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Flow :  Ti, Pi, ·mci

Flowsheet State characterisation
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Process unit models

State variables 
inlet

State variable
outletSimulation

Equation

Performances
Parameters

Simulation equations

•Mass balances

•Energy balances

•Performances equations

Ṅ , T, P, c̃i Ṅ , T, P, c̃i

Thermodynamic state

Constitutive equations

�p

fm(Ṅn, Tn, Pn, c̃n, �p) = 0

Modeling the conversion of flows in the system
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State variables of a flow : Gibbs Phase rule

• Degrees of freedom of a flow

– For a flow with N compounds

– only N+2 variables are required to characterise the state. (Gibbs phase rule, 

Degree of freedom of a flow)


– in which at least one will characterise a flow 

• i.e. 1 extensive variable


• Examples :

T, P, ṁi
P, h, ṁ, ci for i = 1, . . . , N � 1

P, V̇ , ṁi for i = 1, . . . , N
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Thermodynamic properties (other state variables)

• Other State variables

– Density, Specific volume (v)


– Enthalpy (h), entropy (s), Specific Heat (s)


– Viscosity, thermal conductivity, diffusion coefficient,surface tension


• Phase equilibirum (L-V, L-L, L-L-V)

– Saturation point,dew point


– Heat of vaporisation


– Saturating pressure


– Phase distribution coefficient


• Chemical reactions 

– Heat of reaction


– Equilibrium constants


• To be calculated by the constitutive equations when N+2 state variables are known
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Point critique : = 374,15 °C

= 221,20  bar

= 2107,4  kJ.kg

= 4,4429  kJ.kg   .K

= 0,00317  m .kg3
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Diagramme entropique de la vapeur d’eau
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Constitutive equations

• To represent properties of the molecule and the interactions forces 
between the molecules 

– Thermodynamic properties are related with the energy storage mode 

in the molecules.

• Nuclear forces

• Links between atoms in a molecule (vibration modes) 


– Specific heat


– Heat of formation


– Interactions between molecules 

•Attraction/repulsion

•affinity -> equilibrium

•Reactivity
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Relation micro/macro scales
• Energy of the molecules


– Translation : perfect gases


– Rotation, vibration 

• Contributions to Cp, H, S


• Interactions between molecules

– Attraction, repulsion


• Equations of State

• Corrections wrt perfect gases

• Phase changes

• transport phenomena
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Estimating thermodynamic properties of a pure component

• Correlations between properties

– Thermodynamic Theory 


• Example : Clapeyron


– Observations : polynomial correlation on experiments :


– Molecular structure analysis

• Substance sub-sets

• Group contributions

€ 

dPvp
dT

=
ΔHv

TΔVv
=

ΔHv

RT 2 /Pvp( )ΔZv
d lnPvp
d 1/T( )

=
−ΔHv

RΔZv

cpi(T ) = ai + bi · T + ci · T 2 + di · T 3 +
ei
T

Tmini  T  Tmaxi
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Thermodynamic Model: Systematic implementation in software

• Equation of state 

– Generic mathematical expression with parameters


– Independent of the components


– Mixtures of components


– Constrained by the theory of thermodynamics


• Model parameters

– Fitted from experiments : Compounds data base


– Calculated by “educated” models

•Scientific intelligence
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Systematic implementation : Enthalpy calculations

Gas ideal

Liquid ideal

Mixture liquid - vapor

€ 

Hid
l− v(T,P,xi) = α *Hid

g (T ,P, xi) + (1− α)*Hid
l (T ,P, xi)

T0  :  reference temperature
Perfect gas : 25 C 1 atm

€ 

Hid
l (T ,P, xi) = xi *ΔH 0 f

i
i
∑ + xi *Cpi (T )

i
∑
$ 

% 
& 

' 

( 
) 

T °

T

∫ dT − xi *ΔHvapi(T )
i
∑

ΔHvapi(T) = ΔHvapi(Tib) *
Ti
crit − T

Ti
crit − Ti

b

$ 

% 
& 

' 

( 
) 

0.38

€ 

Hid
g (T ,P, xi) = xi *ΔH

0 f
i

i
∑ + xi *Cpi (T )

i
∑
$ 

% 
& 

' 

( 
) 

T °

T

∫ .dT

Cpi(T ) = ai + bi *T + ci *T
2 + di *T

3

T = T sat(P, xi)
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ai,bi,ci,di  from data bases
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• For a gas state


• This shows that the properties can be deduced if we know

– the correlation equations


– the data characterising the components


– the fundamental rules of thermodynamics.

Systematic implementation : Entropy calculation

si = s0fi +

Z T

T0

cpi(T )

T
dT �<ln Pi

P 0

ds = cp
dT

T
�

�
�v
�T

�
P
dP
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Equation of state : explanation

• Interactions between molecules :

– Attraction : lowers the pressure for the same volume


– Repulsion : minimum volume, quasi incompressible


• Perfect gases : link between T, P, V


• Example : van der Waals equation 

P =
RT

V � b
� a

V 2

Repulsion Attraction

PV = n<T ) PV � n<T = 0
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Equation of state : derived from van der Waals eq.

P =
RT

V � b
� ap

TV (V + b)

P =
RT

V � b
� a(T )

V (V + b)

P =
RT

V � b
� a(T )

V (V + b) + b(V � b)

Redlich-Kwong

Soave

Peng-Robinson

The type of equation depends on the type of fluid
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Parameters calibration : Values of a(T) and b

• At the critical point


• 2 equations to calculate a and b at T=Tc

• a and/or b may be a function of T

• e.g. b(T) calibrated to fit a given property like Pvap

€ 

∂P
∂V
# 
$ 

% 
& 
T=Tc

=
∂2P
∂V 2

# 

$ 
' 

% 

& 
( 
T =Tc

= 0

P =
RT

V � b
� a(T )

V (V + b)
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€ 

P =
RT
V − b −

a(T )
V(V + b)

€ 

Z =
PV
RT

               A = aP
RT( )2         B = bP

RT

Z 3 − Z 2 + (A − B − B2 )Z − AB = 0

lnφ = Z −1− lnZ − Z −1
V∞

V

∫

       = Z -1- ln(Z - B) - A
B

ln Z + B
Z

H −H o

RT
= Z −1 + T

∂P
∂T
' 
( 

) 
* 
V

− PdV
+ 
, 
- 

. 
/ 
0 ∞

V

∫

€ 

RTd(lnφ) =VdP = d(PV ) − PdV

⇒ lnφ =
d(PV ) − PdV

RT
∫ =

PV
RT

−
1

V − b
dV +

a(T)
RT *V (V + b)

∫ dV∫

Equations of state detailed example

Soave example cont.

€ 

H −H0

RT
=
U −U0

RT
+
PV − RT
RT

=

∂U
∂V
$ 

% 
& 

' 

( 
) 
T
dv

∞

V
∫

RT
+
PV − RT
RT

H −H0

RT
=

( T ∂P
∂T

$ 

% 
& 

' 

( 
) 
V
− P)dv

∞

V
∫

RT
+
PV − RT
RT

Thermodynamics
 & Maths
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Properties of pure components
• Where to find the properties of the pure components


– Literature : dedicated papers


– Compilations : Tables & Graphs

• e.g. ASHRAE (http://www.ashrae.org )


– Thermodynamic Data bases

• e.g. DIPPR ( www.aiche.org/dippr )


– Estimation methods is required because

• Millions of substances…

• mixtures …


• extrapolate properties using models

• to predict missing information

cpi(T ) = ai + bi · T + ci · T 2 + di · T 3 +
ei
T

Tmini  T  Tmaxi

https://www.ashrae.org/
http://www.aiche.org/dippr
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Single component values

• Minimum information needed (values used in empirical 
correlations)

– Critical properties


• Tc, Pc, Vc

– Acentric Factor ω


– Boiling temperature Teb


– Fusion temperature Tfus

!i = �log10(
P sat
i (T = 0.7 · Tci)

Pci

)� 1
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Corresponding states

• Reduced coordinates

– Tr=T/Tc	 Pr=P/Pc	  vr =v/vc


• in reduced coordinates phase diagrams coincide for 
simple compounds :Ar,CH4,N2,O2 


• For non polar substances or non spherical substances a 
3rd parameter is needed.
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Example : corresponding states

Zr

Properties of CH4, C2H6, C3H8 and C4H10 are identical in reduced coordinates

Tr=T/TcPr=P/Pc  vr =v/vc

Pr
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Corresponding states

• Two detailed equations for two compounds

– acentric factor of 1 (ω1) near 0 (e.g. argon)


– acentric factor of 2 (ω2) near 1 (e.g. n-butane)


• The estimation of a given thermodynamic property F(T,P) for a 
compounds with known  ω,Tc and Pc  is calculated by :

– Tr=T/ Tc et Pr=P/ Pc 


• F is computed by corresponding state :

– F=F1+(ω-ω1) /(ω2-ω1) (F2 - F1)


•F1 = F(Tr, Pr) for reference compound 1

•F2 = F(Tr, Pr) for reference compound 2
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Tc, Pc,!

Equations of state detailed example

€ 

ac = 0.42748 RTc( )2

Pc

    

a = ac 1+ 0.48 +1.574ω - 0.176ω 2( ) 1− Tr( )[ ]2

b = 0.08664 RTc

Pc
 

€ 

P =
RT
V − b −

a(T )
V(V + b)

acentric facor

Equation of Soave : estimating properties

are characteristics of the molecules
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Group Contribution

• When a compound is unknown

– group contribution methods : a molecule is represented 

by constitutive groups : 

• CH3, CH2, CH  and C 

• CH3CO, CH2CO 


– Properties are calculated by correlations between 
groups contributions 


– see UNIFAC method for thermodynamic properties  
https://en.wikipedia.org/wiki/UNIFAC
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Extending the equations to mixture

 are interaction coefficient between compound i and j
 parameters are calibrated to fit measurements using parameter identification techniques

δi, j
δi, j

Mixing rules

Combinaison rules

a =
NX

i

xi

NX

j

xjai,j

b =
NX

i

xibi

ai,j =
q
aiaj(1� �i,j)
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Parameter identification

• Fit parameters  to represent measured data (e.g. Dechema)δi,j
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Liquid-Vapour equilibrium

•  repartition between gas and liquid state : 


– Liquid

•Compute a=a(T,xi) and b=b(xi) 

•Compute A and B

•Compute Z in liquid phase

•Compute fugacity in the liquid state : φiL


– Gas phase

•Compute a=a(T,yi) and b=b(yi) 

•Compute A and B

•Compute Z gas phase

•Compute fugacity in the gas phase : φiV


• =>Ki = φiL/φiV

Ki =
yi

xi
= f(T, P, x, y)
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€ 

P =
RT
V − b −

a(T )
V(V + b)

€ 

Z =
PV
RT

               A = aP
RT( )2         B = bP

RT

Z 3 − Z 2 + (A − B − B2 )Z − AB = 0

lnφ = Z −1− lnZ − Z −1
V∞

V

∫

       = Z -1- ln(Z - B) - A
B

ln Z + B
Z

H −H o

RT
= Z −1 + T

∂P
∂T
' 
( 

) 
* 
V

− PdV
+ 
, 
- 

. 
/ 
0 ∞

V

∫
€ 

RTd(lnφ) =VdP = d(PV ) − PdV

⇒ lnφ =
d(PV ) − PdV

RT
∫ =

PV
RT

−
1

V − b
dV +

a(T)
RT *V (V + b)

∫ dV∫

Soave example cont. : fugacity coefficient

€ 

Z =
PV
RT

               A = aP
RT( )2         B = bP

RT

Z 3 − Z 2 + (A − B − B2 )Z − AB = 0

lnφ = Z −1− lnZ − Z −1
V∞

V

∫

       = Z -1- ln(Z - B) - A
B

ln Z + B
Z

H −H o

RT
= Z −1 + T

∂P
∂T
' 
( 

) 
* 
V

− PdV
+ 
, 
- 

. 
/ 
0 ∞

V

∫
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.

'

 = f(P,T)idK = K

Gaz réel  

Gaz parfait

Solution non idéale
 

Solution idéale  

 
 

 

 

 

 

 

fi
L = xi . f i

' L

 
f i

L = γ
i

. xi . f i
' L

ϕ
i
* = ϕ

i
* s = 1

Ki =
P i

s

P Ki =
Pi

s . γ
i

P
K = Kr = f (P,T)

V
f i

V = y
i

. f i

Ki =
fi

* L

ϕ
i
* . P

a
l

M
é
l
a
n
g
e

i
d
é  

Ki =
f i
*L

. γ
i

ϕ
i
* . P

Pf
i
' V = ϕ

i
*

t

r
o
p

o
C

t
e
m

m

e
n

a
s
e

p
h

v 
a 
p 
e 
u 
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K i =
f i

* L . γ
i

ϕ
i
* . P

 Mélange 
non  idéal Impossible

Liquid-Vapor Equilibrium
Relation between the composition in the liquid and the gas
Equilibrium : liquid � gas
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f is the fugacity : the trend that the molecule has to escape (fugare) from the state it is.
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PS
i  with Lee-Kesler Method : PS

i = f (0) + ω ⋅ f (1)

https://en.wikipedia.org/wiki/Lee–Kesler_method
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Thermodynamic properties : Chemical equilibrium calculation

€ 

g − gref = RT ln(φ) = PV[ ]P0−>0
P − PdV

V 0−>∞

V
∫ −

RT
P
dP

P0−>0

P
∫

• Chemical reations


– Equilibrium : Min Gibbs free energy
⇠aA+ ⇠bB � ⇠cC + ⇠dD
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Conclusion : Constitutive equations

• Equations of state

– computes thermodynamic properties knowing the N+2 

state variables (one is defining the flow)


• Parameters of the equations

– Data bases (measures + calibration)

– Corresponding states (estimates by interpolation)

– Group contribution (based on the chem. formula)

– Mixing rules to represent behaviour of mixtures


• Standard form => easy to change fluid without changing 
equations (only values of parameters  are changed).


• Aspen gives hints on choosing thermodynamic models

– based on the type of compounds

– see Aspen Tutorials


