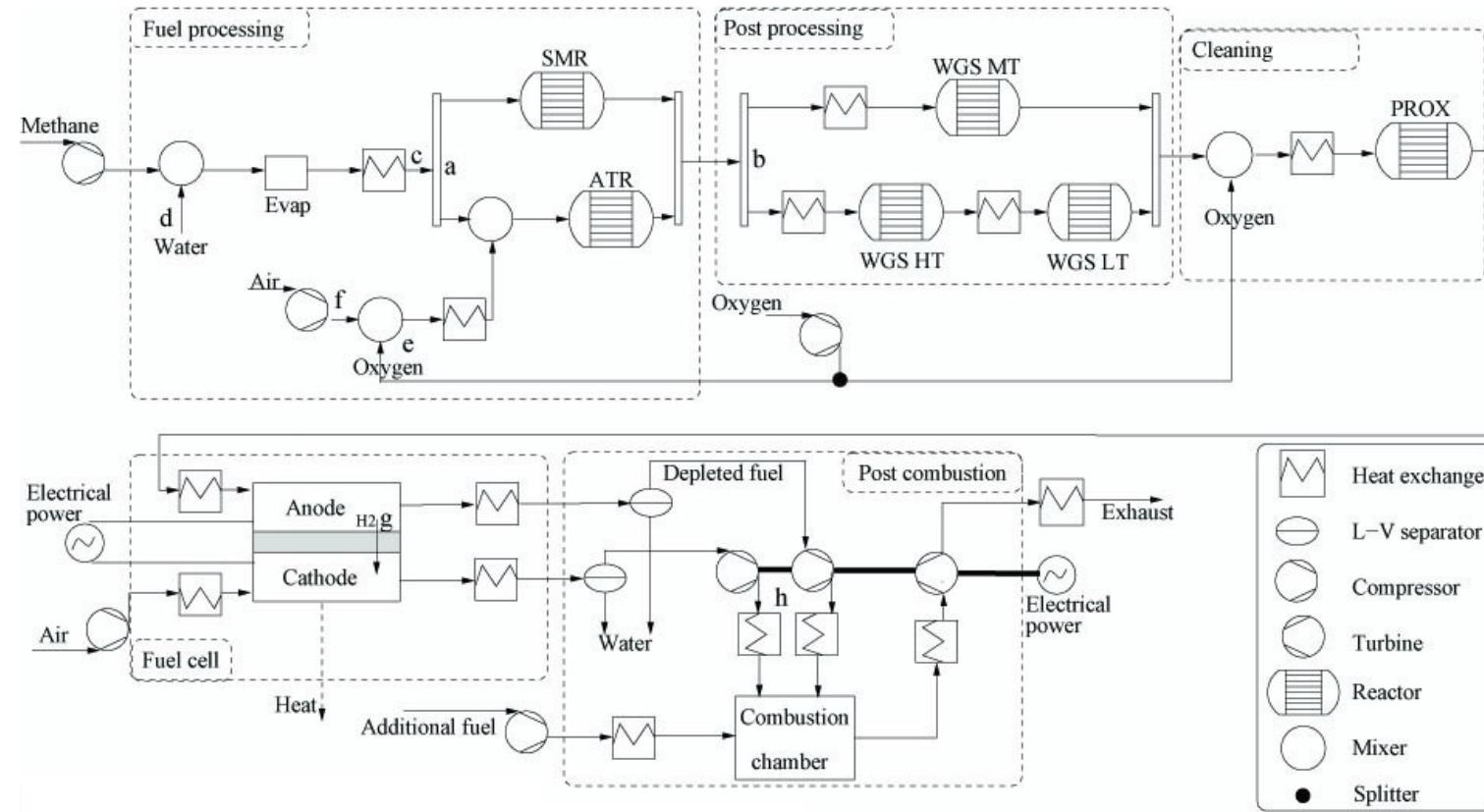


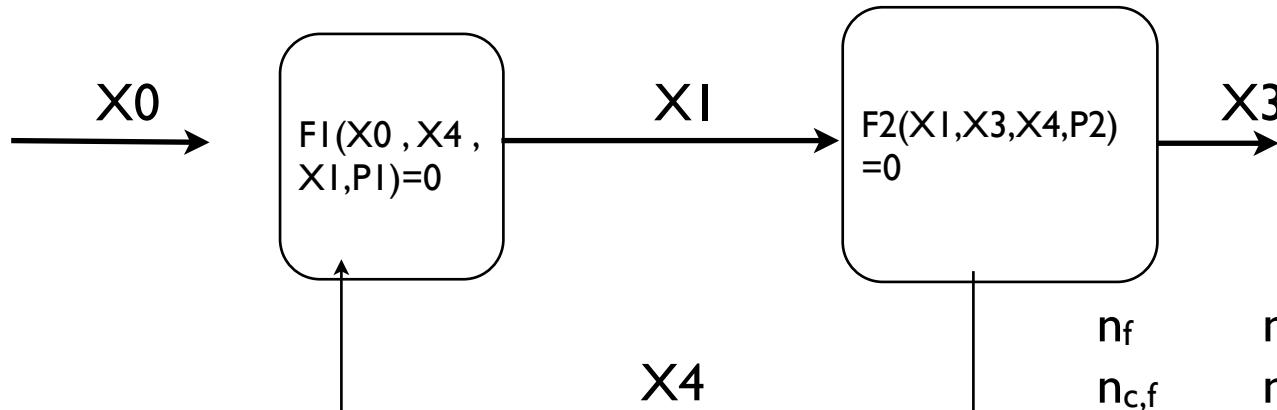
Solving flowsheets

Prof François Marechal
Dr Shivom Sharma

- Process models
 - Process Units
 - Interconnection



- Flowsheet = interconnected modules



n_f nb of flows
 $n_{c,f}$ nb of compound in flow f
 n_u nb of units
 $n_{p,u}$ nb of parameters in unit u

N_e : Equations

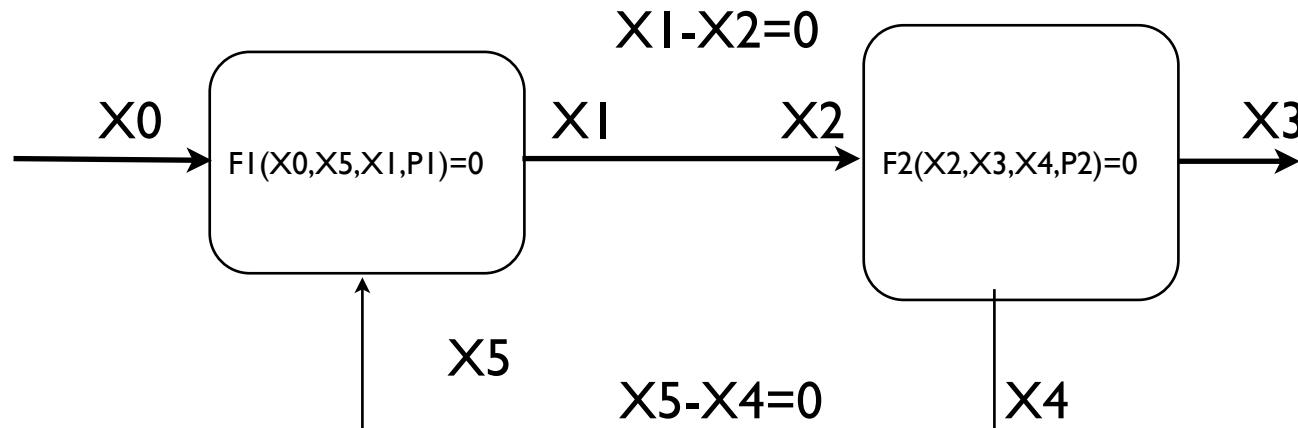
$F(X, P) = 0$: Models
 $X_s - X^* = 0$: Specifications (system)
 $P_s - P^* = 0$: Specifications (unit parameters)
 $X_i - X_j = 0$: Links (unit interconnections)

N_v : Variables

$n_f * (2 + n_{c,f})$ state of the flows
 $n_u * n_{p,u}$ parameters of unit models

Degrees of freedom : $N_{DOF} : N_v - N_e$

- Flowsheet = interconnected modules



Simultaneous resolution : Solve a set of non linear equations

$F(X, P) = 0$: Models (= a set of concatenated equations)

$X_s - X^* = 0$: Specifications (= a set of specifications for fixing the system DOF)

$P_s - P^* = 0$: Specifications (= a set of unit parameters specs)

$X_i - X_j = 0$: Links (unit interconnections (reduces the DOF of system))

Solving method => Newton Raphson : solve a set of non linear equation

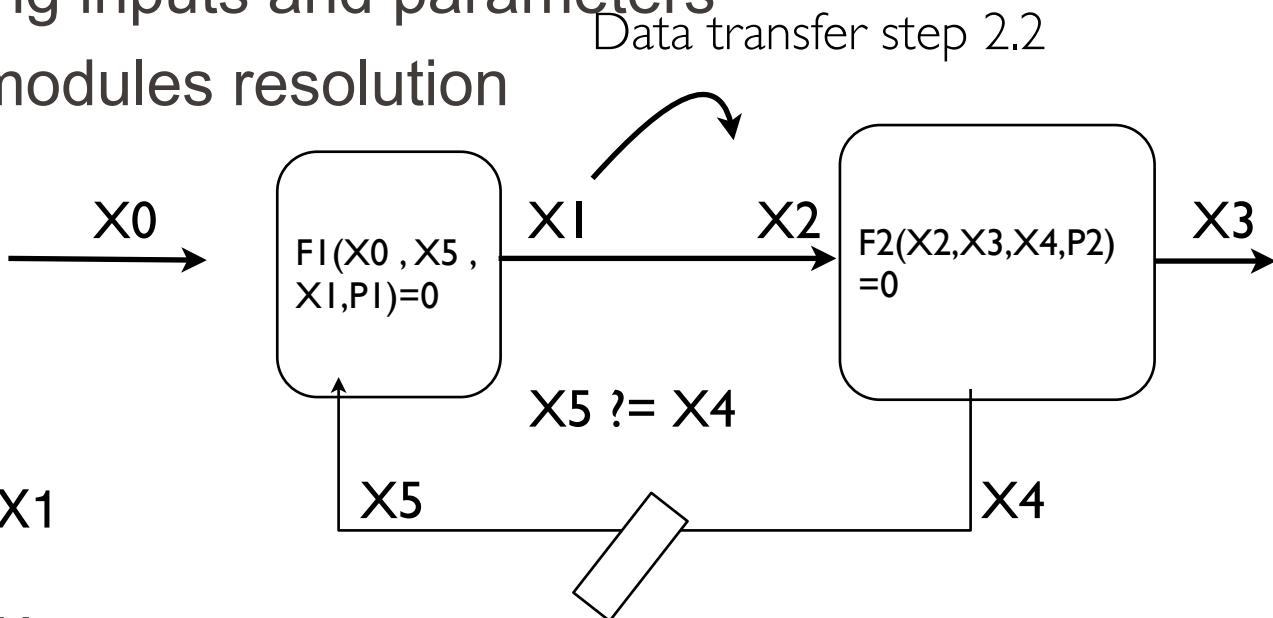
In reality $X_1 = X_2$ is solved explicitly and only X_1 is used
 $F_2((X_2, X_3, X_4, P_2) = 0)$ and $X_1 - X_2 = 0$ becomes $F_2(X_1, X_3, X_4, P_2) = 0$

- sequential approach = interconnected modules

- calculate output knowing inputs and parameters
- define a sequence of modules resolution
- explicitly solve links

Loops (recycle in flowsheets)

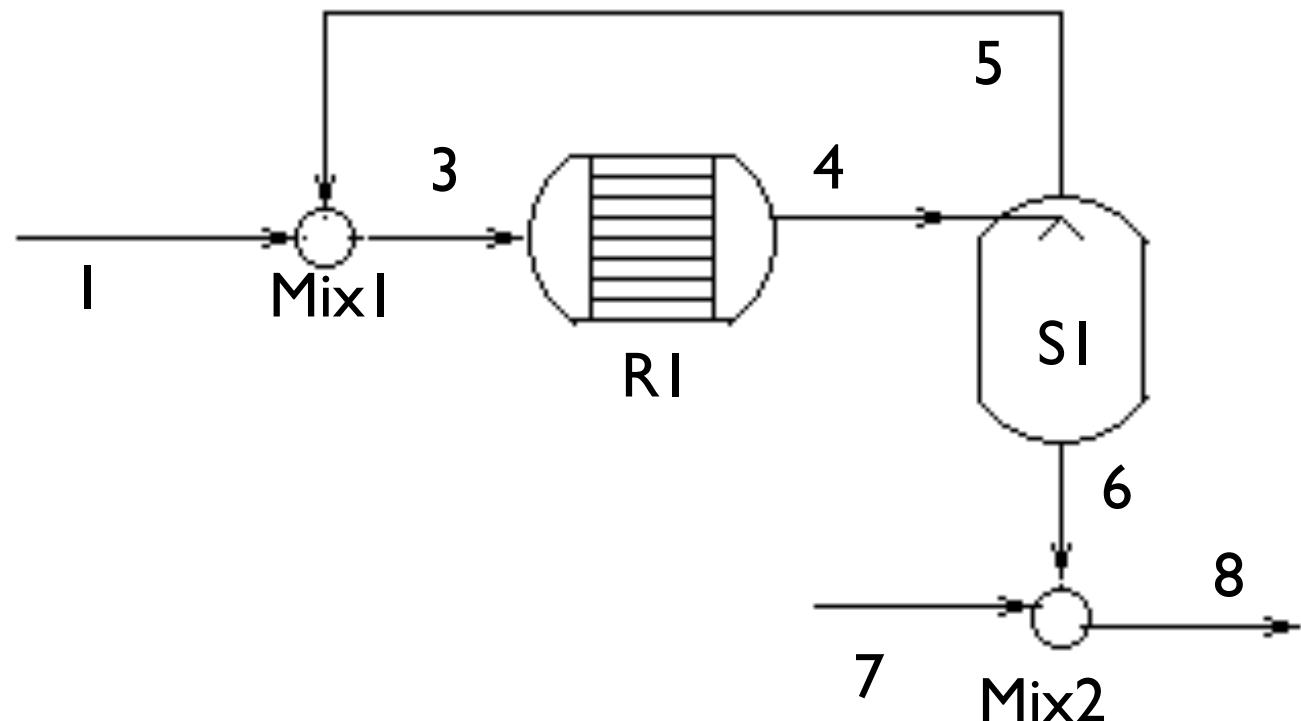
0. Locate X_5
1. Guess X_5
2. 2.1 Solve unit 1 => X_1
2.2 $X_2 = X_1$
3. 3.1 Solve unit 2 => X_4
4. 4.1 Test $X_5 ?= X_4$
4.2 yes : => out
4.2 No : goto 5
5. Propose a new value to X_5
& Goto 2.



Tearing loops

Loops are identified when a value that is needed by a module is the result of the calculation of the module in the sequence

- Name the streams
 - Your goal is to know the associate state (\dot{m}, x_i, T, P)
- Name the units
 - The units are transforming states



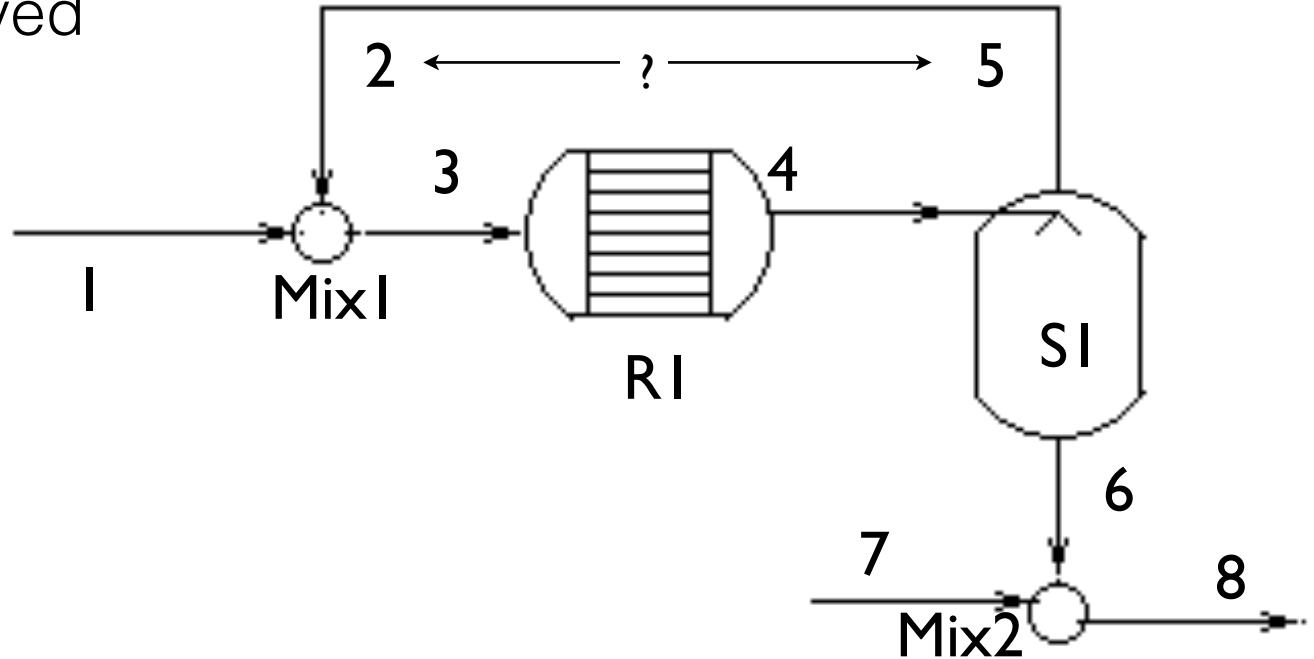
EPFL Step 1I : define a sequence

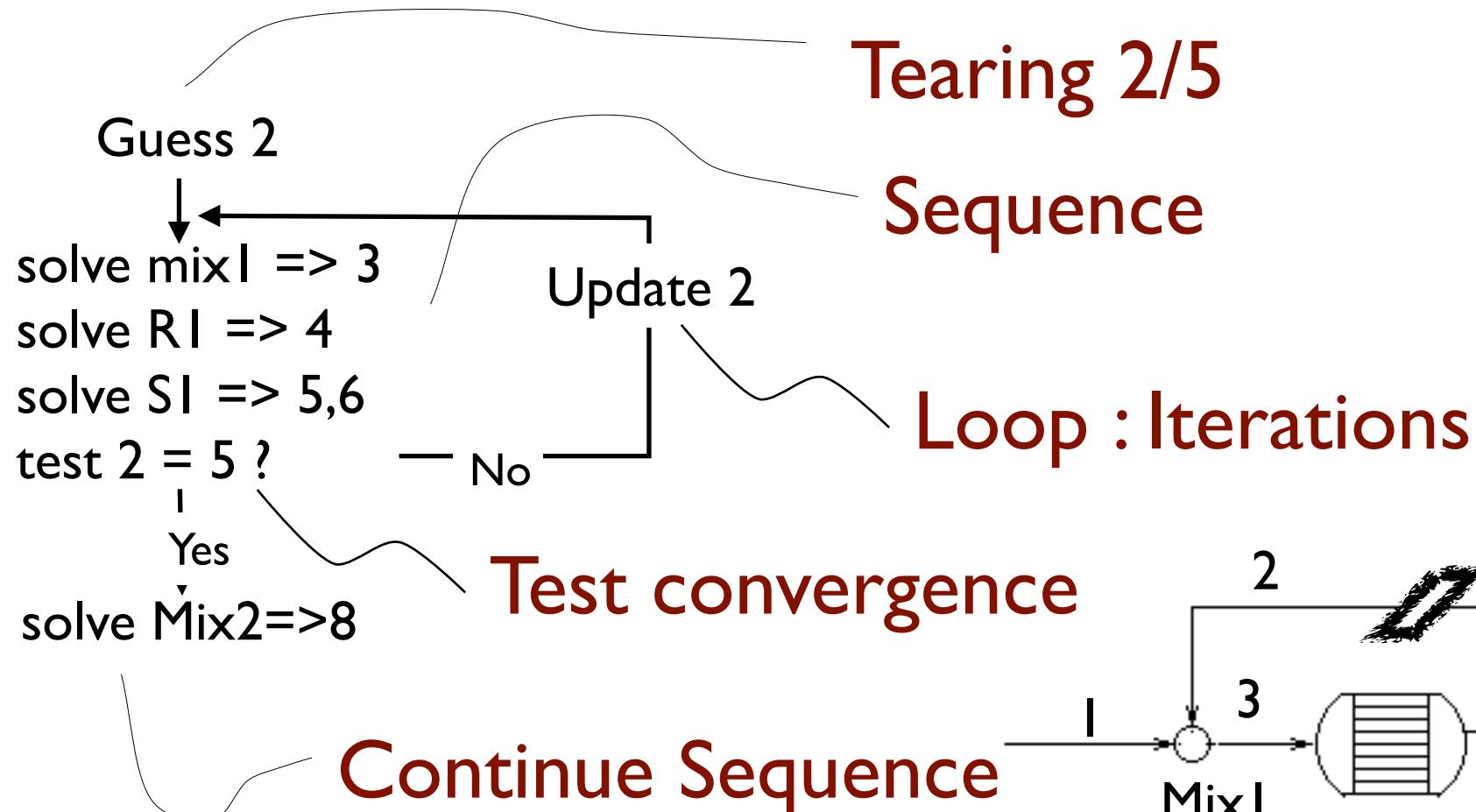
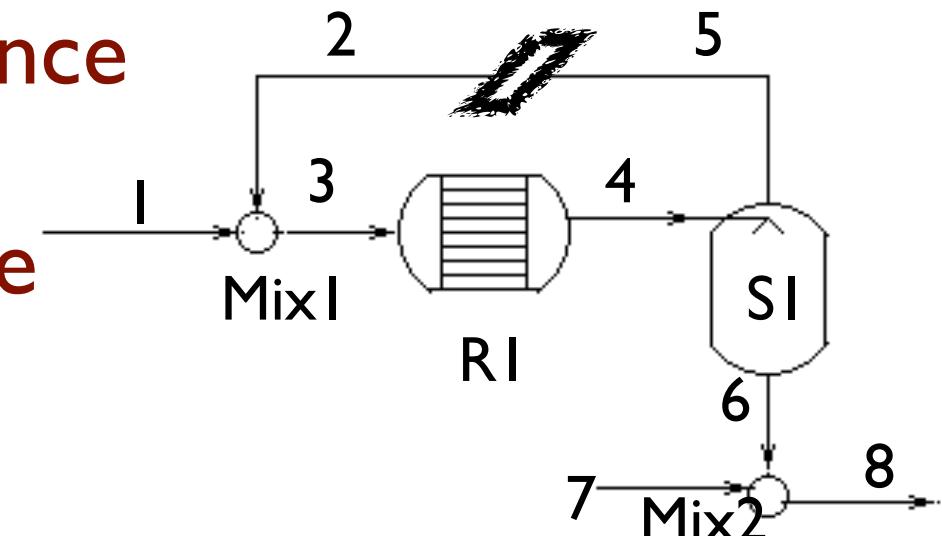
- A unit model $f_u(X_{in}^u)$ calculates the output knowing the input :

$$X_{out}^u = f_u(X_{in}^u)$$

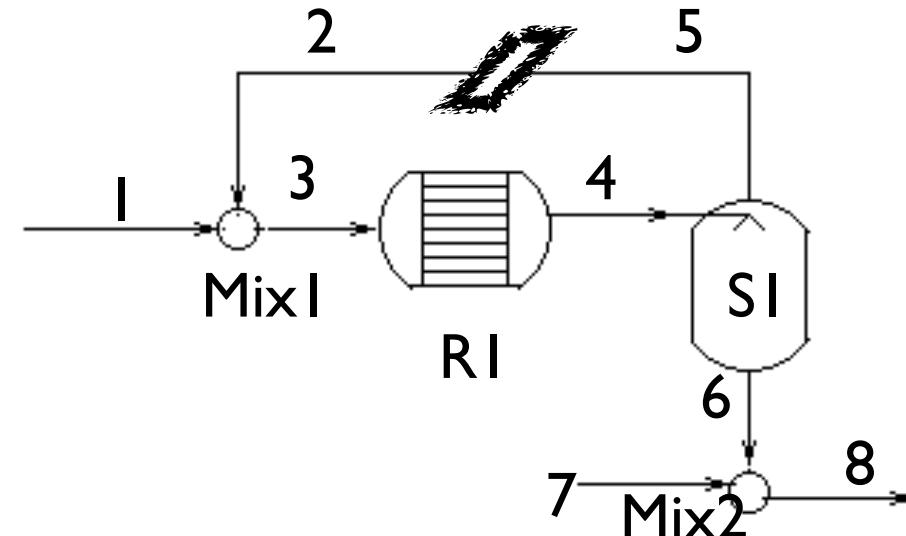
- Order of resolution sequence

- 1.set all units to unsolved and set $X_{in}^{Flowsheet}$ as known
- 2.identify the unit **u** that is not solved with all X_{in}^u known :
- 3.Calculate $X_{out}^u = f_u(X_{in}^u)$
- 4.mark X_{out}^u as known and **u** as solved
- 5.back to 1.

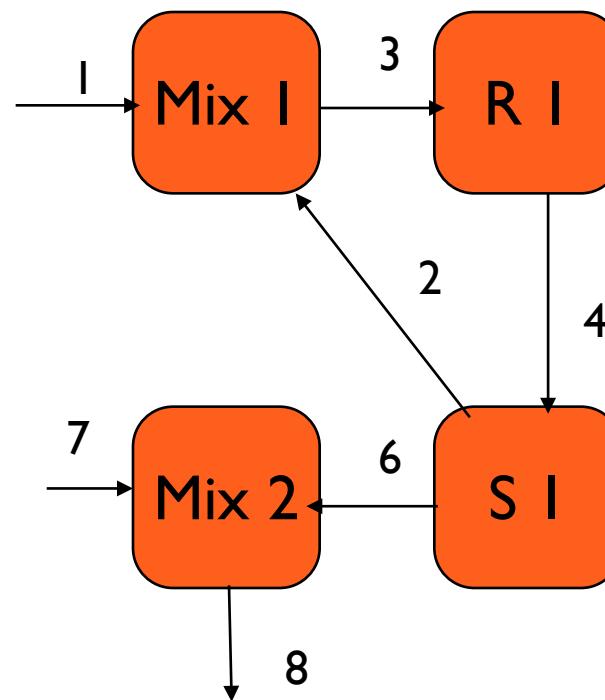




- Define an **ordered** list (sequence) of **units** solving
- Define the order of the **streams** calculated by the **units**
- Identify the tear streams (open loops)
- Consider loops as units
- Define the convergence loops
 - choose a convergence method
 - Define sequences in loops
 - Define sequence of loops

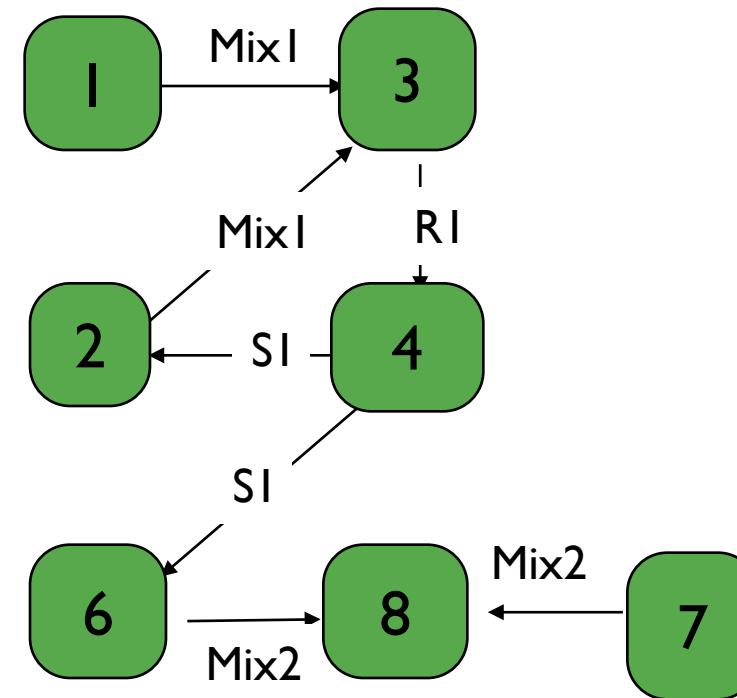


Rheogram
primal representation



Streams to compute units
Variables to compute equations

dual representation

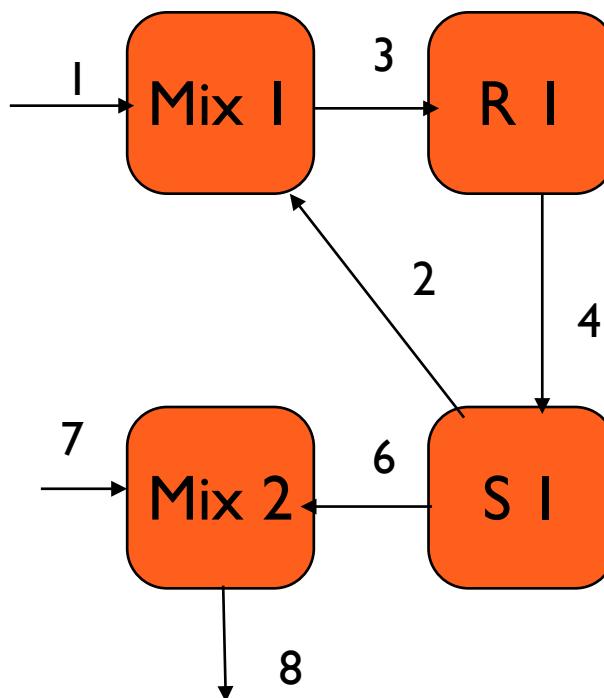


Units to compute streams
Equations to compute variables

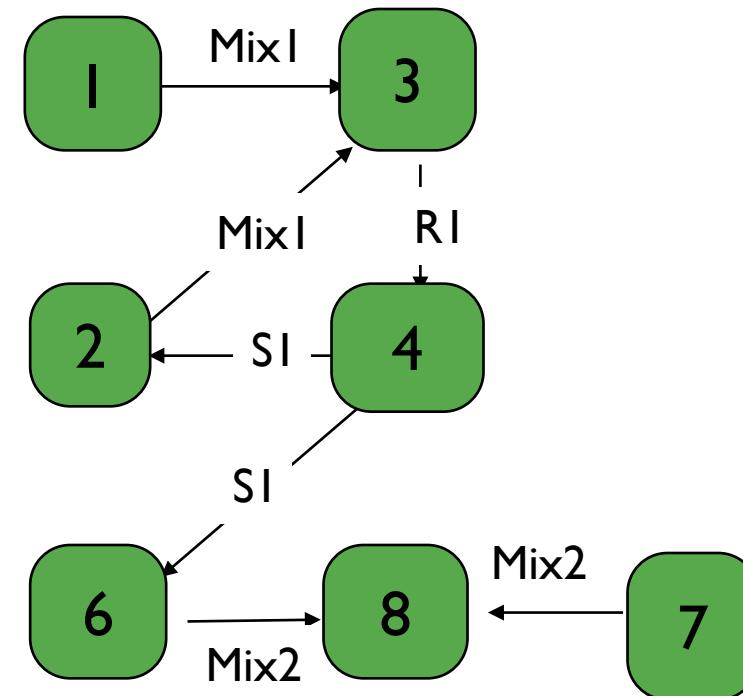
EPFL Systematic definition : Defining anteriors

primal representation

dual representation



Streams to compute units
Variables to compute equations



Units to compute streams
Equations to compute variables

- Stream 3 : needs 1 & 2 and is obtained by solving Mix1
 - streams 1 and 2 are anteriors of stream 3
 - => Stream 3 can be replaced by 1 and 2

From streams anteriority table

For each stream : what are the streams needed to compute its value by solving 1 unit

1.- Suppress streams that have no anteriors (you know them)

2.- Replace the streams that have only one anterior by their anterior

3.- when a stream depends of himself
Open loop by tearing

mark the teared stream

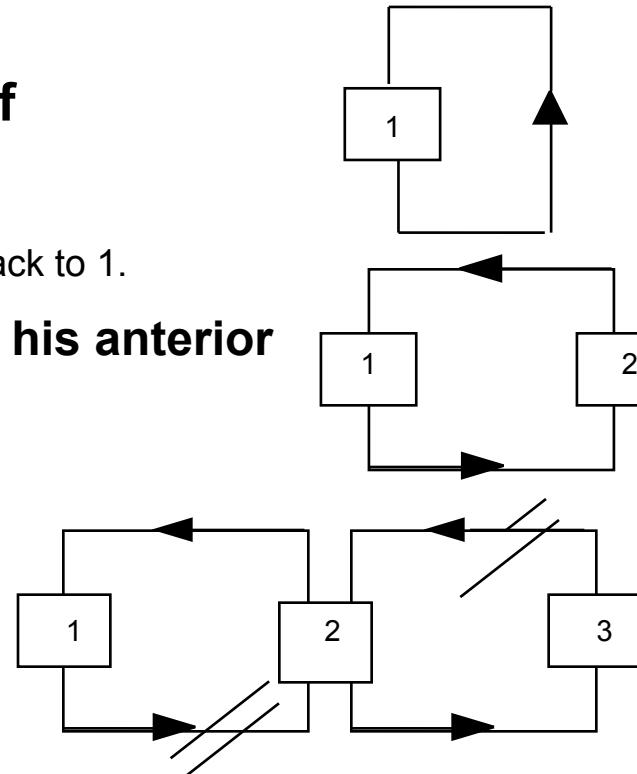
consider that the teared stream has no anterior back to 1.

4.- when an anterior stream depends of his anterior
Open loop by tearing

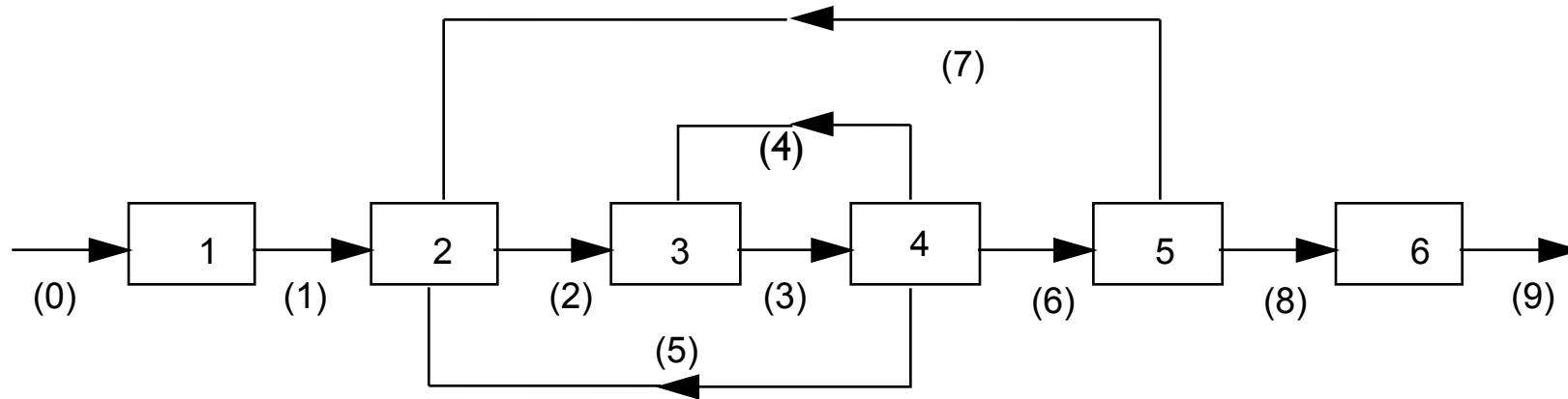
5.- Tear streams with the highest number of anterior

A teared stream has no anterior

Guess the value and restart in 1



- Define the sequence of this flow sheet : assumption $X_{out}^u = f_u(X_{in}^u)$



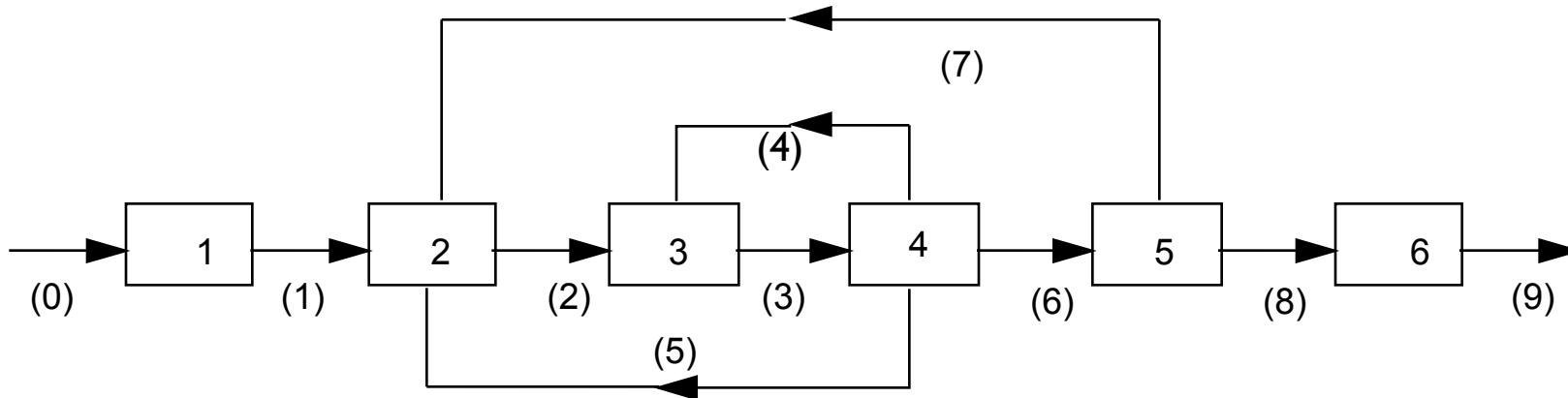
STREAMS	ANTERIOR STREAMS	
0	-	-
1	0	-
2	1,5,7	1,5,7
3	2,4	2,4
4	3	3
5	3	3
6	3	3
7	6	6
8	6	6

STREAMS	ANTERIOR STREAMS
2	5, 7
3	2, 4
4	3
5	3
6	3
7	6
8	6

Eliminate streams with no anterior

Eliminate streams with no anterior

EPFL APPLICATION OF THE MOTTARD'S ALGORITHM



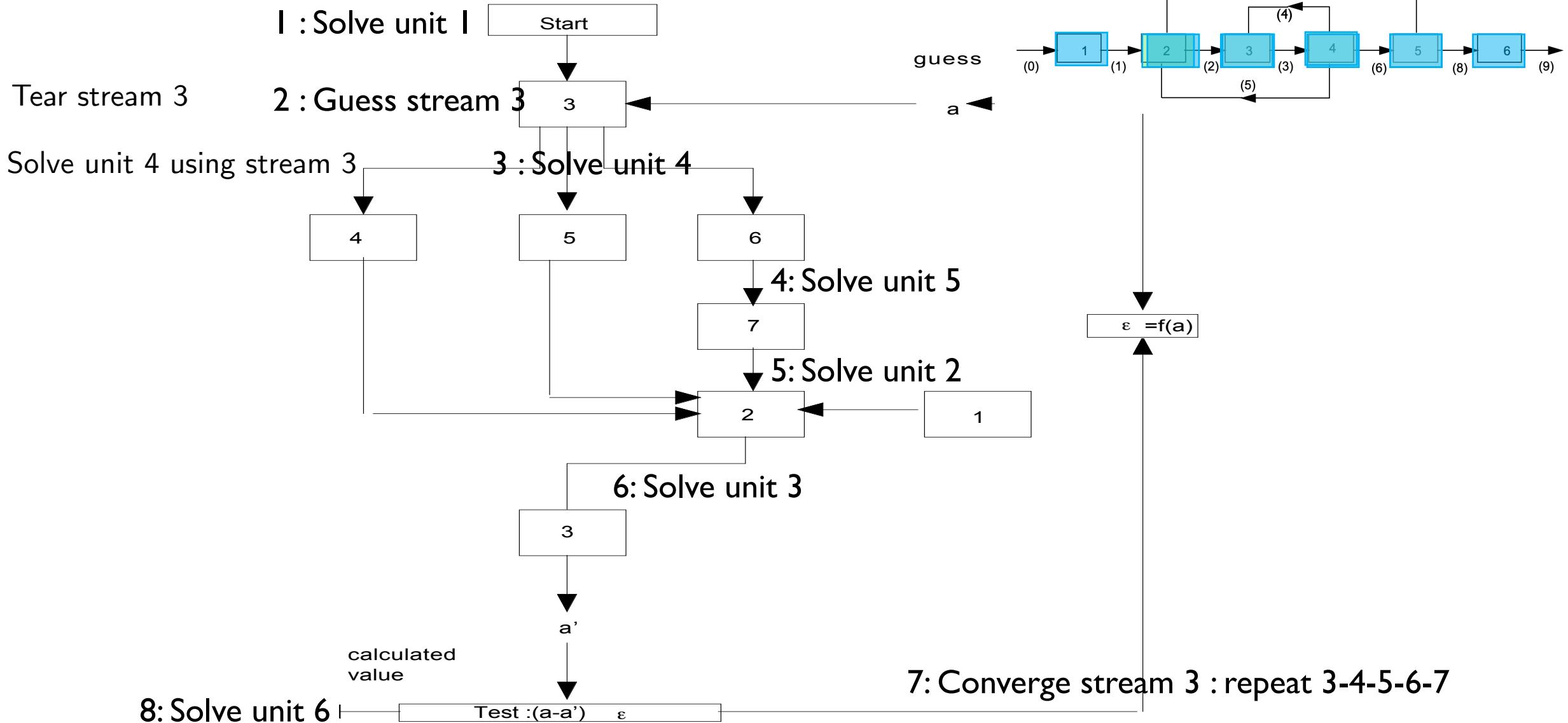
STREAMS	ANTERIOR STREAMS
2	5,7 3,3
3	2,4 2,3
4	3 3
5	3 3
6	3 3
7	6 3
8	6 3

replace streams with only one anterior

STREAMS	ANTERIOR STREAMS
2	3
3	2,3

STREAMS	ANTERIOR STREAMS
3	3

tear stream 3



- Depending on the process unit calculation model
 - Mass flow (N_c Variables)
 - e.g. if the temperature is specified
 - Temperature, Pressure (2 Variables)
 - e.g. if the flow is specified
 - Total (N_c+2 variables)
 - Typical case
- Tearing Equations : (X is an array)
 - Substitution form

$$X_{tear}^{k+1} = X_{tear}(X_{tear}^k)$$

- Equation form

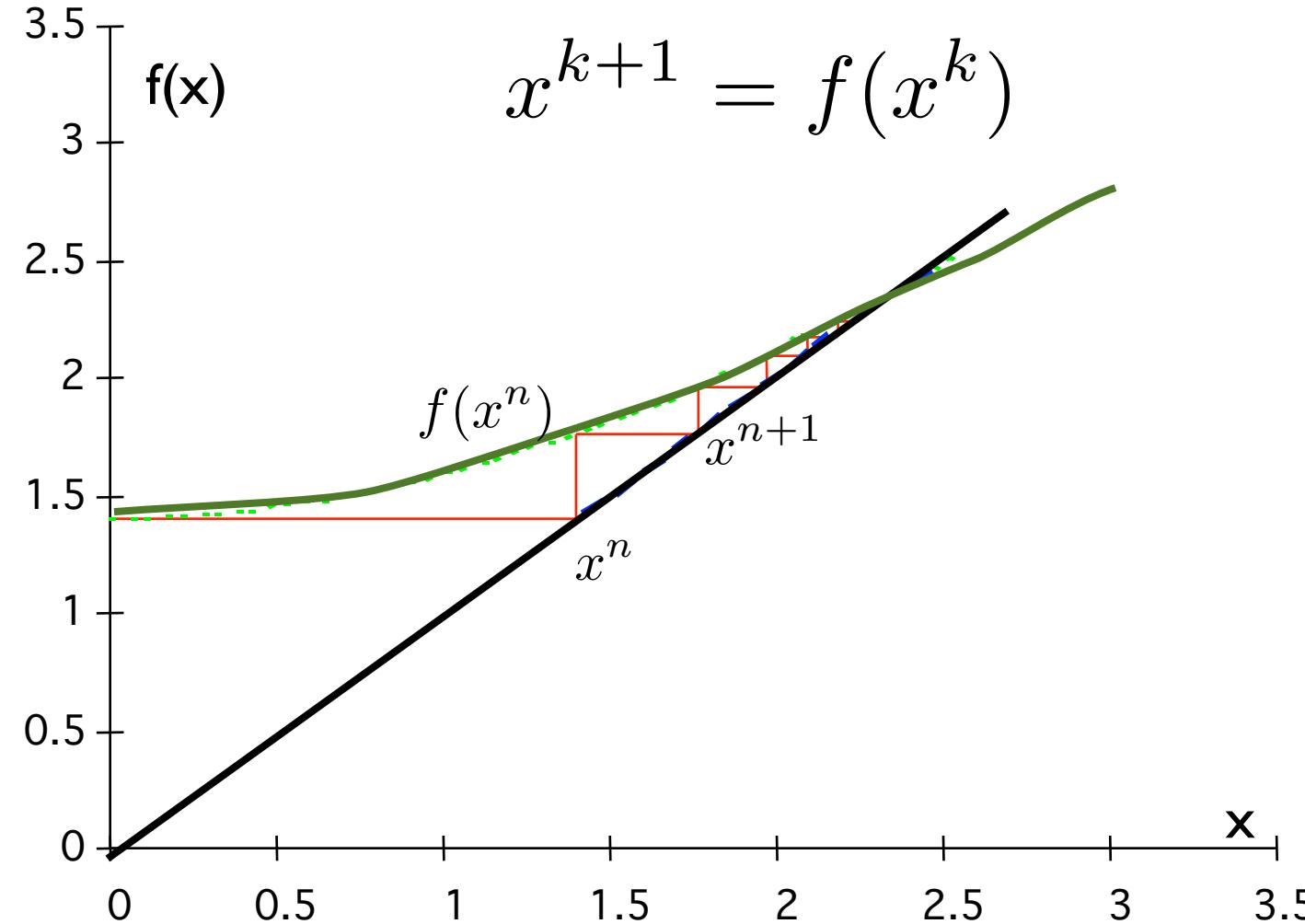
$$X_{tear}^{k+1} - X_{tear}(X_{tear}^k) = 0$$

- The units are not always $out=f(in)$
 - calculation mode or specifications can sometimes calculate $in=f(out)$
- Understanding the problem helps to improve the method
- A flow sheet can have imbricated loops
 - sequence of iterations

Monotonic convergence

Solving $x=f(x)$: substitution method

- Simple substitution method

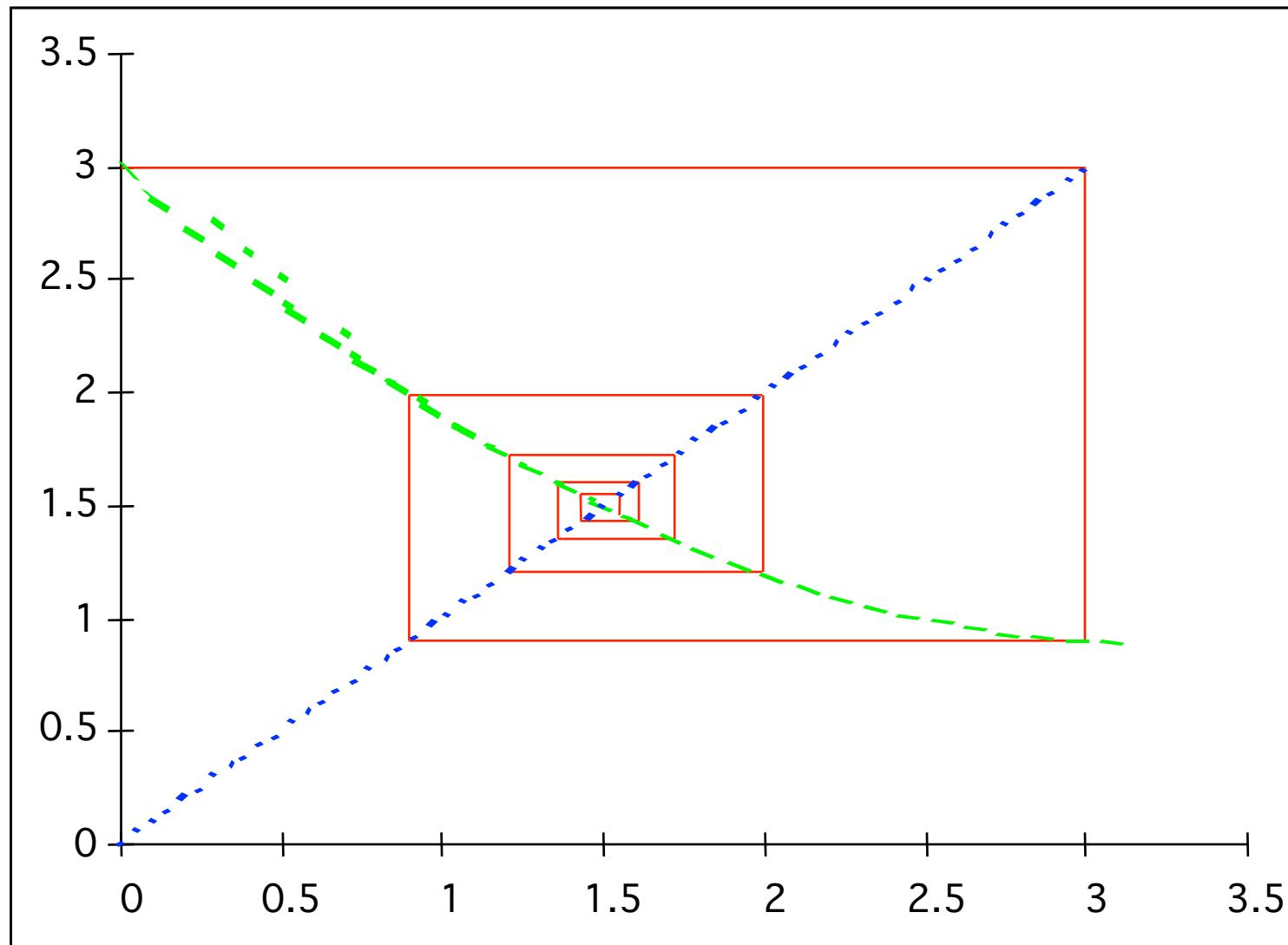


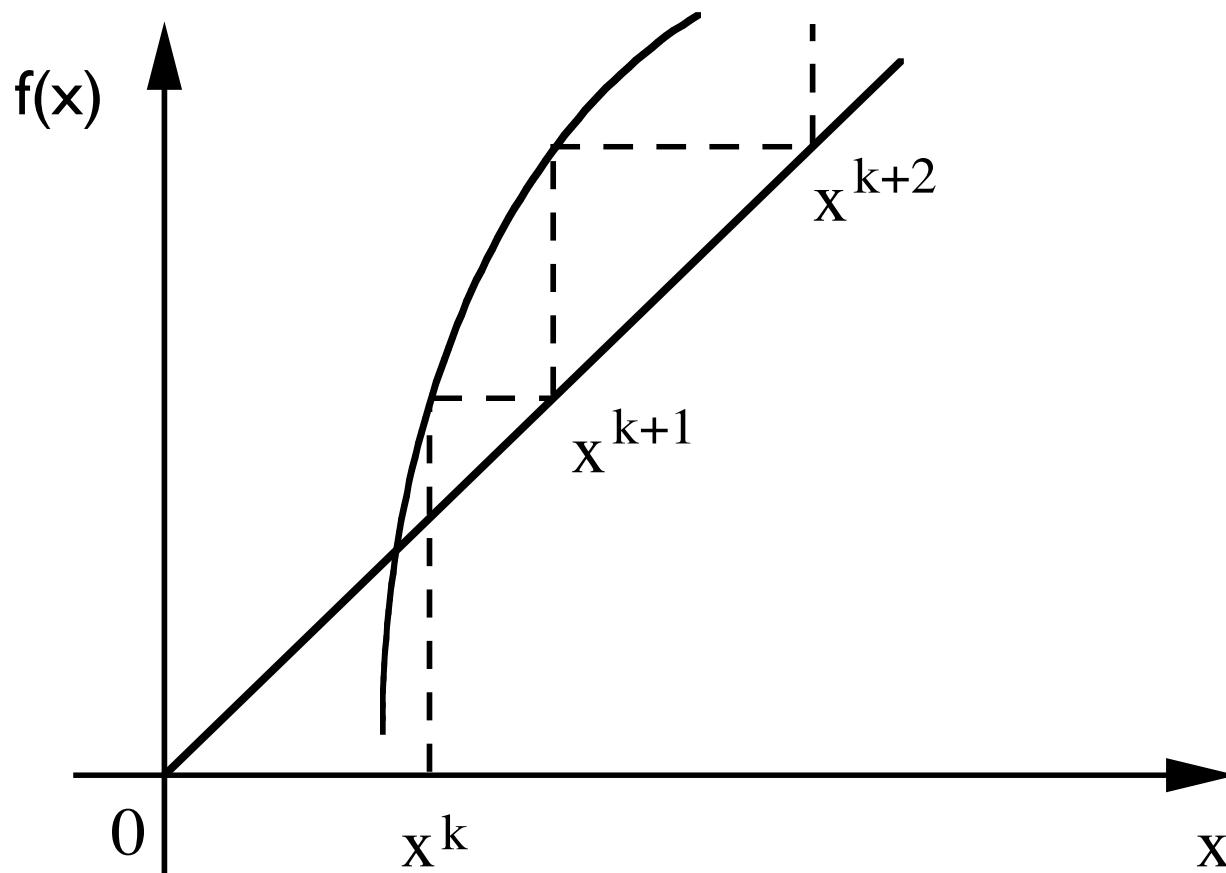
- Choose a small value well chosen value

$$\epsilon = 1.0E - 06$$

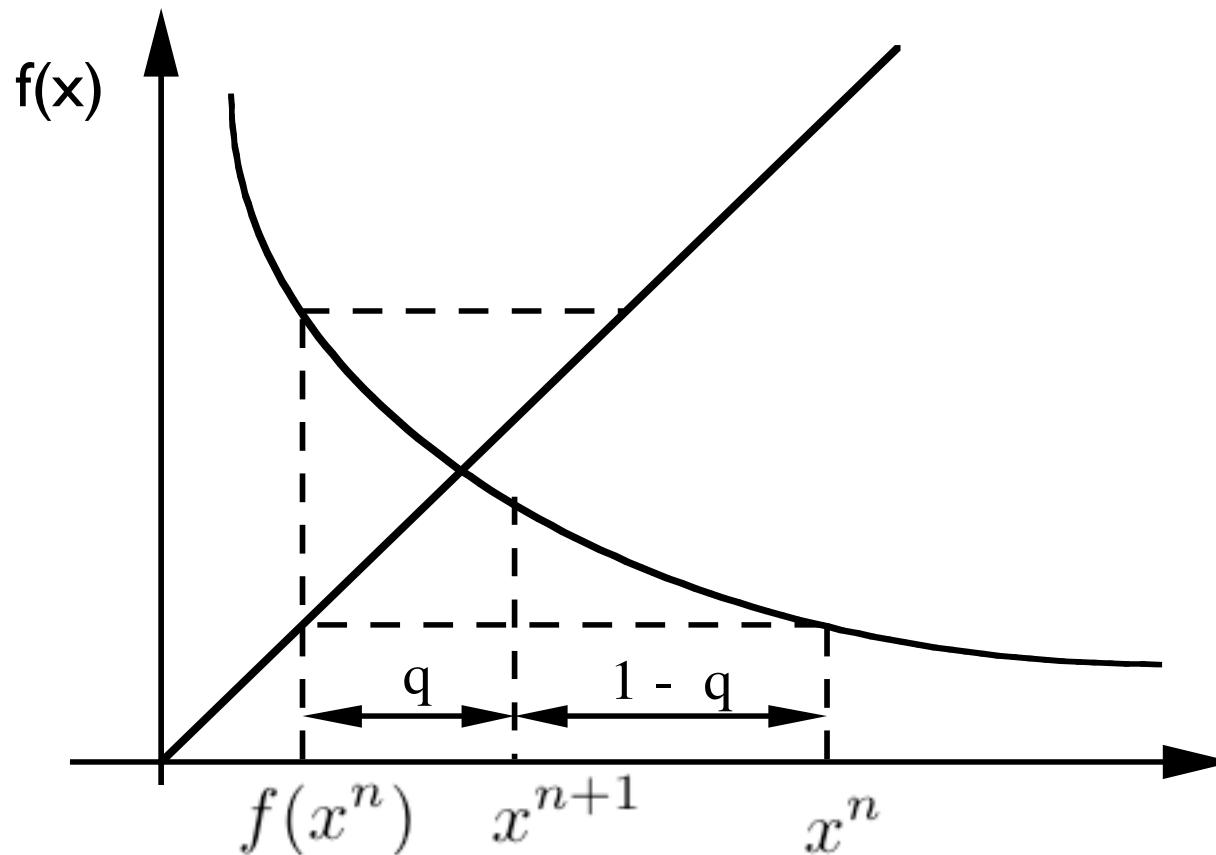
- Test variable variations

$$| x^{k+1} - x^k | \leq \epsilon * (1 + | x^k |)$$





$$x^{n+1} = x^n \cdot q + f(x^n) \cdot (1 - q)$$



- System to be solved : intersection of two curves

$$y - y^k = \frac{y^{k+1} - y^k}{x^{k+1} - \tilde{x}^k} \cdot (x - \tilde{x}^k) = \psi \cdot (x - \tilde{x}^k)$$

$$y = x$$

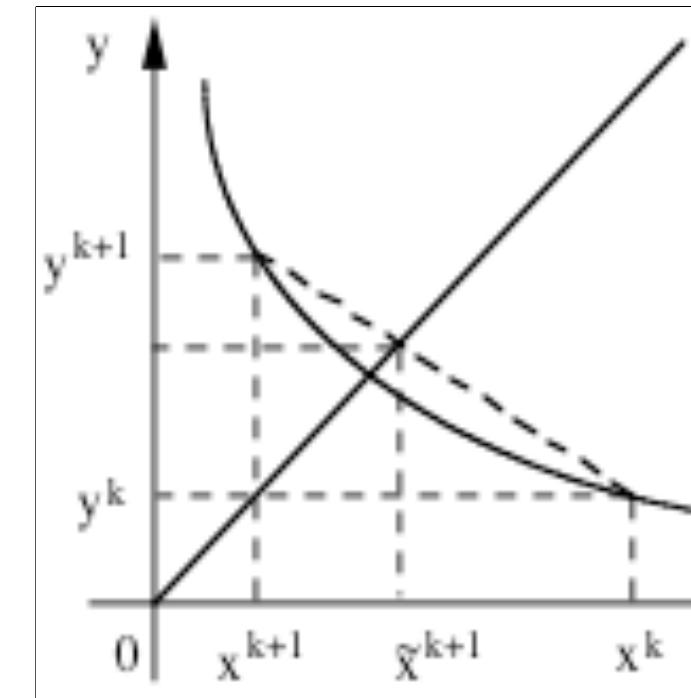
- ψ = Chord slope
- Therefore
-
- relaxation of substitution

$$\tilde{x}^{k+1} = \frac{1}{1-\psi} \cdot (x^{k+1} - \psi \tilde{x}^k)$$

$$\tilde{x}^{k+1} = q \tilde{x}^k + (1-q) x^{k+1}$$

- Increased speed of convergence
- More robust

$$q = \frac{-\psi}{1-\psi} \quad et \quad 1-q = \frac{1}{1-\psi}$$



find x such that $F(x) = 0 \Rightarrow$ here $F(X) = X - \psi(X) = 0$

TAYLOR development to approximate any function :

$$f(x) = f(x^0) + (x - x^0) \cdot f'(x^0) + \frac{(x - x^0)^2}{2!} f''(x^0) + \dots$$

1rst order limitation (approximate with a straight line) near x^0

$$f(x^0) + (x^* - x^0) \cdot f'(x^0) \cong f(x^*) = 0$$

$$x^* = x^0 - \frac{f(x^0)}{f'(x^0)}$$

- Iterative procedure
 - Initial guess is important
 - Does not always converge !
 - Bounds on variables + safe guards
- Initialisation point with good values
- Direction + Step length
 - Derivatives
 - Numerical calculations => step length of perturbation
 - Numerical calculation cost (time)
 - Matrix inversion
 - algorithms try to reuse direction for several steps
- Test of convergence
 - on both equations and variables
 - one criteria for several equations => scaling

