of
waves, steady travelling waves, the distribution of properties in a wave remains
unchanged in time, so that µ = 0 and

v = V(x − λt + c). (6.3)

109
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In particular, steady travelling waves describe the fine structure of ‘fronts’,
which are associated with shock waves, flames and analogous regions of rapidly
changing density, speed and other properties of the motion and are described
by surfaces of discontinuity when dissipative processes are neglected.

Travelling waves are closely connected with self-similarities. Indeed, if in
(6.1) we set

v = ln u, t = ln τ, V0(t) = ln u0(τ ),

V = ln U, x = ln ξ, X (t) = ln ξ0(τ )
(6.4)

then we obtain a representation of a travelling wave in the self-similar form

u = u0(τ )U(ξ/ξ0(τ )). (6.5)

In particular, the relation (6.2) for a uniformly propagating travelling wave
reduces to a self-similar form with scaling self-similar variables:

u = BτµU(ξ/(Aτλ)); (6.6)

where A and B are constants.
The simple connection noted here between self-similar solutions and

travelling waves is well known; it has been used to simplify the study of
some self-similar solutions (see for example Staniukovich 1960). Surprisingly,
however, the connection between the classification of self-similar solutions
and the well-known classification of steady travelling waves long remained
unnoticed.

One distinguishes two types of the fronts mentioned above. For fronts of the
first kind (shock waves, detonation waves etc.) the speed of propagation of the
front is found from the conservation laws of mass, momentum and energy only.
The structure of such a front is adapted to the conservation laws in the sense that
for a particular speed of propagation of the front, dictated by the conservation
laws, the structure can depend on the character of the dissipative processes in the
transition region and the magnitudes of the dissipative coefficients. Of course,
analysis of a structure of shock waves allows one to reject unrealizable situations
such as shock waves of rarefaction, for which it is impossible to construct
a structure but basically the speed of propagation of the front is determined
independently of the structure of the transition process.

For fronts of the second kind (a flame, gaseous discharge etc.) the conser-
vation laws become insufficient for determination of the speed of the front:
this is found as an eigenvalue in the course of determining the structure of the
front, i.e. of determining a solution of travelling-wave type of the equations
describing the dissipative processes in the transition region.
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It turns out that this classification of travelling waves corresponds exactly
to the classification of self-similar solutions discussed above. Here we will
consider the simplest examples of steady travelling waves of both types, after
which we shall see how the two classifications correspond.

6.2 Burgers’ shock waves – steady travelling waves
of the first kind

Burgers’ equation

∂tv + v∂xv = ν∂2
xxv (6.7)

is a simplified mathematical model of the motion of a viscous compressible
gas. Here v is the speed, ν the kinematic viscosity, x the spatial coordinate, and
t the time. If the viscous term is neglected then (6.7) assumes the form of the
simplest model equation of gas dynamics,

∂tv + v∂xv = 0. (6.8)

This equation has a solution of uniformly propagating shock-wave type,
v = V (ζ ), ζ = x −λt + c, where V (ζ ) is a step function equal to v1 for ζ > 0
and equal to v2 for ζ ≤ 0, with v1 < v2. The value of the speed of propagation
λ = λ0 is obtained from the law of conservation of momentum at the front of
the discontinuity, which corresponds to (6.8):

−λ0(v1 − v2) + v2
1 − v2

2

2
= 0, (6.9)

whence we find

λ0 = v1 + v2

2
. (6.10)

We now take into account the dissipative process, that is, the viscosity, and
return to (6.7). We construct a solution of Burgers’ equation of travelling-wave
type, v = V (ζ ), ζ = x − λt + c. Substituting this expression for v into (6.7),
we have

−λ
dV

dζ
+ V

dV

dζ
= ν

d2V

dζ 2
, (6.11)

whence, integrating and using the condition V = v1 at ζ = ∞, we find

ν
dV

dζ
= −λ(V − v1) + V 2 − v2

1

2
. (6.12)
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To satisfy the condition at the left-hand endpoint, V (−∞) = v2, it is
necessary to take

λ = v1 + v2

2
= λ0, (6.13)

after which a solution is obtained in the form

ζ

ν
= 2

v2 − v1
ln

v2 − V

V − v1
. (6.14)

This solution describes the structure of the transition region on the length
scale ν/(v2 −v1) characteristic of this region. We see that the condition v2 > v1

imposed above is essential, since a solution describing the structure of the
transition region of a wave with V (−∞) = v2 < v1 = V (∞) does not exist.
In fact, with (6.13) taken into account, (6.12) assumes the form

ν
dV

dζ
= − (v2 − V )(V − v1)

2
. (6.15)

Since V lies between v1 and v2, the right-hand side of (6.15) is always negative,
and the left-hand side is negative only for v2 > v1.

A solution of travelling-wave type with λ = λ0 serves as an asymptotic
representation of a solution of an initial-value problem for Burgers’ equation
with initial data of transitional type,

v(x, 0) ≡ v2, x ≤ a,

v1 < v(x, 0) < v2, a < x < b, (6.16)

v(x, 0) ≡ v1, x ≥ b,

where a and b (a < b) are arbitrary real numbers and the function v(x, 0)
is monotonically non-increasing, ∂xv(x, 0) ≤ 0. This was proved by Oleynik
(1957). As is evident, in the present case the value of the speed of propagation
λ0 is obtained from a conservation law and is independent of the structure of the
wave, i.e. of the viscosity ν. As (6.14) shows, the viscosity determines only the
spatial scale of the transition region, i.e. the ‘width’ of the front.

The situation is completely analogous for shock waves in gases and detona-
tion waves: the speed of propagation of these waves is determined from the laws
of conservation of mass, momentum and energy alone and does not require for
its determination any consideration of the wave structure. The latter determines
only the width of the transition region.
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6.3 Flames: steady travelling waves of the second kind.
Nonlinear eigenvalue problem

6.3.1 Schematic formulation of the flame-propagation problem

We now consider travelling waves of the second kind, for which the speed of
propagation cannot be found from conservation laws alone but is determined
by analysis of the wave structure.

Travelling waves are fundamental intermediate asymptotics in the theory of
flame propagation. The phenomenon of flame propagation is of enormous fun-
damental and practical importance. Theoretical studies were begun by Taffanel
(1913, 1914) and Daniell (1930) and found an ultimate formulation in the
works of Zeldovich and Frank-Kamenetsky (1938a, b); see also Zeldovich
(1948).

Here we will present a simplified qualitative model of flame propagation in
gaseous mixtures; a more detailed and general discussion of the phenomenon
can be found in the book Zeldovich et al. (1985). We consider thermal flame
propagation in long pipes with thermally isolated walls. Assume that an exother-
mic chemical reaction is proceeding in a gaseous mixture filling a long pipe
and that in the course of this reaction a combustible component of the mixture
whose concentration we denote by n is annihilated. The reaction rate �, i.e. the
mass of combustible matter annihilated in unit volume in unit time, depends on
the concentration n and the temperature T :

� = �(n, T ). (6.17)

It is known from physical chemistry that the temperature dependence of reaction
rates in flames is very strong: a small change in temperature greatly changes
the reaction rate. As a characteristic example the Arrhenius-type dependence
can be used:

� = An p e−E/(RT ). (6.18)

Here A, the reaction order p and the activation energy E are constants and
R is the universal gas constant, equal to 2 cal/(mol K). The activation energy
for combustion reactions has a typical value of 40 kcal/mol. So, for example,
at a room temperature of 300 K the factor e−E/(RT ) is equal to approximately
10−30 while for a temperature of 1000 K it equals approximately 10−9: thus, a
tripling of temperature leads to an increase in the reaction rate by a factor 1021.
Therefore Zeldovich (1948) made the key assumption that the function �(n, T )
vanishes not only in the original state of the gaseous combustible mixture, when
T = T1, but also in a certain temperature interval T1 ≤ T ≤ T1 + �, � > 0,
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lying above the initial temperature. Thus it is assumed that the function �(n, T )
satisfies the conditions

�(n, T ) ≥ 0;

�(n, T ) = 0, 0 ≤ n ≤ 1, T1 ≤ T ≤ T1 + �; �(0, T ) = 0. (6.19)

For our qualitative model we will assume that the pressure and density ρ of
the gas mixture remain constant and we will neglect the gas motion. Then the
equations of balance of energy and of the combustible component of the gas
mixture assume the forms

∂t n = D∂2
xx n − 1

ρ
�(n, T ), (6.20)

∂t T = κ∂2
xx T + Q

ρcp
�(n, T ). (6.21)

Here D is the coefficient of diffusion, κ = k/(ρcp) is the thermal diffusivity,
k is the thermal conductivity, cp is the specific heat at constant pressure and
Q is the thermal efficiency of the exothermic reaction, the amount of heat
generated by burning a unit of mass of the combustible substance. All these
quantities are assumed to be constant. From physical chemistry it is known that
if the combustible mixture and the combustion products have close molecular
weights then the coefficient of diffusion D is close to the coefficient of thermal
diffusivity κ . We will assume that D = κ , so multiplying (6.20) by Q/cp and
adding to (6.21) we obtain for the quantity T + Qn/cp the linear diffusion
equation:

∂t

(
T + Q

cp
n

)
= κ∂2

xx

(
T + Q

cp
n

)
. (6.22)

The combustion zone is small in comparison with the length of the pipe, which
we can therefore consider as infinite, so that −∞ < x < ∞. Assume further
that, at the beginning, half the tube (x > 0) is filled by fresh mixture, i.e.
n = 1, T = T1 for x > 0, and the other half (x < 0) contains the products of
combustion, i.e. n = 0, T = T1 + Q/cp = T2 for x < 0. This means that, at the
beginning, everywhere in the tube the quantity T + Qn/cp is a constant equal
to the temperature of the combustion products T2:

T + Q

cp
n = T1 + Q

cp
= T2 . (6.23)

In the theory of combustion the relation (6.23) is called the Lewis–von Elbe
similarity law for the concentration and temperature fields. This similarity law
allows the exclusion of the concentration from the expression for the reaction
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F(T )

T1 
T

T2T1 + ∆

Figure 6.1. The function F(T ) vanishes in some interval near T =T1 in the problem
of flame propagation.

rate, so that we can write

� = �

(
(T2 − T )cp

Q
, T

)
. (6.24)

The equation (6.21) then takes the form

∂t T = κ∂2
xx T + F(T ), (6.25)

where

F(T ) = Q

ρcp
�

(
(T2 − T )cp

Q
, T

)
. (6.26)

The function F(T ) is by assumption identically equal to zero near the temper-
ature of the fresh mixture: T1 ≤ T ≤ T1 + � (see Figure 6.1). As a model of a
flame, the intermediate asymptotic solution of equation (6.25) is considered to
be of travelling-wave type:

T = T (ζ ), ζ = x − λt + c. (6.27)

Here λ is the speed of propagation of the travelling wave and c is a constant phase
which is not obtained in the process of direct construction of the travelling-wave
solution.

Substituting (6.27) into (6.25) we obtain for the function T an ordinary
differential equation:

λ
dT

dζ
+ κ

d2T

dζ 2
+ F(T ) = 0. (6.28)
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p

0

T2
T

T1
T1 + ∆

Figure 6.2. Phase portrait of the integral curves of the first-order equation (6.29).

The derivative dT/dζ = p is proportional to the heat flux. Taking T as an
independent variable we obtain for p a first-order equation:

p
dp

dT
+ λp + F(T ) = 0. (6.29)

The heat flux vanishes both at ζ = ∞ where T = T1 and at ζ = −∞ where
T =T2. Therefore there are two boundary conditions for the first-order equation
(6.29):

p = 0, T = T1; p = 0, T = T2. (6.30)

6.3.2 Nonlinear eigenvalue problem

We have again, as in the case of self-similar solutions of the second kind, a
nonlinear eigenvalue problem: (6.28) is a first-order equation and (6.30) gives
us two boundary conditions. We will show, following Zeldovich (1948), that
there exists a unique eigenvalue λ for which the desired solution exists. We
consider the phase portrait of (6.28) in the region of interest to us in the T
p-plane (Figure 6.2). At T = T2 and p = 0, (6.29) has a singular point of saddle
type. Through this singular point pass two separatrices with slopes −λ/2 ±
[λ2/4 − F ′(T2)]1/2; since F ′(T2) < 0, the slope of one of the separatrices is
positive and of the other is negative. It is clear that only the separatrices can
satisfy the second condition of (6.30). Furthermore, for λ = 0, (6.29) can be
integrated in finite form: the solutions satisfying the condition (6.30) for T = T2
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have the form

p = ±
{

2
∫ T2

T
F(T ) dT

}
, (6.31)

so that the ordinates of the points of intersection of the corresponding integral
curves with the vertical axis are

p1 =
{

2
∫ T2

T1

F(T ) dT

}1/2

> 0, p2 = −
{

2
∫ T2

T1

F(T ) dT

}1/2

< 0.

(6.32)

We now consider the function q(T, λ) ≡ ∂λ p for all solutions of (6.29)
satisfying the second condition (6.30). It is clear that q(T2, λ) ≡ 0 since
p(T2, λ) ≡ 0. Differentiating (6.29), we obtain for the function q the equation

dq

dT
= −1 + F(T )

p2
q. (6.33)

Close to the point T = T2 the separatrices behave, according to the above,
like p = (T − T2){−λ/2 ± [λ2/4 − F ′(T2)]1/2}. Differentiating with respect
to λ, we find that the corresponding curves q(T, λ) behave near to T = T2 like
q = K (T − T2), where

K =
{

−1

2
± λ

2
√

λ2 − 4F ′(T2)

}

is negative for both separatrices, i.e. q > 0 for T < T2. Furthermore there
cannot be an intersection of the curve q(T, λ) with the axis q = 0 at some point
intermediate between T1 and T2, because at a point of intersection one would
have dq/dT = −1, which is geometrically impossible. Thus, q(T1+�, λ) > 0.
But for T1 ≤ T ≤ T1 + � we have F(T ) ≡ 0, and from this and (6.33) we get
q(T1, λ) = q(T1 + �, λ) + � > �. Since

p(T1, λ) = p(T1, 0) +
∫ λ

0
q(T1, λ)dλ > −

{
2

∫ T2

T1

F(T ) dT

}1/2

+ λ�,

(6.34)

it follows that one can find one and only one value λ = λ0 such that the lower
separatrix reaches the point p = 0, T = T1, i.e. satisfies all the conditions of
the problem.

Thus, the existence and uniqueness of the solution of the nonlinear eigenvalue
problem is proved. The construction of the solution presented above can easily
be performed numerically.
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In fact, the investigation of travelling-wave solutions of the equations of
the type (6.25) began with a rigorous mathematical study, undertaken in the
fundamental work of Kolmogorov, Petrovskii and Piskunov (1937). This work
was carried out in connection with a biological problem concerning the speed of
propagation of a gene that has an advantage in the struggle for life. A remarkable
study of this phenomenon was developed independently and simultaneously by
Fisher (1937); see also the book Murray (1977). To describe the structure of
the transition zone near the boundary of the domains of habitation of genes of
both types (advantaged and disadvantaged) they obtained a nonlinear diffusion
equation of the same type as (6.25):

∂tv = κ∂2
xxv + F(v), (6.35)

where v is the gene concentration and F(v) is a continuous function that is
differentiable the necessary number of times, defined in the interval 0 ≤ v ≤ 1
and having, in accordance with the physical meaning of the problem, the
following properties:

F(0) = F(1) = 0; F(v) > 0, 0 < v < 1;
(6.36)

F ′(0) = α > 0; F ′(v) < α, 0 < v < 1.

For the special problem considered by Kolmogorov, Petrovskii, Piskunov and
Fisher, F(v) = αv(1 − v)2. Here κ and α are positive constants.

Under these conditions equation (6.35) has a solution of travelling-wave
type, v = V (ζ ), ζ = x − λt + c, satisfying the conditions v(−∞) = 1,
v(∞) = 0 for all speeds of propagation λ greater than or equal to λ0 = 2(κα)1/2

and for arbitrary c. It is of prime importance that among these solutions only
that corresponding to the lowest speed of propagation can be an intermediate-
asymptotic representation as t → ∞ of solutions of an initial-value problem
with conditions of the transitional type:

v(x, 0) ≡ 1, x ≤ a,

0 < v(x, 0) < 1, a < x < b,

v(x, 0) ≡ 0, x ≥ b.

(6.37)

In other words, it turns out that the direct consideration of solutions of travelling-
wave type gives a continuous ‘spectrum’ of possible speeds of propagation
λ ≥ λ0 = 2(κα)1/2. However, only the solution corresponding to the lowest
point, λ = λ0, of this spectrum can be an asymptotic solution as t → ∞ of
the initial-value problem with conditions of transitional type; the remaining
travelling waves are unstable. The quantity λ0 determines the required speed of
propagation of the gene that has an advantage in the struggle for life.
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We emphasize that in the gene-propagation problem as well as in the flame-
propagation problem, direct construction of a solution of travelling-wave type,
T = T (x − λt + c), determines the solution to within a constant phase c. This
latter constant can be found only by matching the travelling-wave-type solution
with a non-invariant solution of the original problem corresponding to certain
initial conditions of transitional type. It is obvious that no matter what interme-
diate state of the system T (x, t) we take as the initial state, the constant c remains
unchanged. In this sense c is an integral (see Lax 1968), but an implicit integral.

We emphasize that there is an essential difference between the problems of
gene propagation and flame propagation. In the former, the spectrum – the set
of eigenvalues – is continuous, λ ≥ λ0 = 2

√
κ F ′(0), F ′(0) = α > 0, but only

the lowest point of the spectrum corresponds to an intermediate asymptotics. In
contrast, in the problem of flame propagation the spectrum consists of a single
point. This difference is due to the ‘cutting’ of the function F .

6.4 Self-similar interpretation of solitons

The self-similar interpretation of solitons is instructive because it demonstrates
clearly that the powers in self-similar variables can be arbitrary numbers de-
pending continuously also upon the initial conditions. These numbers can be
rational, algebraic, irrational or even transcendental; they are not necessarily
the simple fractions which appear when self-similar solutions of the first kind
based on integral conservation laws (cf. Chapter 2) are constructed.

Consider the Korteweg–de Vries equation, which appeared initially in the
theory of surface waves on shallow water and was later encountered as a qual-
itative model in numerous other problems:

∂t u + u∂x u + β∂3
xxx u = 0. (6.38)

In the theory of surface waves u is, to within a constant factor, the horizontal
velocity component and is constant, in the present approximation, over the
channel depth; β = c0h2/6, c0 = (gh)1/2, g is the acceleration of gravity, h
is the undisturbed depth of the fluid layer, t is the time and x is the horizontal
coordinate in a system moving with speed c0 relative to the fluid at rest at infinity.
An analogous equation is valid also in the corresponding approximation for the
elevation of the free surface over its undisturbed level. Equation (6.38) has
solutions of solitary travelling-wave type, the so-called solitons (Figure 6.3),
which are given by

u = u0

cosh2[
√

u0/(12β) ζ ]
(6.39)
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u

x

Figure 6.3. A solitary wave, known as a soliton.

where ζ = x −λt +c and u0 = 3λ. (The name ‘soliton’ reflects the particle-like
behaviour of such a solution: after a ‘collision’ it remains the same except that
its ‘phase’ c changes, generally speaking.)

The solution (6.39) satisfies the conditions

u(∞) = u(−∞) = 0 (6.40)

for any λ > 0; the spectrum of eigenvalues λ is continuous and semi-bounded;
λ ≥ 0. There is, however, an essential difference between the continuous spec-
trum in the problem of gene propagation considered in the previous section and
the continuous spectrum in this problem. In the former problem, only the lowest
point λ = λ0 of the spectrum satisfies the requirement that the solution of the
initial-value problem with initial data of transitional type tends to the given
solution of travelling-wave type as t → ∞; for all other λ this is not so, and
therefore the corresponding solutions are unstable. For the Korteweg–de Vries
equation a remarkable discovery was made by Gardner, Greene, Kruskal and
Miura (1967): as t → ∞ for large positive x the solution of the initial-value
problem, for initial data u(x, 0) that decrease sufficiently rapidly at x = ±∞,
is represented asymptotically (Figure 6.4) by a finite sum of solutions of the
form (6.39):

u ∼
N∑

n=1

2|µn| cosh−2

{√
|µn|
6β

(
x − 2|µn|t

3
+ cn

)}
, (6.41)

where the µn are the discrete eigenvalues of the Schrödinger operator, well
known from quantum mechanics, with the potential set equal to −u(x, 0):
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u(x, t)

u(x, 0)

xx

Figure 6.4. Initial elevation of the free surface of a heavy fluid in a shallow channel
generates a finite series of solitary waves (solitons).

d2


dx2
+ 1

6β
[µ + u(x, 0)]
 = 0, 
(±∞) = 0, (6.42)

and the ‘phases’ cn are certain constants, also determined by the initial condition.
Hence any solution of soliton type can be an intermediate asymptotics of the
solution of an initial-value problem as t → ∞, but exactly which one it is will
be determined by the initial conditions. The general meaning of this result was
elucidated in a fundamental paper by Lax (1968).

There is an instructive self-similar interpretation of the result (6.41) presented
above for the Korteweg–de Vries equation (6.38). If we set x = ln ξ , t = ln τ

then equation (6.38) can be rewritten in the form

τ∂τ u + ξu∂ξ u + β
(
ξ 3∂3

xxx u + 3ξ 2∂2
ξξ u + ξ∂ξ u

) = 0. (6.43)

The solution of travelling-wave type (6.39) here assumes the self-similar
form

u = 12λ

2 + η
√

λ/β + η−√
λ/β

, η = ξ

Aτλ
. (6.44)

Here A = e−c is constant. We note that the right-hand side of (6.44) is not small
only for η of order unity; it is small if η is either large or small. The spectrum of
eigenvalues λ, obtained by direct construction of solutions of travelling-wave
type, is continuous and semi-bounded: λ ≥ 0. The result of Gardner, Greene,
Kruskal and Miura (1967) presented above can be expressed in a self-similar
interpretation in the following way: an asymptotic solution of the initial-value
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problem for (6.43) as τ → ∞ and for large ξ can be represented in the form

u ∼
N∑

n=1

12λn

{
2 +

(
ξ

Anτλn

)√
λn/β

+
(

ξ

Anτλn

)−√
λn/β

}−1

. (6.45)

Thus the initial distribution u(ξ, 0), which by assumption decreases suf-
ficiently rapidly as ξ → 0 or ∞, determines another N positive constants
λ1, . . . , λN and another N positive constants A1, . . . , AN and selects N inter-
vals in ξ . Inside each interval ξ = O(τλn ), the asymptotics of the solution is
self-similar and has the form

u ∼ 12λn

{
2 +

(
ξ

Anτλn

)√
λn/β

+
(

ξ

Anτλn

)−√
λn/β

}−1

. (6.46)

Outside the intervals mentioned the solution u is small: u = o(1). Here it
is significant that in the self-similar asymptotics not only do the constants An

depend as usual upon the initial conditions of the original non-idealized problem
but so also do the powers λn in the expressions for the self-similar variables.
Variations in the initial condition lead to a continuous variation in the powers.
The constants An and λn are the implicit integrals of the initial-value problem.



Chapter 7

Scaling laws and fractals

7.1 Mandelbrot fractals and incomplete similarity

7.1.1 The concept of fractals. Fractal curves

In the scientific and even popular literature of recent time fractals have been
widely used and discussed. By fractals are meant those geometric objects,
curves, surfaces and three- and higher-dimensional bodies, having a rugged
form and possessing certain special properties of homogeneity and self-
similarity. Such geometric objects were studied intensively by mathemati-
cians at the end of the nineteenth century and the beginning of the twen-
tieth century, euphony particularly in connection with the construction of
examples of continuous nowhere-differentiable functions. To many pure math-
ematicians (starting with Hermite) and most physicists and engineers they
seemed for a long time mathematical monsters having no applications in the
problems of natural science and technology. In fact, it is not so and in clar-
ifying this point the concept of intermediate asymptotics plays a decisive
role.

The revival of interest in such objects and the recognition of their funda-
mental role in natural science and engineering is due primarily to a series
of papers by Mandelbrot and, especially, to his monographs (1975, 1977,
1982). Mandelbrot coined the very term ‘fractal’ and introduced the general
concept of fractality. In the monographs and subsequent papers Mandelbrot
and his followers showed that, contrary to what was expected, this concept,
enclosing many special examples known before, appeared to be fruitful in
such diverse and important applications as polymer physics, geomorphology,
the theory of Brownian motion, turbulence theory, astrophysics, fracture the-
ory and many others. In the monographs of Mandelbrot are presented from

123
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a unified viewpoint the previous works of other authors that relate to these
topics.1

In this chapter we will demonstrate the concept of Mandelbrot fractals, using
first the simplest example, fractal curves. We will discuss the properties of
homogeneity and self-similarity that make a continuous curve fractal, and we
will show that the very idea of fractals is closely related to the incomplete-
similarity concept. A non-trivial example related to the fractality of respiratory
organs will be presented in conclusion.

We will start from an instructive example. The English physicist L.F.
Richardson (see Richardson 1961; Mandelbrot 1975, 1977, 1982) was com-
missioned to determine the length of the west coast of Britain. Richardson
chose the following way of solving this problem, which would be quite natural
for ordinary smooth curves. He approximated the coastline on the most detailed
available map of Britain by a broken line composed of segments of constant
length η, all vertices of which were situated on the coastline. The length Lη of
this broken line was taken as the approximate value of the coastline’s length
corresponding to a particular value of η. Richardson assumed at first that, when
reducing η, the values Lη of the length of the approximating broken line will
tend to a definite finite limit, which should be considered as the coastline’s
length.

Naturally, this is found to be the case when this method is used for a circle
(Figure 7.1(a)). However, the west coastline of Britain turned out to be so
rugged, even down to the smallest scales available on the map, that the value
Lη did not tend to a finite limit as the segment length η of the approximating
broken line was reduced. Just the opposite: the value Lη tended to infinity as η

tended to zero; throughout the available range of η the growth in Lη followed
the scaling law (Figure 7.1(b))

Lη = λη1−D, (7.1)

where λ > 0 and D, 2 > D > 1, are certain constants. For the approximate
lengths of separate parts of the same coastline between certain points of it
relations of the form (7.1) were again obtained, with the same D but a different,
smaller, value of λ. When such a procedure was performed for the coastline of
Australia (Figure 7.1(c)) the scaling law remained, but this time both λ and D
were found to be different. As can be seen, D is dimensionless; however, λ has
the unusual dimension of length raised to a non-integer fractional power.

1 Mandelbrot’s success was so complete that nowadays people try to find fractals everywhere. I
have to emphasize therefore that fractals in their turn are very special non-generic objects.
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Figure 7.1. The dependence of the length Lη of a broken line on the segment
length η for (a) a circle, (b) the west coast of Britain, (c) the Australian coast.
(After Mandelbrot 1977.)

Formal passage to the limit η → 0 in relation (7.1) gives a result rather
unexpected in its content: the length of the coastline determined by the method
proposed, and even the length of each part of it, appears to be infinite. The
substantial point here is that if one tries to use a more detailed map in the hope
that there the desired limit will appear, he or she will discover that such a map
is somewhat meaningless because due to tides the very concept of the coastline
is restricted to rather large scales.

It follows from (7.1) that parts of the coastline can be compared by a certain
measure of their extent, although not by their length. In fact, let us approximate
two pieces of coastline by broken lines with the same segment length η. In both
cases relations of the form (7.1) are obtained:

L (1)
η = λ(1)η1−D, L (2)

η = λ(2)η1−D. (7.2)

As is seen, the ratio L (2)
η /L (1)

η = λ(2)/λ(1) does not depend on the segment
length η. Therefore, the extent of certain parts of the coastline can be compared,
not however by their lengths but by the corresponding coefficients λ. Thus, the
very approach of measuring the extent of the coastline by the same means as
for smooth curves is found to be inapplicable.

Richardson found an adequate image of the west coast of Britain in a curve
of a different type. To understand this type of curve we consider first circle
(Figure 7.2) and inscribe in the circle a regular n-gon with side length η. The
perimeter of this inscribed polygon Lη obviously depends only on the diameter
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η

Figure 7.2. A circle with inscribed regular polygons. As the number of sides in the
polygon approaches infinity, and the side length η approaches zero, the perimeter
of the polygon approaches a finite limit.

of the circle d and the side length of the polygon η:

Lη = f (d, η). (7.3)

Both arguments of f have the dimension of length. Using dimensional analysis
in the traditional way we can transform (7.3) to the form

� = �(�1), (7.4)

where � = Lη/d and �1 = η/d , whence

Lη = d�
(η

d

)
. (7.5)

Let the number of sides of the polygon n approach infinity, i.e. let the side
length η approach zero. From elementary geometry, it is known that the perime-
ter of the inscribed polygon approaches the finite limit L0 = πd (which is, in
fact, adopted as the circumference of a circle). Thus, as η/d → 0 the function
�(η/d) approaches a finite limit equal to π . Therefore, for sufficiently small
η/d it is possible to neglect the influence of the parameter η and to assume that
the following relation is satisfied to the required accuracy for polygons with a
very large number of sides:

� = const = π, (7.6)

i.e. Lη = πd.
The second curve is obtained in the following way (Figure 7.3). An equilateral

triangle of side d is taken, and each of its three sides is subjected to the following
elementary operation: the side is divided into three sections, and the middle
section is replaced by two sides of an equilateral triangle, constructed using it
as a base. The sides of the polygon obtained are once again subjected to the
same elementary operation, and so on to infinity. Obviously, the side length of
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(a)
(c)

(b)

Figure 7.3. A fractal curve – the Koch triad. (a) The original triangle, (b) the
elementary operation and (c) the broken line that approximates the fractal curve
for a large number of sides. As the number of sides increases, the perimeter of the
broken line approaches infinity according to a power law.

this polygon at the nth stage, η, is equal to d/3n , and the perimeter of the entire
polygon, Lη, is equal to 3d(4/3)n . Equations (7.4) and (7.5) clearly also hold
in this case. However, it can easily be shown that, since

n = log(d/η)

log 3
,

we have

Lη = 3d
[
10n(log 4−log 3)

] = 3d
[
10α log(d/η)

] = 3d(d/η)α (7.7)

where

α = (log 4 − log 3)/ log 3 � 0.26 . . . .

Comparing (7.7) and (7.5), we find that

�(η/d) = 3(η/d)−α, (7.8)

i.e. the length of the curve L0 is infinite in this case, so that only the empty
relation � = ∞ is obtained in going to the limit η/d → 0. Thus, if one is
interested in the perimeter of the polygon for large n, it is not possible to pass
to the limit and use a limiting relationship such as (7.6). At the same time,
equation (7.4) can be rewritten in the form �∗ = const, setting

�∗ = Lη

d1+αη−α
, const = 3. (7.9)

The parameter �∗ is (like �) a power-law combination of the parameters that
determine it. However, the structure of (7.9) is not determined by dimensional
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considerations alone; we do not know the number α beforehand as we did in
the case of a circle. Furthermore, unlike the case of a circle, equation (7.6),
the parameter η remains in the resulting equation no matter how small η/d
is. Therefore, the length of the inscribed broken line, Lη = 3d1+α/ηα , turns
out to be proportional to d1+α rather than d , and the length of a segment of this
broken line, η, remains in the constant of proportionality.

The construction of the curve presented in Figure 7.3(c) was performed by
von Koch (1904), and this curve is called the von Koch triad.

So, Richardson understood that an adequate representation of the coastline is
a curve of the von Koch triad type. Indeed, for such curves the relation obtained
by Richardson as an empirical equation, (7.1), is also valid, if we write in (7.7)
λ = 3d1+α , D = 1 + α.

It follows from relation (7.1) that the number of segments of length η of the
approximating broken line is

Nη = Lη/η = λη−D. (7.10)

The quantity Lη, the length of the approximating broken line, according to (7.7)
tends to infinity as η → 0, because D > 1. Let us construct a square on each
segment of the approximating broken line. The total area of these squares is
equal to Nη2 = λη2−D . This quantity tends to zero as η → 0, because D < 2.
Therefore, roughly speaking, the length of this curve is infinite and its area is
equal to zero. However, a finite quantity, different from zero, is obtained in the
limit η → 0 if the number of segments in the approximating broken line is
multiplied by η raised to a power D, intermediate between 1 and 2:

Nη ηD = λ. (7.11)

The constant D is called the fractal dimension of the curve considered. For
the fractal dimension of the von Koch triad the double inequality 1 < D < 2
is valid. The same follows for the coastlines: for the west coast of Britain
D � 1.24, and for the Australian coastline D � 1.13 (Figure 7.1). Thus, for
these curves also the fractal dimension lies between 1 and 2. However, the length
of the approximating broken line for ordinary smooth curves is bounded, so for
smooth curves D = 1. It is clear that the fractal dimension is defined not for
all continuous curves but only for those where relation (7.1) for the length of
the approximating broken lines holds. Let us now give a formal definition of
fractal curves:

A fractal curve is a continuous curve for which the fractal dimension is strictly
larger than unity:

D > 1. (7.12)
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From what has been said it follows that the von Koch triad is a fractal curve.
As is shown by Richardson’s analysis, presented above, the coastlines of the
British west coast and of Australia are also adequately approximated by fractal
curves.

Note that constancy of the fractal dimension along the whole fractal curve
is not necessary. To be fractal, a continuous curve should allow, in the vicinity
of each point, a local approximation of the curve by broken lines whose length
is represented by a relation of the type (7.1), where D is in general more than
unity but can be different for different points.

The consideration of fractals presented above for the example of fractal
curves can be in principle extended very simply to surfaces, volumes and to
objects of arbitrary topological dimension. For instance, fractal surfaces should
be approximated by surfaces composed of tetrahedrons (see section 7.3).

7.2 Incomplete similarity of fractals

Let us explain the properties of fractal curves considered above which lead to
a scaling law for the length of the approximating broken lines when the seg-
ment length is reduced. Consider a continuous closed curve, whose diameter
(the distance between the furthest points) is equal to d. Approximate the curve
considered by a broken line with constant segment length,2 its vertices being
situated on the curve. It is clear that the number of segments Nη of the bro-
ken line depends on the dimensional parameters d and η. The quantity Nη is
dimensionless; therefore dimensional analysis gives in a standard way

Nη = f (d/η). (7.13)

Let us take another approximating broken line with a smaller length of seg-
ment ξ < η. Consider the portion of the basic curve between two neighbouring
vertices of the first broken line and let us attempt to determine the number of
vertices of the second curve contained in this portion. The von Koch triad has
two very important properties. The first is homogeneity: all portions of the ba-
sic curve between neighbouring vertices of the first broken line generate equal
numbers of segments of the second broken line. The second is self-similarity
(the similarity of the whole curve to any part of it): the number of segments
of the broken line with segment length ξ that are placed between neighbouring
vertices of the broken line with segment length η depends only on the ratio η/ξ ,

2 Obviously, the last segment will in general have length less than η, but this does not matter for
η → 0.
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not on η and ξ separately. We shall assume that the curve under consideration
also possesses the properties of homogeneity and self-similarity.

Now consider the broken line with segment length equal to the diameter of
the curve. The number of segments of such a broken line is equal, according to
(7.13), to f (1). Thus, each segment of the broken line, equal to the diameter
of the curve, contains f (d/η)/ f (1) segments of the broken line with segment
length η. According to the self-similarity property, the analogous expression
with d replaced by η, and η by ξ , holds for the number Nξη of segments of
a second broken line, with segment length ξ , that are contained between two
neighbouring vertices of the broken line with segment length η:

Nξη = f (η/ξ )/ f (1). (7.14)

However, owing to the homogeneity of the basic curve the same relation
holds for all segments of the broken line with segment length η, whose number
is equal to f (d/η). Therefore, on the one hand the total number of segments of
the second broken line contained in the basic curve will be equal to

f (d/η) f (η/ξ )

f (1)
. (7.15)

On the other hand, owing to the same formula (7.13) the number of segments
of the second broken line contained in the basic curve must also be equal to
f (d/ξ ). Equating these two relations we obtain a functional equation for the
function f :

f (x) f (y/x) = f (y) f (1), (7.16)

where x = d/η and y = d/ξ , so that η/ξ = y/x . We have met the relevant
functional equation already, in Chapter 1, equation (1.6). Equation (7.16) is
solved in an analogous way, and we obtain its solution in the form

f (x) = Cx D, (7.17)

where C = f (1) and D are constants. Bearing in mind that Lη = Nηη, we
obtain from (7.13) and (7.17)

Lη = λη1−D, (7.18)

where λ = Cd D , i.e. the relation (7.1). Thus, we have shown that for a contin-
uous closed curve possessing the properties of homogeneity and self-similarity
the scaling law (7.1) is valid, D having a constant value over the whole curve.
If D > 1, the curve is fractal.

However, the requirements of homogeneity and self-similarity are very re-
strictive, so the set of curves exactly satisfying them is rather narrow. It is
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unlikely, for instance, that the curves representing the coastline would satisfy
this property exactly. We will show that the properties of homogeneity and self-
similarity are not necessary for a curve to be fractal: the much weaker properties
of local homogeneity and local self-similarity are sufficient.

The latter properties imply that for every point on a curve possessing them a
small vicinity � can be found where the curve has the following property. The
leading term in the asymptotic representation (as η/ξ → ∞) of the number of
vertices Nξη of the approximating broken line with segment length ξ between
two neighbouring vertices of the broken line with segment length η, depends,
as η/ξ → ∞, only on the ratio η/ξ . We may assume therefore that, neglecting
small quantities, the number of vertices Nξη of the broken line with segment
length ξ inside a segment of the broken line with segment length η does not
depend on the position of this latter segment within the vicinity � or on the
values of η and ξ , given that the ratio η/ξ � 1 is held fixed:

Nξη = f (η/ξ ). (7.19)

Consider now a third broken line with still smaller segment length ζ � ξ .
On the one hand, owing to local homogeneity and self-similarity the number
of its segments within one segment of length η positioned in the vicinity �

is equal, again neglecting small quantities, to f (η/ζ ). On the other hand it is
equal to the product of the number f (η/ξ ) of segments of length ξ inside a
segment of length η times the number of segments of length ζ inside a segment
of length ξ . Equating the two expressions we obtain a functional equation for
the function f ,

f (x) f (y/x) = f (y), (7.20)

which coincides with equation (1.6). Here x = η/ξ and y = η/ζ . The solution
to this equation is represented by f (x) = x D; cf. (7.17). The value of D can
be different for various parts of the basic curve. Going from the number of
segments to the length of the broken line we obtain that for the lengths of
the approximating broken lines in the vicinity of each point of a continuous
curve possessing the properties of local homogeneity and local self-similarity
a scaling asymptotic relation is valid,

Lξ = ηDξ 1−D + · · · (7.21)

where the ellipses refer to quantities small in comparison with the first term. If
D > 1 this means that the curve considered is fractal.

We emphasize again that the set of curves having the properties of local
homogeneity and local self-similarity is richer than the set of curves of von Koch
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triad type, which possess the very special properties of complete homogeneity
and self-similarity.

Fractals reveal the property of incomplete similarity. Let us show this for the
same example, fractal curves. The length of a broken line of segment length
ξ that approximates the continuous curve between two of its points a distance
η apart depends on the dimensional parameters η and ξ . Dimensional analysis
gives

Lη = η�(η/ξ ). (7.22)

For a smooth (or piecewise smooth) curve, as ξ → 0, i.e. as η/ξ → ∞, the
function � tends to a finite limit, �(∞). By definition the value

L0 = �(∞)η (7.23)

is the length of a portion of a smooth curve between two of its points a distance
η apart. For instance, if the curve considered is a semicircle having the segment
η as its diameter, �(∞) = π/2. Therefore for smooth curves we have complete
similarity in the parameter η/ξ as η/ξ → ∞.

For fractal curves a finite limit of the function �(η/ξ ) as η/ξ → ∞ does not
exist; the limit is equal to infinity. However, it follows from the relations (7.21)
and (7.22) that as η/ξ → ∞ the function �(η/ξ ) has a scaling asymptotic
representation,

�(η/ξ ) � (η/ξ )D−1, (7.24)

i.e. incomplete similarity occurs in the parameter η/ξ as η/ξ → ∞. It is clear
also that the fractal dimension D depends on the geometric properties of the
curve and cannot be obtained from dimensional considerations.

We note in conclusion that, passing from geometric objects to the physical
objects represented by them, we can simply identify fractality with incomplete
similarity.

7.3 Scaling relationship between the breathing rate of
animals and their mass. Fractality of respiratory organs

Every animal possesses a respiratory organ that absorbs oxygen from the envi-
ronment. At first sight, the part of the organ that directly assimilates the oxygen
may be schematically represented as a line (this will be the case if the respi-
ratory organ consists of one or more whiskers), or a surface or some volume
that, like a kidney, contains a multitude of small absorbent sacs separated by
pores along which water, or air, containing oxygen moves. (As we shall see
later, the actual situation is more complicated.) Thus, the respiratory organ of
an animal can be characterized by some specific absorptive capacity βn , i.e. the
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mass of oxygen absorbed per unit time per unit length (n = 1), per unit area
(n = 2) or or per unit volume (n = 3) of the respiratory organ, respectively. Of
course, the specific absorptive capacity βn may depend on external conditions:
the temperature, the composition of the environment, the time of day, the speed
at which the animal is moving etc.

Our basic assumption is that the breathing rate of the animal, i.e. the mass R of
oxygen that it absorbs per unit time, is determined by the following quantities:
the body mass W of the animal, the density ρ of its body and the specific
absorptive capacity βη of its respiratory organ. Hence

R = f (W, ρ, βn). (7.25)

We now note an important feature: the mass of oxygen absorbed and the
body mass of the animal may be measured in independent units. (The reason
is that the change in the body mass of the animal due to breathing in and out is
small and may be neglected). Thus, we choose the LMTMO2 class of systems of
units, in which MO2 is the dimension of the mass of oxygen absorbed; this is,
according to what we have just said, effectively independent of the dimension3

of the body mass of the animal, M .
The dimensions of the parameter R and of the governing parameters W , ρ

and βn are given, as may easily be seen, by the following relations:

[R] = MO2 T −1, [W ] = M, [ρ] = M L−3, [βn] = MO2 L−nT −1.

(7.26)

Thus, the number of governing parameters is equal to 3; they all have inde-
pendent dimensions, and, according to dimensional analysis, the relation (7.25)
can be written in the following dimensionless form:

� = R

βn(W/ρ)n/3
= const. (7.27)

Hence, we have

R = AW α, A = const βnρ
−α, α = n/3, (7.28)

i.e. a scaling relationship between the breathing rate of an animal and its body
mass. According to the foregoing, if the respiratory organ consists of whiskers
then α is equal to 1/3; if the respiratory organ is a surface then α is equal to 2/3;
finally, if the oxygen absorption occurs in a volume then α is equal to unity.

Biological data (see Figure 7.4 for some instructive examples) indicate that
a scaling relationship of the form (7.28) is in good agreement with experiment.

3 In fact, this is another example of using invariance with respect to an additional group of
transformations (cf. the Introduction, p. 5, and Chapter 5, p. 106).
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Figure 7.4. The rate R of oxygen absorption as a function of body weight W
for various animals. (a) Mysids: �, sea mysids; �, farm mysids; ×, laboratory
mysids (Shushkina, Kus’micheva and Ostapenko 1971). The rate of oxygen ab-
sorption and the body weight of the animals are expressed in energy units, (which
are convenient for biologists. The straight line is given by R = 0.14W 0.8. (b)
Rhithropanopeus harrisii tridentatus crabs (Nikolaeva 1975). The scaling law is
R = 0.15W 0.75.
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From a wide range of data, it is fairly well established that, as a rule, the exponent
α lies between 2/3 and unity and very rarely takes on these extreme values.

We interpret this result in the following way: respiratory organs do not have
smooth surfaces like a sphere or an ellipsoid but fractal surfaces, i.e. surfaces
whose planar cross sections are fractal curves similar to the Koch curve dis-
cussed in the previous sections of this chapter.

More precisely, we give the name ‘fractal’ to a surface that, although con-
tinuous, has an extremely broken shape and possesses the property described
as follows. We inscribe a polyhedron consisting of triangles with side length
η within the surface, just as we inscribed broken lines within the Koch curve.
Then, as η tends to zero the total surface area of the polyhedron, Sη, does not
approach a finite limit as it does for a smooth surface such as a sphere. On the
contrary, Sη goes to infinity according to the scaling law

Sη = ση2−D, (7.29)

where σ is some constant having dimension L D , D being a dimensionless
constant greater than 2, but less than 3. The constant D is the fractal dimension
of the given surface.

Clearly, the area of each face of the inscribed polyhedron is (
√

3/4)η2. From
this and (7.29), it follows that the number of faces in the inscribed polyhedron
depends on η in the following way: Nη = const η−D .

Thus, for fractal surfaces, the surface area of the inscribed polyhedron tends
to infinity as the side length η tends to zero. At the same time, if a prism with
altitude η is constructed on each face of the polyhedron then the total volume
contained within all such prisms will be Vη = Nη(

√
3/4)η3 = const η3−D;

it tends to zero as η → 0, since D < 3. However, there is some measure
of the fractal surface that is intermediate between the area and volume; since
the quantity Nηη

D , 2 < D < 3, approaches a finite limit as η goes to zero,
this limit can be used as a measure of the surface mentioned above. Clearly,
if the surface of the respiratory organ is a fractal then the specific absorptive
capacity of this organ, βn , should not be defined as the rate of absorption per
unit area or volume but per unit of this intermediate dimension. Thus, βn has
dimension

[βn] = [R]L−D, (7.30)

where D is the fractal dimension of the respiratory organ; D is not restricted
to integer values. A comparison of this result with the data presented above
(Figure 7.4) and data obtained by other biologists indicates that self-consistency
is obtained if one assumes that the respiratory organ is a fractal surface with,
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for example, D = 2.4 for man and sturgeon, D = 2.4 for mysids (small sea
animals) (Shushkina, Kus’micheva and Ostapenko 1971), D = 2.25 for the
Rhithropanopeus harrisii tridentatus crab (Nikolaeva 1975) etc. The idea that
respiratory organs are fractals is also in qualitative agreement with the anatomi-
cal data. The analysis performed above was presented by Barenblatt and Monin
(1983).



Chapter 8

Scaling laws for turbulent wall-bounded shear
flows at very large Reynolds numbers

8.1 Turbulence at very large Reynolds numbers

Turbulence is the state of vortex fluid motion where the velocity, pressure and
other properties of the flow field vary in time and space sharply and irreg-
ularly and, it can be assumed, randomly. Turbulent fluid flows surround us,
in the atmosphere, in the oceans, in engineering and biological systems. First
recognized and examined by Leonardo da Vinci, for the past century turbu-
lence has been studied by engineers, mathematicians and physicists, includ-
ing such giants as Kolmogorov, Heisenberg, Taylor, Prandtl and von Kármán.
Every advance in a wide collection of subjects, from chaos and fractals to field
theory, and every increase in the speed and parallelization of computers is her-
alded as ushering in the solution of the ‘turbulence problem’, yet turbulence
remains the greatest challenge of applied mathematics as well as of classical
physics.

It is very discouraging that in spite of hard work by an army of scientists and
research engineers over more than a century, almost nothing became known
about turbulence from first principles, i.e. from the continuity equation and the
Navier–Stokes equations (Batchelor 1967; Germain 1986; Landau and Lifshitz
1987). These equations are written respectively as

∂αuα = 0, (8.1)

∂t ui + ∂αui uα = − 1

ρ
∂i p + ν�ui . (8.2)

Here the standard notation is used: the ui , i = 1, 2, 3, are the velocity compo-
nents in a rectilinear orthonormal Cartesian coordinate system x1, x2, x3, p is
the pressure, t is the time, ∂i ≡ ∂/∂xi , � is the Laplacian, ν is the kinematic
viscosity and ρ is the density; repeated Greek indices imply summation from
1 to 3.

137
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Turbulence at very large Reynolds numbers, often called ‘developed turbu-
lence’, is widely considered to be one of the happier provinces of the turbulence
realm, as it is thought that two of its basic results are well established and should
enter, basically untouched, into a future complete theory of turbulence. These
results are the von Kármán–Prandtl universal logarithmic law in the wall region
of wall-bounded turbulent shear flow and the Kolmogorov–Obukhov scaling
laws for the local structure of developed turbulent flow. The start of fundamen-
tal research into turbulent flows at very large Reynolds numbers can be dated
sharply from the lecture of Th. von Kármán at the Third International Congress
for Applied Mechanics at Stockholm, 25 August 1930. Von Kármán was one
of the principal founders of the International Congresses for Applied Mechan-
ics. Unquestionably his lecture ‘Mechanical similitude and turbulence’ was the
central event of the Congress. Von Kármán began his lecture with the following
statement:

Our experimental knowledge of the internal structure of turbulent flows is
insufficient for delivering a reliable foundation for a rational theoretical calculation
of the velocity distribution and drag in the so-called hydraulic flow state. Numerous
semi-empirical formulae, for instance, the attempt to introduce turbulent drag
coefficients, are unable to satisfy either the theoretician or the practitioner. The
investigations which will be presented below also do not claim to achieve a genuine
ultimate theory of turbulence. I will restrict myself rather to clarifying what can be
achieved on the basis of pure fluid dynamics if definite hypotheses are introduced
concerning definite basic questions.

The hypothesis proposed by von Kármán for answering the fundamental
questions concerning the velocity distributions and drag coefficients in turbulent
hydraulic flows or, as they are called now, shear flows – first of all, flows in pipes
and channels – was presented by him in the following straightforward form:

On the basis of these experimentally well-established facts we make the assumption
that away from the close vicinity of the wall the velocity distribution of the mean
flow is viscosity independent.

As a result of subsequent arguments proposed by von Kármán there appeared
what is called now the universal (Reynolds-number-independent) logarithmic
law and the corresponding drag law for the turbulent flow in a cylindrical pipe.
These will be presented below.

The leaders in applied mechanics of that time were present at von Kármán’s
lecture and took part in the subsequent discussion. The first speaker was L.
Prandtl. He said:

The new Kármán calculations signify very pleasing progress in the problem of fluid
friction. It was always the case that by advancing to higher Reynolds numbers the
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previous interpolation formulae were revealed to be incorrect by extrapolation to a
newly investigated range and had to be replaced by new ones. Research laboratories
made big efforts to achieve higher Reynolds numbers, but the cost of big
experimental set-ups has a bound which cannot be substantially exceeded. Due to
Kármán’s formulae further efforts in this direction became unnecessary [present
author’s italics]. The formulae are in such good agreement with the experiments in
pipe flows by Nikuradze, and by Schiller and Hermann, and with experiments
concerning the drag of plates performed by Kempf, that complete confidence can
be placed in them for their application at arbitrarily large Reynolds numbers. For
lower Reynolds numbers the agreement is worse, and this can be attributed to the
action of the viscosity also in the inner part of the flow, i.e. to the
viscosity-influenced streaks of which the laminar layer at the wall consists and
which in this case enter far into the internal part of the flow.

I want to point out a seeming contradiction concerning the representation of the
velocity distribution by Nikuradze in connection with Kármán’s new formulae and
my earlier formulation using the dimensionless distance from the wall. Kármán’s
formulae use viscosity in the boundary condition only. The velocity distribution
should be calculated without viscosity. However, the dimensionless distance from
the wall, y∗ = (y/ν)

√
τ0/ρ, does contain the viscosity. According to my opinion,

the explanation is that the Kármán representation should be considered as exact for
very large Reynolds numbers, while the representation via the dimensionless
distance from the wall applies essentially to the wall layer and streaks where the
viscosity and turbulence are acting together.

It should be understood that at that time Prandtl was generally considered
as ‘the chief of applied mechanicians’ (cf. Batchelor 1996, p. 185). The opin-
ion which we have just reproduced explains at least partially why over nearly
70 years the Nikuradze (1932) experiments were never extended to larger
Reynolds numbers. And, moreover, the culture of such experiments, in fact
very subtle, decayed and to a certain extent was lost.

It is also true that the last part of Prandtl’s comment is very deep and in-
structive. But it remained dormant and was not cast into a proper mathemat-
ical theory for the following technical reason. In the early thirties, and even
long before, the mathematical techniques which were needed here were in
sufficiently good shape. However, they were considered as something of a
mathematical monstrosity with no practical applications. Only several decades
later was it recognized (see Chapters 3–5) that many physical phenomena
needed these techniques for modelling, and then they entered the practice of
applied mathematics and theoretical physics as incomplete similarity, fractals
and renormalization groups. These concepts will be used in the present chap-
ter to explain the situation regarding the scaling laws for turbulent shear flows
at very large Reynolds numbers. In particular, incomplete similarity will al-
low a resolution of the contradiction mentioned in the last part of Prandtl’s
comment.
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After von Kármán’s (1930) work, Prandtl (1932) also arrived at the universal
logarithmic law, using a different approach, and the term ‘von Kármán–Prandtl
universal logarithmic law’ became established. Many different derivations of the
universal logarithmic law were proposed later (e.g. Lighthill 1968, pp. 116–17;
Landau and Lifshitz 1987, pp. 172–5; Schlichting 1968, pp. 489–90; Monin and
Yaglom 1971, pp. 273–4; and, quite recently, Spurk 1997). We emphasize that
the basis of all these derivations remained the hypothesis explicitly formulated
by von Kármán, cited above. The only correction, proposed for the first time
by Landau (see Landau and Lifshitz 1987), was that the hypothesis of viscosity
independence was applied to the velocity gradient, not the velocity itself (see
below).

The second major breakthrough in the theory of turbulence at very large
Reynolds numbers happened in 1941 in the fundamental works of A.N.
Kolmogorov and A.M. Obukhov, at that time Kolmogorov’s student
(Kolmogorov 1941; Obukhov 1941), where laws for the local structure of such
flows were obtained. We emphasize particularly the role of the elucidating pa-
per by Batchelor (1947), where the Kolmogorov–Obukhov theory, presented
originally in the form of short notes, was explained in detail and fundamentally
clarified. The problems of the local structure of developed turbulence are how-
ever outside the scope of the present book, mainly due to the lack of a sufficient
experimental database, which is the only thing that can allow us to come to
some ultimate conclusions.

8.2 Chorin’s mathematical example

A.J. Chorin proposed a remarkable mathematical example, which elucidates
the non-trivial mathematical situation in the problem of turbulent shear flows
at large Reynolds numbers. Consider a family of curves

φ =
(

ln
d

δ

) ( y

δ

)1/ ln(d/δ)
− 2 ln

d

δ
(8.3)

where φ is a dimensionless function, d and δ are parameters with the dimension
of length and y is the independent variable, also having the dimension of length;
y > δ. We assume that d is fixed and that δ is the parameter of the family.

It is easy to show that the function φ satisfies the ordinary differential equation

d2φ

dy2
=

(
1

ln(d/δ)
− 1

)
1

y

dφ

dy
(8.4)

and the boundary conditions

φ(δ) = − ln
d

δ
,

dφ

dy

∣∣∣∣
y=δ

= 1

δ
. (8.5)
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Assume now that d is much larger than δ, d � δ, so that 1/ ln(d/δ) is a
small parameter. For the curves of the family (8.3) a simple relation is easily
obtained:

y∂yφ =
( y

δ

)1/ ln(d/δ)
= exp

[
ln(y/d) + ln(d/δ)

ln(d/δ)

]
. (8.6)

This relation shows that as d/δ → ∞ and for any fixed y/d the quantity
y∂yφ = ∂ln yφ tends to e.

As a function of δ the family (8.3) has an envelope

φ = ln
y

d
. (8.7)

The quantity ∂ln yφ for the envelope is also a constant, but a different one, equal
to unity. (We emphasize that here we consider only the branch of the family (8.5)
having d > δ. There is another branch with d < δ, which also has an envelope
φ = 2 ln[(y/d)(2 − z)−1], where z = 1 5936 . . . is the second, non-zero, root
of the equation (2 − z) exp z = 2. However, for our applications this branch
is irrelevant because the basic length scale (for example the pipe diameter) is
much larger than the viscous length scale δ.)

Assume now that in equation (8.4), i.e. for y > δ but not in the boundary
condition at y = δ, we neglect (remember von Kármán’s basic hypothesis!)
the small parameter 1/ ln(d/δ) in comparison with unity, so that equation (8.4)
reduces to the form

d2φ

dy2
= − 1

y

dφ

dy
. (8.8)

Satisfying the (δ-dependent!) boundary conditions (8.5) we obtain not the fam-
ily (8.3) but only a single curve, the envelope (8.7), which is δ-independent
(‘universal’!). In fact, by neglecting the small parameter 1/ ln(d/δ) in equa-
tion (8.4) we have prevented (cf. Prandtl’s comment in the previous section)
penetration of the influence of the parameter δ into the basic region.

Let us look at this matter from a different viewpoint. The derivative dφ/dy
can be represented without solving equation (8.4) by dimensional analysis only,
in the form

dφ

dy
= 1

y
	

(
y

δ
,

d

δ

)
(8.9)

where 	 is a dimensionless function of its dimensionless arguments. In the case
under consideration,

	 =
( y

δ

)1/ ln(d/δ)
. (8.10)
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We see that at arbitrarily large y/δ the function 	 cannot be replaced by a
constant, so that the influence of δ is preserved and cannot be neglected. How-
ever, δ enters the resulting equations in a specific, power-type form, due to a
specific type of invariance of the problem as a whole. In fact, we have met in
this example incomplete similarity in the parameter y/δ, explained in general
terms in Chapter 4. We will see that the same situation happens in wall-bounded
turbulent shear flows. However, if we do make the assumption of complete sim-
ilarity, 	 = constant as above, then we recover the envelope of the family of
solutions rather than the family of solutions themselves!

8.3 Steady shear flows at very large Reynolds numbers.
The intermediate region in pipe flow1

We consider now the problem of statistically steady turbulent shear flows2

(‘hydraulic flows’ in von Kármán terminology). Among such flows are many
of practical importance, such as flows in pipes, channels and boundary layers.
Their fundamental value is related also to their localised nature. In general,
turbulent flows are non-local both in time and space, so that their mean properties
are determined not only by the flow state at a given point but also by the flow
history and the flow properties at neighboring points. This is not so for steady
turbulent shear flows, and their localized nature radically simplifies our study of
them. Flows in cylindrical pipes (Figure 8.1) constitute an instructive example
of wall-bounded turbulent shear flows.

We have the same clear goal and well-determined problems as once formu-
lated by von Kármán: to obtain mathematical expressions for the drag coefficient
and the velocity distribution in the intermediate region of the flow. ‘Intermedi-
ate’ means outside the viscous sublayer, adjacent to the wall, where the velocity
gradients are so high that the viscous stress is comparable with the stress cre-
ated by turbulent vortices, and not too close to the pipe axis. Von Kármán also
considered the same intermediate region of flow.

However, our basic hypothesis will be essentially different from von Kármán’s
hypothesis, presented in section 8.1, and this difference will lead to substantially
different results. In fact we will replace von Kármán’s hypothesis of complete
similarity by the hypothesis of incomplete similarity.

1 In the remaining part of this chapter the results of joint work of A.J. Chorin, V.M. Prostokishin
and the author, performed over the period 1991–2000, are presented. Detailed references can be
found in Barenblatt, Chorin and Prostokishin (1997, 2000a); Chorin (1998); Barenblatt (1999).

2 Shear flows are flows with parallel mean velocities varying only in the lateral direction.
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Figure 8.1. Flow in a long cylindrical pipe: the structure at large Reynolds number:
1, viscous sublayer; 2, near-axis region; 3, intermediate region.

We turn now to the derivation of the velocity distribution in the intermediate
region. The mean velocity gradient ∂yu in the shear flow bounded by a smooth
wall depends on the following arguments: the transverse coordinate y (the
distance from the wall), the shear stress at the wall τ , the pipe diameter d
and the fluid properties, its kinematic viscosity ν and density ρ. The velocity
gradient ∂yu is considered rather than the velocity u itself, because the values
of u at an arbitrary distance from the wall depend on the flow in the vicinity of
the wall, where intrinsically asymptotic assumptions, which we will use below,
are clearly invalid. Thus

∂yu = f (y, τ, d, ν, ρ). (8.11)

Following von Kármán and Prandtl we introduce the viscous length scale

δ = ν

u∗
, where u∗ =

√
τ

ρ
(8.12)

(the quantity u∗ is called the dynamic or frictional velocity), and a standard
application of dimensional analysis then gives

∂yu = u∗
y

	

(
y

δ
,

d

δ

)
. (8.13)
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Also, dimensional analysis of the relation (8.11) shows that d/δ = u∗d/ν is a
function of the traditional Reynolds number,

Re = ūd

ν
, (8.14)

where ū is the average velocity – the flux divided by the cross-sectional area of
the pipe. The relation (8.13) can be rewritten therefore as

∂yu = u∗
y

	
( y

δ
, Re

)
. (8.15)

For very large Reynolds numbers in the intermediate region under consider-
ation, the ratio of the distance from the wall to the viscous length scale y/δ is
large. The basic von Kármán hypothesis (see section 8.1) is that the viscosity
does not affect the velocity distribution in this region. However, in the expres-
sion (8.15) for the velocity gradient the viscosity enters both arguments, y/δ

and Re. Therefore this hypothesis means complete similarity in the parameters
y/δ and Re. According to von Kármán’s hypothesis the viscous length scale
δ should disappear from the resulting relations, and the function 	 can be re-
placed by a constant: 	 = 1/κ . The constant κ was later named ‘Kármán’s
constant’. Substituting 	 = 1/κ into (8.15) gives

∂yu = u∗
κy

. (8.16)

Integration gives the von Kármán–Prandtl universal (Reynolds-number-
independent) logarithmic law for the velocity distribution:

u = u∗

(
1

κ
ln

u∗y

ν
+ C

)
, (8.17)

where the constant C is finite and Re-independent (and this also is a seemingly
logically consistent, but nevertheless a substantial extra, assumption). Prandtl
(see his comment in section 8.1) emphasized a ‘seeming contradiction’ related to
the appearance of the viscosity in the resulting formula, which will be explained
later.

For more than six decades the experimental information accumulated, sug-
gesting some doubts in the universal logarithmic law, i.e. in the von Kármán
basic hypothesis, which we now call the hypothesis of complete similarity. The
experimental data demonstrates a systematic deviation (not a scatter!) from the
predictions of the universal logarithmic law even if a very liberal approach to
the constants κ and C is allowed (κ from 0.38 to 0.44, i.e. 1/κ from 2.25 to
2.65; C from 4.1 to 6.3!), although by the very logic of the derivation these
constants should be identical for all high-quality experiments in smooth pipes.
Therefore it was a natural step to assume that there is no complete similarity
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and to propose instead of the von Kármán hypothesis a different hypothesis,
suggesting the step next in complexity:

First hypothesis: There is an incomplete similarity of the average ve-
locity gradient in the parameter y/δ and no kind of similarity in Re.

According to this hypothesis, the influence of the viscosity remains at arbitrary
large Reynolds numbers in the whole body of the flow, but it enters only in
combination with other parameters controlling the turbulence. Practically, this
means that for very large Re the function 	 in (8.15) at large y/δ should be
assumed to be a power function of its argument y/δ, while no special suggestion
of any kind of similarity in Re is assumed, so that

	
( y

δ
, Re

)
= A(Re)

( y

δ

)α(Re)
(8.18)

where A(Re) and α(Re) are certain, as yet undetermined, functions of the
Reynolds number. It is instructive at this point to remember Chorin’s exam-
ple presented in section 8.2.

Substituting (8.18) in (8.15) we obtain

∂yu = u∗
y

A(Re)
( y

δ

)α(Re)
, δ = ν

u∗
. (8.19)

Note that the relation (8.16) is a special case of (8.19). Therefore, the original
idea was that if experiments and/or numerical computations (for the relevant
range of high Reynolds numbers, numerical computations are at present impos-
sible, so here we speak of the rather distant future) showed that A is a universal
constant while α = 0, we could return to (8.16). Now we can claim definitely
that this is not the case!

Note immediately a clear-cut qualitative difference between the cases of
complete and incomplete similarity. In the first case, the experimental data
should cluster in the traditional (ln η)φ-plane (φ = u/u∗, η = u∗y/ν = y/δ)
on the single straight line of the universal logarithmic law. In the second case,
the experimental points should occupy an area in the (ln η)φ-plane; a separate
curve corresponds to each value of the Reynolds number.

Our next hypothesis will be the vanishing-viscosity principle:

Second hypothesis: The gradient of the average velocity tends to a well-
defined limit as the viscosity vanishes.

This principle is in clear correspondence with the last part of Prandtl’s conclu-
sion, and was also used implicitly by von Kármán (see section 8.1).
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Figure 8.2. The Princeton data (Zagarola 1996) obtained in a high-pressure
pipe confirm the splitting of the experimental data according to their Reynolds
numbers and the rise of the curves above their envelope in the (ln η)φ-plane
(η = u∗ y/ν, φ = u/u∗.) The solid line is the envelope; each dotted curve has its
maximum at the η-value corresponding to the center of the pipe. The splitting and
form of the curves agree with the scaling law and are incompatible with the von
Kármán–Prandtl universal logarithmic law.

Experiments even at high Reynolds numbers demonstrate a perceptible
dependence of the dimensionless velocity distribution φ = u/u∗ on Re (see
Figure 8.2). Therefore, and according to the vanishing viscosity principle, it is
appropriate to expand A(Re) and α(Re) in a series in a small parameter ε(Re)
that vanishes at Re = ∞, and to retain the first two terms:

A = A0 + A1ε, α = α0 + α1ε

where A0, A1, α0 and α1 should be, by the logic of the derivation, universal
Reynolds-number-independent constants. We obtain from (8.19)

∂yu = u∗
y

(A0 + A1ε)
( y

δ

)α0+α1ε

. (8.20)

When the viscosity (and, consequently, the length scale δ) tends to zero, a
well-defined limit of (8.20) exists only for α0 = 0; therefore, according to our
second hypothesis α0 = 0. There is also the possibility that A0 = 0, α0 �= 0
and ε = (Re)−α0 ; it leads to a universal power dependence of ∂yu upon y. This
possibility, however, is found not to be compatible with the experimental data.
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Furthermore, (8.20) can be represented as

∂yu = u∗
y

(A0 + A1ε) exp
(
α1ε ln

y

δ

)

= u∗
y

(A0 + A1ε) exp

(
α1ε ln

u∗d

ν
+ α1ε ln

y

d

)
. (8.21)

The small parameter ε is a function of the Reynolds number vanishing at
Re = ∞. Relation (8.21) shows that if ε tended to zero as Re → ∞ faster
than 1/ ln Re then the argument of the exponent would tend to zero and we
would return to the case of complete similarity. The experiments, as was men-
tioned before, show that this is not the case. If ε tends to zero slower than
1/ ln Re, however, a well-defined limit of the velocity gradient as the viscosity
goes to zero does not exist, and we obtain a contradiction to the second hypoth-
esis, the vanishing-viscosity principle. Therefore, the only choice compatible
with our basis hypotheses (incomplete similarity and the vanishing-viscosity
principle) is

ε = 1

ln Re
. (8.22)

Thus we obtain, by integration of (8.21),

φ = u

u∗
= (C0 ln Re + C1)

( y

δ

)α1/ln Re
. (8.23)

Here an additional condition

φ(0) = 0

has been used. This condition is an independent assumption, confirmed by
experiment, which does not follow from the non-slip boundary condition
u(0) = 0, because the boundary y = 0 is outside the range of applicability
of the intermediate-asymptotic relation (8.21).

Thus, we arrive at a conclusion which is in correspondence with the intuitive
idea of Prandtl (see the last sentence of his comment). Indeed, the wall streaks
where the turbulence and viscosity act together penetrate to the main body
of the flow at any finite Reynolds numbers. And it is clear that these same
streaks create the intermittency of wall-bounded flows. This conclusion is also
in correspondence with the idea of incomplete similarity.

The parameters of turbulence (u∗) and viscosity (ν) form together a monomial

C = (C0 ln Re + C1)u1+α1/ln Re
∗ ν−α1/ln Re, (8.24)
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whose dimension cannot be obtained from dimensional analysis and which
determines the velocity distribution

u = C yα1/ln Re.

A careful comparison with the data of Nikuradze’s experiments, which were
performed under the direct guidance of Prandtl, suggested (see the details and
further references in Barenblatt, Chorin and Prostokishin 1997) the following
values of the universal constants:

C0 = 1√
3
, C1 = 5

2
, α1 = 3

2
. (8.25)

Therefore the ultimate scaling law proposed for the velocity distribution in the
major, intermediate, region of the pipe is

φ =
(√

3 + 5α

2α

)
ηα, α = 3

2 ln Re
, φ = u

u∗
, η = u∗y

ν
. (8.26)

The scaling law (8.26) shows that, as expected, there is no universal Re-
independent velocity distribution in the (ln η)φ-plane but that there is a family
of curves in this plane with Re as a parameter. However, the family (8.26) has
the special property of self-similarity and therefore of universality. Indeed, if
we plot on the ordinate axis instead of φ the quantity

ψ = 1

α
ln

2αφ√
3 + 5α

, α = 3

2 ln Re
(8.27)

we obtain ψ = ln η, i.e. the equation of the bisectrix of the first quadrant.
Comparison with Nikuradze’s experimental data shows that this is the case
(Figure 8.3): the overwhelming majority of the experimental points for η > 30
do indeed settle down to the bisectrix. The points corresponding to η < 30
naturally deviate from the bisectrix, because the scaling law (8.26) describes
the velocity distribution in the intermediate part of the cross-section, but it
should be emphasized that this deviation is a systematic one, not a scatter.

The scaling law (8.26) allows determination of the dependence of the drag
coefficient on the Reynolds number. We define the dimensionless skin-friction
drag coefficient in a way now common in the literature:

λ = τ

ρū2/8
= 8

(
u2

∗
ū2

)
. (8.28)

Using for the determination of the average velocity ū the scaling law (8.26),
and neglecting the deviation of the velocity distribution from the scaling law in
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Figure 8.3. The experimental data of Nikuradze (1932) in the coordinates ln η, ψ

at η > 30 lie close to the bisectrix of the first quadrant, confirming the scaling law.
The values of Re are as follows: �, 4 × 103; �, 6.1 × 103; �, 9.1 × 103; �, 1.67 ×
104; �, 2.33 × 104; �, 4.34 × 104; �, 1.05 × 105; �, 2.05 × 105; , 3.96 × 105;

, 7.25 × 105; ♦, 1.11 × 106; �, 1.536 × 106; +, 1.959 × 106; ×, 2.356 × 106;
, 2.79 × 106; , 3.24 × 106.

the viscous sublayer and near the axis, we obtain the formula for the skin-friction
coefficient as a function of the Reynolds number:

λ = 8

�2/(1+α)
, � = e3/2(

√
3 + 5α)

2αα(1 + α)(2 + α)
, α = 3

2 ln Re
. (8.29)

Comparison of this law with Nikuradze’s independent series of experiments
(Nikuradze 1932) determining the skin friction also showed an instructive agree-
ment (see further details and references in Barenblatt, Chorin and Prostokishin
1997). The deviations are within the limits of a normal experimental scatter.
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We arrive at the conclusion that the scaling law with universal constants
(8.25) and the drag law (8.29) describe the flow in smooth pipes satisfactorily
for large Reynolds numbers and that the incomplete similarity of this flow can be
considered as established. Professor N. Zabusky proposed the very appropriate
term ‘experimental asymptotics’ for the style of argument used here for the
derivation of the scaling law (8.26).

8.4 Modification of Izakson–Millikan–von Mises derivation
of the velocity distribution in the intermediate region.

The vanishing-viscosity asymptotics

The universal logarithmic law hardened into dogma, and became one of the
pillars of turbulence theory and a mainstay of engineering science, to a large
extent because it was supported by an independent mathematical derivation
based on seemingly unassailable principles. This derivation was proposed by
Izakson (1937), Millikan (1939) and von Mises (1941); see also Monin and
Yaglom (1971), pp. 299–301. It is usually presented as follows. It is assumed
that in the intermediate region under consideration the dimensionless velocity
distribution is a universal, Reynolds-number-independent, function of the local
Reynolds number η = u∗y/ν. Thus, the influence of the external dimensional
parameter, the pipe diameter d , and consequently that of the Reynolds number,
is neglected, so that on the one hand the wall law is valid:

φ = u

u∗
= f

(u∗y

ν

)
, (8.30)

where f is a certain dimensionless function.
On the other hand, in the vicinity of the pipe axis the defect law is assumed

to be valid:

uCL − u = u∗g

(
2y

d

)
(8.31)

where uCL is the mean velocity at the pipe axis, so that uCL − u is the velocity
defect, and g is another dimensionless function, but of a different argument; in
relation (8.31) the influence of viscosity is neglected. Thus it is assumed that
in the wall region the influence of the external length scale d can be neglected,
whereas near the pipe axis the influence of the internal length scale δ = ν/u∗
can be neglected. The next step is the assumption that there exists at very large
Reynolds numbers an interval of distance where both laws (8.30) and (8.31) are
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valid. Therefore a functional equation

uCL − u∗ f
(u∗y

ν

)
= u∗g

(
2y

d

)
(8.32)

is obtained by combining (8.30) and (8.31). After differentiation of (8.32) by y
followed by multiplication by y the following relation is obtained:

η f ′(η) = −ξg′(ξ ); (8.33)

here ξ = 2y/d. The right- and left-hand sides of equation (8.33) contain func-
tions of different arguments, therefore each of the sides can be only a constant.
Denoting this constant by 1/κ and integrating, the ‘law of the wall’ is obtained
in the form of the universal logarithmic law

f (η) = 1

κ
ln η + B; (8.34)

the defect law

g(ξ ) = − 1

κ
ln ξ + B0 (8.35)

is also obtained, with

B0 = uCL

u∗
− 1

κ
ln

u∗d

2ν
− B. (8.36)

This very attractive derivation was apparently one of the first applications of the
method of matched asymptotic expansions, which is very popular nowadays;
see the illuminating monographs Van Dyke (1975), Cole (1968) and Hinch
(1991).

The derivation is however not quite correct and needs a modification. It is
clear now (cf. Figure 8.2) that neither in the law of the wall nor in the defect
law can the influence of the Reynolds number be neglected. So, according to
our basic concept, these laws should be represented in the form

φ = u

u∗
= f

(u∗y

ν
, Re

)
(8.37)

and

uCL − u = u∗g

(
2y

d
, Re

)
. (8.38)

The derivation thereafter proceeds as before, the only differences being that κ

is no longer a constant but, rather, a certain function of the Reynolds number,
κ = κ(Re), and that B is also a function of the Reynolds number.
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Therefore the law of the wall assumes the form

φ = u

u∗
= 1

κ(Re)
ln

u∗y

ν
+ B(Re), (8.39)

where κ(Re) and B(Re) are certain unspecified functions.
It is essential that there is no contradiction between the scaling law (6.4) and

the law of the wall (8.39). This was demonstrated in Barenblatt and Chorin
(1996, 1997), where the vanishing-viscosity method developed by Chorin (see
Chorin 1988, 1994) was used essentially. Indeed, the law (8.26) can be written
in the form

φ =
(

1√
3

ln Re + 5

2

)
exp

(
3 ln η

2 ln Re

)
. (8.40)

Let the observation point be at a fixed distance y from the wall that is defi-
nitely larger than a certain length �, for instance, the size of a gauge. Let the
pipe diameter and the pressure gradient be fixed also. One is not free to vary
Re = ūd/ν and η = u∗y/ν independently because the viscosity ν appears in
both. So, if ν is decreased by the experimenter, as it was in the Princeton Super-
pipe experiments (Zagarola et al. 1996; Zagarola 1996), whose basic idea was
proposed by Brown (1991), one considers flows at ever larger η and ever larger
Re; in particular the lowest η = u∗�/ν increases with decreasing viscosity.
Consider now the ratio 3 ln η/(2 ln Re), which enters the scaling law in the form
seen in (8.40). We have from the definitions of η and Re

3 ln η

2 ln Re
= 3

2

[
ln

ūd

ν
+ ln

y

d
+ ln

u∗
ū

]
1

ln(ūd/ν)
. (8.41)

However, the distance from the wall y lies in the fixed interval � < y <

d/2, and ū/u∗ can be shown to be of order ln Re, so that ln(u∗/ū) ∼ ln ln Re,
which is asymptotically small at very large Re. Therefore 3 ln η/(2 ln Re) is
asymptotically close to 3/2, and the quantity

1 − ln η

ln Re

can be considered to be a small parameter, so that

exp

[
3

2

ln η

ln Re

]
≈ exp

[
3

2
− 3

2

(
1 − ln η

ln Re

)]

= e3/2

[
1 − 3

2

(
1 − ln η

ln Re

)]

= e3/2

[
3

2

ln η

ln Re
− 1

2

]
. (8.42)
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This means that in the interval of interest, � < y < d/2, the power law (8.26)
can be approximated by

φ = e3/2

(√
3

2
+ 15

4 ln Re

)
ln η − e3/2

2
√

3
ln Re − 5

4
e3/2 (8.43)

i.e. by a relation of the form (8.39), with

κ(Re) = e−3/2

√
3/2 + 15/(4 ln Re)

, B(Re) = − e3/2 ln Re

2
√

3
− 5

4
e3/2. (8.44)

It is important that as Re → ∞ the value of κ(Re) tends to a finite non-zero
limit, 2/(

√
3e3/2) � 0.2776, whereas the additive constant B, which has no

finite limit, tends to −∞.
At the same time, the family of power laws (8.26) having Re as parameter

has an envelope (cf. Chorin’s example presented in section 8.2). The relation
for the envelope is obtained in implicit form by the elimination of Re between
equation (8.26) and the equation

3 ln η

2 ln Re
=

√
3

10
ln η

[(
1 + 20√

3 ln η

)1/2

− 1

]
, (8.45)

which is obtained from (8.26) by differentiation with respect to Re. And the
envelope has an important feature: in the working range of ln η it is practically
indistinguishable from the straight line

φ = u

u∗
=

√
3e

2
ln η + 5.1 (8.46)

(see Barenblatt 1993; Barenblatt and Prostokishin 1993; Barenblatt, Chorin and
Prostokishin 1997). Bearing in mind that 2/(

√
3e) = 0.425, the straight line

(8.46) can be identified with the traditional form of the universal logarithmic
law. Therefore if one plots the experimental points that correspond to various
values of Re, and to y-values that are not too large, on a single graph in the
(ln η)φ-plane what is natural for those who happen to believe in the universal
logarithmic law is that the envelope will be revealed. The visual impact of
the envelope, when plotting the experimental data in the (ln η)φ-plane, is
magnified by the fact that measurements at very small values of y, where the
difference between the power laws and the envelope can also be noticeable, is
missing due to experimental difficulties. Thus if the proposed scaling law (8.26)
is valid, the seeming confirmation of the universal logarithmic law is nothing
but an illusion. The characteristic features of the Reynolds-number-dependent
scaling law, in addition to the splitting of the curves according to their Reynolds
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Figure 8.4. A schematic diagram of the power-law curves in a pipe, their envelope
and their asymptotic slope. The apparent motion of the curves to the right cor-
responds to the changes in Reynolds number. 1, the velocity as a function of the
distance from the wall (in appropriate units); 2, the envelope of the power laws,
formerly mistaken for the curves themselves; 3, the asymptotic rectilinear parts of
the law-of-the-wall curves.

number, are the presence of straight-line parts at very large Reynolds numbers
and a discrepancy of about

√
e between the slopes of the curves and the slope

of the envelope (Figure 8.4). These qualitative distinctions are confirmed by the
experiments of the Princeton group (see Figure 8.2). Indeed, despite a flaw in
these experiments, discussed in detail in Barenblatt, Chorin and Prostokishin
(1997) and in Perry et al. (2001), the results are sufficiently robust to exhibit
a separate curve for each Reynolds number and a well-defined angle between
the rectilinear parts of the curves and their envelope.

8.5 Turbulent boundary layers

The universal law for pipe flow (8.16) can be represented in the dimensionless
form

η∂ηφ = 1

κ
(8.47)

and the Reynolds-number-dependent scaling law (8.26) in a corresponding
form,

η∂ηφ =
(√

3

2
+ 15

4 ln Re

)
η3/(2 ln Re). (8.48)
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The laws (8.17), (8.26) for the dimensionless velocity φ may be obtained from
(8.47) and (8.48) integration.

By the logic of its derivation, the scaling law (8.48) must be valid not only
for the flow in pipes but also for any wall-bounded shear flows.

Here, however, a basic question appears – what is the definition of the
Reynolds number for these flows which would allow the use of the law (8.26)
for them? This basic question is immaterial as long as the engineer or researcher
continues to believe in the universal logarithmic law. Indeed, if the law is Re-
independent, the definition of Re does not matter.3 The situation is different,
though, when the law is Re-dependent. But what should one do for other shear
flows?

We will consider below boundary layers and will show that the law (8.26) also
describes these flows under a appropriate choice of Reynolds numbers. Zero-
pressure-gradient boundary layers have been well investigated experimentally
over the last 25 years. The common choice of Reynolds numbers for these
flows is

Reθ = Uθ

ν
, θ = 1

U 2

∫ ∞

0
u(U − u) dy (8.49)

where U is the free stream velocity and θ is a length calculated by integration
of the velocity profile, the so-called momentum thickness. This choice is rather
arbitrary, and a priori the law (8.26) with Re = Reθ should not be valid. But
what is the proper choice of Re for the boundary layers?

To understand this, we have to confirm first of all that in the intermediate layer
of the boundary layer flow adjacent to the viscous sublayer a certain scaling law
is valid. To do that (see details in Barenblatt, Chorin, Hald and Prostokishin 1997
and in Barenblatt, Chorin and Prostokishin 2000a) all available experimental
data presented in the traditional (ln η)φ-plane were replotted in a bilogarithmic
(log10 η) log10 φ-plane. The result was instructive: without exception, for all
investigated flows a straight line was obtained for region I, the region adjacent
to the viscous sublayer (see the examples in Figure 8.5). Moreover, for flows
with low free-stream turbulence a second self-similar region, II, was observed
between the first region and the free-stream flow. The analysis of this region was
performed in a recent paper by Barenblatt, Chorin and Prostokishin (2002). Its
degradation and subsequent disappearance with growing free-stream turbulence
was proved by the processing of the experiments of Hancock and Bradshaw
(1989); see Barenblatt, Chorin and Prostokishin (2000a).

3 As Ya.B. Zeldovich used to joke: If you ask a barman to serve water without syrup, the question
‘without which syrup’ is inappropriate. But if the water is assumed to be with syrup, then the
question ‘which syrup should be served’ is clearly relevant.
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Figure 8.5. Data, replotted in bilogarithmic form, obtained from experiments tur-
bulent boundary layers. (a) The data of Erm and Joubert (1991); Reθ = 2788. Both
self-similar intermediate regions, I and II, are clearly seen. (b) The data of Krogstad
and Antonia (1999); Reθ = 12 570. Again, both self-similar intermediate regions,
I and II, are clearly seen. (c) The data of Petrie, Fontaine, Sommer and Brugart
obtained by scanning the graphs in Fernholz and Finley (1996); Reθ = 35 530. The
first self-similar region, I, is seen but the second self-similar region, II, is barely
revealed. (d) The data of Smith, obtained by scanning the graphs in Fernholz and
Finley (1996); Reθ = 12 990. The first self-similar region, I, and the second region,
II, are clearly seen.

The straight line in region I corresponds to the scaling law

φ = Aηα; (8.50)

the coefficients A and α were obtained by statistical processing.
We assume that the effective Reynolds number Re has the form Re = U�/ν,

where, we repeat, U is the free-stream velocity and � is a certain length scale.



8.5 Turbulent boundary layers 157

Table 8.1

Reθ α A ln Re1 ln Re2 ln Re Reθ /Re

Erm and Joubert (1991)
697 0.163 7.83 9.23 9.20 9.22 0.07

1003 0.159 7.96 9.46 9.43 9.45 0.08
1568 0.156 7.99 9.51 9.62 9.56 0.11
2226 0.148 8.28 10.01 10.14 10.07 0.09
2788 0.140 8.66 10.67 10.71 10.69 0.06

Krogstad and Antonia (1999)
12 570 0.146 8.38 10.18 10.27 10.23 0.45

Petrie, Fontaine, Sommer and Brungart a

35 530 0.119 9.76 12.57 12.61 12.59 0.12

Smitha

4996 0.146 8.36 10.15 10.27 10.21 0.18
12 990 0.130 9.08 11.40 11.54 11.47 0.14

a The data were obtained by scanning the graphs in the review
Fernholz and Finley (1996).

The basic question is whether such a unique length scale �, which plays the
same role for the intermediate region I of the boundary layer as does the
diameter for the pipe flow, exists? In other words, is it possible to find a
length scale �, perhaps influenced by individual features of the flow, such
that the scaling law (8.26) is valid for the first intermediate region I? To
answer this question, in Barenblatt, Chorin, Hald and Prostokishin (1997)
and in Barenblatt, Chorin and Prostokishin (2000a) A and α (obtained, we
emphasize, by statistical processing of the experimental data in the first in-
termediate scaling region) were taken and two values, ln Re1 and ln Re2,
were then calculated by solving the two equations suggested by the scaling
law (8.26),

1√
3

ln Re1 + 5

2
= A,

3

2 ln Re2
= α. (8.51)

If these values of ln Re1 and ln Re2 obtained by solving two different equ-
ations, are indeed close, i.e. if they coincide to within experimental accuracy, it
means that the unique length scale � can be determined and the experimental
scaling law in region I coincides with the basic scaling law (8.26).

Table 8.1 shows via several examples that the values of ln Re1 and ln Re2

are close; a more detailed discussion of all the available data can be found
in Barenblatt, Chorin and Prostokishin (2000a), but the conclusion remains
the same. Owing to the closeness of the values of ln Re1 and ln Re2, we can
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Figure 8.6. The data of Erm and Joubert (1991) (∗), Krogstad and Antonia (1999)
(�), Smith (�) and Petrie et al. (∇) collapse on the bisectrix of the first quadrant
in the (ln η)ψ-plane, in accordance with the universal form (8.53) of the scaling
law (8.26).

introduce for all these flows a mean Reynolds number Re, for instance as

Re = √
Re1Re2, ln Re = 1

2
(ln Re1 + ln Re2) (8.52)

and consider Re as an estimate for the effective Reynolds number of the
boundary-layer flow. Naturally the ratio Reθ /Re = θ/� is different for dif-
ferent flows.

Checking the universal form of the scaling law (8.26),

ψ = 1

α
ln

(
2αφ√
3 + 5α

)
= ln η, (8.53)

gives another way to demonstrate clearly its applicability to the first intermediate
region of the flow adjacent to the viscous sublayer. According to the relation
(8.53), in the coordinates ln η, ψ all experimental points should collapse onto
the bisectrix of the first quadrant. Seen in Figure 8.6 are the data of Erm and
Joubert (1991), Krogstad and Antonia (1999), Smith and Petrie et al. (the data
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Figure 8.7. (a) The data of Naguib (1992) and of Nagib and Hites (1995) show a
systematic deviation from the bisectrix of the first quadrant (straight line). (b) The
data of Krogstad and Antonia (1998) relate to rough walls; the experimental points
lie much lower than the bisectrix. For the evaluation of ψ the value α = 3/(2 ln Re1)
was taken.

in the last two references were obtained by scanning the graphs in the review
Fernholz and Finley 1996). It is seen that the data collapse onto the bisectrix
with sufficient accuracy to confirm the scaling law (8.26). The parameter α

was calculated according to the formula α = 3/(2 ln Re), ln Re being taken as
(ln Re1 + ln Re2)/2; see Table 8.1. The results of similar processing of all the
available data can be found in Barenblatt, Chorin and Prostokishin (2000a).

We conclude that the scaling law (8.26) gives an accurate description of the
mean velocity distribution over the self-similar intermediate region (I) adjacent
to the viscous sublayer for a wide variety of zero-pressure-gradient boundary-
layer flows. In the paper by Panton (2002) it is stated that ‘. . . the method
that Barenblatt, Chorin and Prostokishin proposed to extend the power law to
boundary layers displays extreme sensitivity.’ Indeed, the ability of this method
to reveal even small deviations in experimental data is illustrated in Figure 8.7.
When the universality of the data of Naguib (1992) and Nagib and Hites (1995),
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obtained at the Illinois Institute of Technology (IIT), was checked, a small
but systematic parallel shift from the bisectrix was revealed (Figure 8.7(a)). It
would appear that the following sentence from the paper Österlund et al. (1999)
explaining the details of the experiment at IIT can clarify the reason for this shift:
‘A short fetch of sandpaper roughness was used to trigger the transition in the
boundary layer at the same location for all similar velocities.’ For comparison,
in Figure 8.7(b) we give a presentation of the results of Krogstad and Antonia
(1999) relating to rough walls; the parallel shift there is much larger.

The Reynolds number is defined as Re = U�/ν, where U is the free-stream
velocity and � is a length scale which is well defined for all the flows under
investigation. An analysis of experimental data performed in Barenblatt, Chorin
and Prostokishin (2000b) showed that � is between 1.5 and 1.6 times the wall-
region thickness as determined by the sharp intersection of the two velocity
distribution laws I and II. The validity of the scaling law (8.26) for the lower
self-similar region, I, of the boundary-layer flows constitutes a strong argument
in favor of its validity for a wide class of wall-bounded turbulent shear flows at
large Reynolds numbers.

The nature of the second self-similar region, II, adjacent to the free stream,
is not yet completely clear. For zero-pressure-gradient boundary layer flows in
the absence of free-stream turbulence the power β in the scaling law valid for
this region,

φ = Bηβ, (8.54)

is close to 0.2. The data for non-zero-pressure-gradient boundary layers are
substantially less numerous. Recently on the Internet the data of Marušić and
Perry (1995) appeared in digital form. The processing of these data in Baren-
blatt, Chorin and Prostokishin (2002) confirmed the chevron-like structure of
the velocity distribution of the boundary layer. It showed that the power β has
a substantial variation (see Figure 8.8). Let us determine the set of parameters
which govern the coefficient B and the power β in the scaling law (8.54). One
of these parameters must be the dimensionless effective Reynolds number Re
which determines the flow structure in Layer I and is affected, in turn, by the
flow in the viscous sublayer and in Layer II. The following dimensional param-
eters should also influence the flow in the upper Layer: the pressure gradient
∂x p, the dynamic (friction) velocity u∗ and the fluid properties, its kinematic
viscosity ν and the density ρ. The dimensions of the governing parameters in
the LMT class are as follows:

[∂x p] = M

L2T 2
, [u∗] = L

T
, [ν] = L2

T
, [ρ] = M

L3
.
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Figure 8.8. The mean velocity profiles in bilogarithmic coordinates in the series of
experiments of Marušić (1995) for U = 30 m/s and an adverse pressure gradient.
1: Re = 19 133, ln Re� = 8.83, P = 7.04 × 10−3, β = 0.388. 2: Re = 16 584,
ln Re� = 10.18, P = 5.79 × 10−3, β = 0.346. 3: Re = 14 208, ln Re� = 10.20,
P = 4.2 × 10−3, β = 0.306. 4: Re = 10 997, ln Re� = 10.31, P = 2.86 × 10−3,
β = 0.247. 5: Re = 8588, ln Re� = 10.323, P = 1.75 × 10−3, β = 0.207. 6:
Re = 6430, ln Re� = 10.51, P = 0, β = 0.190. The ‘chevron’ structure of the
profiles is clearly seen and regions I and II are clearly distinguishable.

The first three parameters have independent dimensions. Therefore only one
additional dimensionless governing parameter can be formed from the dimen-
sional parameters:

P = ν∂x p

ρu3∗
. (8.55)

We come to the conclusion that the power β and the coefficient B depend upon
two dimensionless governing parameters: Re and P .

So, we have arrived at a new model of the turbulent boundary layer at large
Reynolds numbers. According to the basic assumption of the models proposed
earlier by Clauser (1956) and by Coles (1956), which are widely accepted and
used, the transition from the flow in the wall region, described by the von
Kármán–Prandtl logarithmic law, to the external flow is smooth. According to
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our model presented above, if the turbulence in the external flow is low then the
intermediate region between the viscous sublayer and the external flow consists
of two self-similar structures separated by a sharp boundary.

Thus, it may be said that, when processed, the experimental data published
over the last 30 years (see the references mentioned above) support the new
model.

It seems appropriate to finish this chapter with the words of Andrey Nikolae-
vich Kolmogorov. At the end of his life, surveying the beginning of his work
in turbulence, he said (see Kolmogorov 1991):

It became clear for me that it is unrealistic to have a hope for the creation of a pure
theory [of the turbulent flows of fluids and gases] closed in itself. Due to the absence
of such a theory we have to rely upon the hypotheses obtained by processing of the
experimental data. . . . I did not perform experimental work myself, but I spent a lot
of energy on calculations and graphical processing of the data of other researchers.

(Note a parallel with von Kármán’s introduction to his lecture, see p. 138.)
Twenty years have passed since these words were said, and 65 years since

Kolmogorov started his work in turbulence. Unfortunately, very little has
changed during these years as far as the possibility of constructing a pure theory
closed in itself is concerned. However, more experimental data has appeared,
and it is possible now, if needed, to modify the previous hypotheses and special
theories based on them.
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Österlund, J.M., Johansson, A.V., Nagib, H.M. and Hites, M.H. (1999). Wall shear stress
measurements in high Reynolds number boundary layers from two facilities. AIAA
paper 99–3814.

Panton, R.L. (2002), Evaluation of the Barenblatt–Chorin–Prostokishin power law for
turbulent boundary layers. Physics of Fluids 14 (5), 1806–8.

Patashinsky, A.Z. and Pokrovsky, V.L. (1966). On the behaviour of ordering systems
near the phase transition point. J. Exp. Theor. Phys. 50 (2), 439–47.



168 References

Pattle, R.E. (1959). Diffusion from an instantaneous point source within a concentration-
dependent coefficient. Quart. J. Mech. Appl. Math. 12, 407–9.

Perry, A.E., Hafer, S. and Chong, M.S. (2001). A possible reinterpretation of the
Princeton superpipe data. J. Fluid Mech. 439, 395–401.

Polubarinova-Kochina, P.Ya. (1962). Theory of Groundwater Movement. Princeton
University Press.
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