
Some Exercises for Chapter 3 of

Advanced Control Systems

Problem 3.1: Consider a PI controller in a unity feedback system as:

K(s) = KP +
KI

s

1. Find a discrete representation of the PI controller K(q−1). You can use the transformation s =
(1− q−1)/h where h is the sampling period.

2. Find an equivalent RST controller for the PI controller.

Solution: Using the backward transformation we obtain:

K(q−1) = KP +
KIh

1− q−1
=

(KP +KIh)−KP q
−1

1− q−1

Note that u(k) = K(q−1)[r(k) − y(k)] or:

(1− q−1)u(k) = [(KP +KIh)−KP q
−1]r(k) − [(KP +KIh)−KP q

−1]y(k)

Comparing the above equation with the control law in an RST controller

S(q−1)u(k) = T (q−1)r(k) −R(q−1)y(k)

leads to:

R(q−1) = (KP +KIh)−KP q
−1

S(q−1) = 1− q−1

T (q−1) = (KP +KIh)−KP q
−1

Problem 3.2: Consider a control system with a feedback and feedforward controller as shown below:
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++

Fig. 1: Two-degree of freedom controller

where K(q−1) = Nk(q
−1)

Dk(q−1) and F (q−1) =
Nf (q

−1)
Df (q−1) . Find an equivalent RST controller.
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Solution: From the block diagram we can find the control law as follows:

u(k) = K(q−1)[r(k) − y(k)] + F (q−1)r(k)

which can be written as:

Df (q
−1)Dk(q

−1)u(k) = Df (q
−1)Nk(q

−1)[r(k) − y(k)] +Dk(q
−1)Nf (q

−1)r(k)

Comparing the above equation with the control law in an RST controller, we obtain:

R(q−1) = Df(q
−1)Nk(q

−1)

S(q−1) = Df(q
−1)Dk(q

−1)

T (q−1) = Df(q
−1)Nk(q

−1) +Dk(q
−1)Nf (q

−1)

Problem 3.3: Consider the following plant model:

G(z) =
0.5(z − 0.8)

(z − 0.7)(z − 0.5)

Take Pd(q
−1) = 1− 0.7q−1 and the same dynamics for tracking and regulation.

1. Compute an RST controller.

2. Redesign the RST controller such that it includes an integrator.

3. Redesign the RST controller such that it includes an integrator using Q-parametrization (see Ex-
ample 3.8).

Solution: In the first step G(z) should be converted to G(q−1) by replacing z with q:

G(q−1) =
0.5q − 0.4

q2 − 1.2q + 0.35
=

0.5q−1 − 0.4q−2

1− 1.2q−1 + 0.35q−2

Therefore, nA = 2, nB = 2 and d = 1.

1. We have nR = nA − 1 = 1 and nS = nB − 1 = 1, therefore, the Bezout equation is:

(1− 1.2q−1 + 0.35q−2)(1 + s1q
−1) + (0.5q−1 − 0.4q−2)(r0 + r1q

−1) = 1− 0.7q−1

By making equal the coefficients of the same power of q on both sides, we obtain:

−1.2 + s1 + 0.5r0 = −0.7

0.35− 1.2s1 − 0.4r0 + 0.5r1 = 0 ⇒ s1 = 1.333, r0 = −1.666, r1 = 1.1667

0.35s1 − 0.4r1 = 0

Then T (q−1) = P (1)/B(1) = 0.3/0.1 = 3.

2. To have an integrator in the controller we should take HS(q
−1) = 1− q−1 and define

A′(q−1) = A(q−1)HS(q
−1) = 1− 2.2q−1 + 1.55q−2 − 0.35q−3

Then nR′ = 2 and we should solve:

(1− 2.2q−1 + 1.55q−2 − 0.35q−3)(1 + s1q
−1) + (0.5q−1 − 0.4q−2)(r0 + r1q

−1 + r2q
−2) = 1− 0.7q−1
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Which leads to the following matrix equality using the Sylvester matrix:


1 0 0 0 0
−2.2 1 0.5 0 0
1.55 −2.2 −0.4 0.5 0
−0.35 1.55 0 −0.4 0.5

0 −0.35 0 0 −0.4







1
s′0
r0
r1
r2


 =




1
−0.7
0
0
0




The solution to this equation is:

R(q−1) = 21.667− 26.833q−1 + 8.1667q−2

S(q−1) = 1− 10.333q−1 + 9.333q−2

For an RST controller with integrator the polynomial T (q−1) will be T (q−1) = R(1) = 3.

3. Instead of a direct method performed in item 2, we can use Q-parameterization as follows. We
take the solution of item 1 as R0(q

−1) = −1.666 + 1.1667q−1 and S0(q
−1) = 1 + 1.333q−1 and

Q(q−1) = q0. Then

R(q−1) = R0(q
−1) + q0A(q

−1)

S(q−1) = S0(q
−1)− q0B(q−1)

S(1) = 0

Note that the last equation S(1) = 0 guarantees the existence of an integrator in the controller.
From this equation we find 2.333− 0.1q0 = 0 which gives q0 = 23.333. Therefore,

R(q−1) = −1.666 + 1.1667q−1 + 23.333(1− 1.2q−1 + 0.35q−2) = 21.667− 26.833q−1 + 8.1667q−2

S(q−1) = 1 + 1.333q−1 − 23.333(0.5q−1 − 0.4q−2) = 1− 10.333q−1 + 9.333q−2

Problem 3.4: Consider the following plant model:

G(q−1) =
0.5q−1 − 0.4q−2

1− 1.2q−1 + 0.35q−2

For the regulation dynamic choose the dominant closed loop pole to have a damping of ζ = 0.8 and a
natural frequency of ωn = 1 rad/s. Note that h = 1 s.

1. Design an RST controller for Model Reference Control problem.

2. Add a fixed term HR(q
−1) = 1 + q−1 in the controller.

3. Repeat the second item using Q-parametrization.

Solution: For the MRC problem, we should check first if the zeros of B�(q−1) are inside the unit circle.
We have: B�(q−1) = 0.5− 0.4q−1, therefore, 0.5z − 0.4 = 0 gives z = 0.8 which is inside the unit circle.
Then, we should compute the closed-loop polynomial Pd(q

−1). Using (3.37) and (3.38) we obtain:

p1 = −2e−ζωnh cos
(
ωnh

√
1− ζ2

)
= −0.7417

p2 = e−2ζωnh = 0.2019

Therefore, Pd(q
−1) = 1− 0.7417q−1 + 0.2019q−2 and we choose P (q−1) = Pd(q

−1)B�(q−1).
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1. For RST controller design we should solve the following equation:

A(q−1)S(q−1) + q−1B�(q−1)R(q−1) = Pd(q
−1)B�(q−1)

This equation has a solution if S(q−1) = S′(q−1)B�(q−1), that leads to:

A(q−1)S′(q−1) + q−1R(q−1) = Pd(q
−1)

We have nR = nA − 1 = 1 and nS′ = 1− 1 = 0. Thus R(q−1) = r0 + r1q
−1 and S′(q−1) = 1:

1− 1.2q−1 + 0.35q−2 + r0q
−1 + r1q

−2 = 1− 0.7417q−1 + 0.2019q−2

Solving the equation gives r0 = 0.4583 and r1 = −0.1481. So the final RST controller is:

R(q−1) = 0.4583− 0.1481q−1

S(q−1) = 0.5− 0.4q−1

T (q−1) = 1− 0.7417q−1 + 0.2019q−2

2. To add a fixed term HR(q
−1) = 1 + q−1 in the controller, we should solve the following Bezout

equation:
A(q−1)S′(q−1) + q−1(1 + q−1)R(q−1) = Pd(q

−1)

In order to have a solution nS′ = 1 and so S′(q−1) = 1 + s′1q−1, therefore:

(1− 1.2q−1 + 0.35q−2)(1 + s′1q
−1) + q−1(1 + q−1)(r0 + r1q

−1) = 1− 0.7417q−1 + 0.2019q−2

which leads to the following system of linear equations:

−1.2 + s′1 + r0 = −0.7417

−1.2s′1 + 0.35 + r0 + r1 = 0.2019 ⇒ s′1 = 0.2378, r0 = 0.2205, r1 = −0.0832

0.35s′1 + r1 = 0

So the final RST controller is:

R(q−1) = (0.2205− 0.0832q−1)(1 + q−1) = 0.2205 + 0.1373q−1 − 0.0832q−2

S(q−1) = (1 + 0.2378q−1)(0.5− 0.4q−1) = 0.5− 0.2811q−1 − 0.0951q−2

T (q−1) = 1− 0.7417q−1 + 0.2019q−2

3. Adding the fixed term can be done using the Q-parameterization as well. Let’s take R0(q
−1) =

0.4583− 0.1481q−1 and S0(q
−1) = 0.5− 0.4q−1 and Q(q−1) = q0, then:

R(q−1) = R0(q
−1) + q0A(q

−1) = 0.4583− 0.1481q−1 + q0(1 − 1.2q−1 + 0.35q−2)

S(q−1) = S0(q
−1)− q0B(q−1) = 0.5− 0.4q−1 − q0(0.5q

−1 − 0.4q−2)

R(−1) = 0 ⇒ 0.4583 + 0.1481 + q0(1 + 1.2 + 0.35) = 0 ⇒ q0 = −0.2378

Note that the last equation R(−1) = 0 guarantees the existence of 1 + q−1 in R(q−1). Replacing
q0 = −0.2378 in R and S gives:

R(q−1) = 0.4583− 0.1481q−1 − 0.2378(1− 1.2q−1 + 0.35q−2) = 0.2205 + 0.1373q−1 − 0.0832q−2

S(q−1) = 0.5− 0.4q−1 + 0.2378(0.5q−1 − 0.4q−2) = 0.5− 0.2811q−1 − 0.0951q−2

T (q−1) = 1− 0.7417q−1 + 0.2019q−2
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Problem 3.5: Consider the following plant model:

G(q−1) =
B(q−1)

A(q−1)
=

0.5q−1 − 0.4q−2

1− 1.2q−1 + 0.35q−2

Take Pd(q
−1) = 1 − 1.2q−1 + 0.35q−2 (choosing closed-loop poles equal to the poles of the plant model

is called internal model control) and the same dynamics for tracking and regulation. Design an RST
controller that includes an integrator. Note that R should include the polynomial A(q−1) in order that
the Bezout equation has a solution.

Solution: The Bezout equation is:

A(q−1)S(q−1) +B(q−1)R(q−1) = A(q−1)

We take R(q−1) = R′(q−1)A(q−1) and simplify the Bezout equation as follows:

S(q−1) +B(q−1)R′(q−1) = 1

This equation has many solutions, choosing R′(q−1) = r′0 (to obtain the lowest order solutions), we
obtain:

S(q−1) = 1−B(q−1)r′0 = 1− (0.5q−1 − 0.4q−2)r′0
For any value of r′0 we have a valid solution. In order to have an integrator in the controller, we pose
S(1) = 0 that leads to:

1− 0.5r0 + 0.4r′0 = 0 ⇒ r′0 = 10

Therefore:

R(q−1) = R′(q−1)A(q−1) = 10− 12q−1 + 3.5q−2

S(q−1) = 1− 5q−1 + 4q−2

T (q−1) = R(1) = 1.5

Problem 3.6: Consider the following plant model

G(z) =
2

z2 − 1.6z + 0.7

with h = 0.2s.

(a) Design an RST controller such that the regulation dynamic has a natural frequency of ωn = 2 and
a damping factor of ζ = 0.7.

(b) Add the fixed terms HR(q
−1) = 1 + q−1 and HS(q

−1) = 1 − q−1 in the controller using Q parame-
terization.

In both items T (q−1) should be computed to have the same dynamics for tracking and regulation.

Solution: The plant model is:

G(q−1) =
2q−2

1− 1.6q−1 + 0.7q−2

We have nA = 2, nB = 2, therefore, nR = nA − 1 = 1 and nS = 1. Then, the desired closed-loop
polynomial is : Pd(q

−1) = 1 + p1q
−1 + p2q

−2 where

p1 = −2e−0.7×2×h cos 2h
√
1− 0.72 = −1.45

p2 = e−2×0.7×2h = 0.5712
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The Diophantine equation is:

(1− 1.6q−1 + 0.7q−2)(1 + s1q
−1) + 2q−2(r0 + r1q

−1) = 1− 1.45q−1 + 0.5712q−2

Solving the equation gives:

− 1.6 + s1 = −1.45 ⇒ s1 = 0.15

0.7− 1.6s1 + 2r0 = 0.5712 ⇒ r0 = 0.0556

0.7s1 + 2r1 = 0 ⇒ r1 = −0.0525

which leads to:

R0(q
−1) = 0.0556− 0.0525q−1

S0(q
−1) = 1 + 0.15q−1

T0(q
−1) = P (1)/B(1) = 0.0606

For adding the fixed term we define Q(q−1) = q0 + q1q
−1 and R(−1) = S(1) = 0 which leads to:

R(q−1) = R0(q
−1) +A(q−1)Q(q−1)

S(q−1) = S0(q
−1)−B(q−1)Q(q−1)

⇒ R(−1) = R0(−1) +A(−1)[q0 − q1] = 0
S(1) = S0(1)−B(1)[q0 + q1]

⇒ 0.1081 + 3.3(q0 − q1) = 0
1.15− 2(q0 + q1) = 0

⇒ q0 = 0.2711
q1 = 0.3039

⇒ R(q−1) = 0.3267− 0.1824q−1 − 0.2964q−2 + 0.2127q−3

S(q−1) = 1 + 0.15q−1 − 0.5422q−2 − 0.6078q−3

Then T (q−1) = R(1) = 0.0606.

Problem 3.7: Show that for minimizing the criterion with constant forgetting factor:

J(k) =

k∑
i=1

λ
(k−i)
1 [y(i)− θ̂T (k)φ(i − 1)]2

the following PAA can be used.

F−1(k + 1) = λ1F
−1(k) + φ(k)φT (k)

θ̂(k + 1) = θ̂(k) + F (k + 1)φ(k)ε◦(k + 1)

Solution: We should compute the gradient of the criterion and put it equal to zero:

∂J(k)

∂θ̂(k)
= −2

k∑
i=1

λ
(k−i)
1 [y(i)− θ̂T (k)φ(i − 1)]φ(i − 1) = 0

which leads to: [
k∑

i=1

λ
(k−i)
1 φ(i − 1)]φT (i− 1)

]
θ̂(k) =

k∑
i=1

λ
(k−i)
1 y(i)φ(i − 1)

Taking

F (k) =

[
k∑

i=1

λ
(k−i)
1 φ(i − 1)φT (i − 1)

]−1
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we obtain:

θ̂(k) =

[
k∑

i=1

λ
(k−i)
1 φ(i− 1)φT (i− 1)

]−1 k∑
i=1

λ
(k−i)
1 y(i)φ(i− 1) = F (k)

k∑
i=1

λ
(k−i)
1 y(i)φ(i − 1)

In order to have a recursive algorithm, the computation of F (k + 1) is considered:

F−1(k + 1) =

k+1∑
i=1

λ
(k+1−i)
1 φ(i − 1)φT (i − 1)

=

k∑
i=1

λ
(k+1−i)
1 φ(i − 1)φT (i − 1) + φ(k)φT (k)

= λ1

k∑
i=1

λ
(k−i)
1 φ(i − 1)φT (i− 1) + φ(k)φT (k) = λ1F

−1(k) + φ(k)φT (k)

A recursive equation for θ̂(k + 1) can also be considered similar to the case without forgetting factor as
follows:

θ̂(k + 1) = F (k + 1)

t+1∑
i=1

λ
(k+1−i)
1 y(i)φ(i − 1)

= F (k + 1)

{
t∑

i=1

λ
(k+1−i)
1 y(i)φ(i− 1) + y(k + 1)φ(k)

}

= F (k + 1)
{
λ1F

−1(k)θ̂(k) + y(k + 1)φ(k)
}

= F (k + 1)
{[

F−1(k + 1)− φ(k)φT (k)
]
θ̂(k) + y(k + 1)φ(k)

}
= F (k + 1)

{
F−1(k + 1)θ̂(k) + φ(k)[y(k + 1)− θ̂T (k)φ(k)]

}
= θ̂(k) + F (k + 1)φ(k)ε◦(k + 1)

Problem 3.8: In a PAA the parameters are updated using:

θ̂(k + 1) = θ̂(k) + F (k + 1)φ(k)ε◦(k + 1)

Show that it can be reformulated as:

θ̂(k + 1) = θ̂(k) + F (k)φ(k)ε(k + 1)

where

ε(k + 1) = y(k + 1)− θ̂T (k + 1)φ(k) =
ε◦(k + 1)

1 + φT (k)F (k)φ(k)

F (k + 1) = F (k)− F (k)φ(k)φT (k)F (k)

1 + φT (k)F (k)φ(k)

Solution: See page 139 of the course notes.
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Problem 3.9: Consider the unknown discrete-time model of a plant as:

y(k + 1) = −ay(k) + bu(k)

Compute the parameters of an RST indirect adaptive controller based on pole placement (same dynamics

for tracking and regulation) after one sampling period (using θ̂(1) estimated by recursive LS algorithm
with decreasing gain).

The following data are measured : u(0) = 2, y(0) = 1, y(1) = 5.5. Assume θ̂(0) = [0 , 0]T , F (0) = 2I,
Pd(q

−1) = 1− 0.8q−1.

Solution: We have

θ̂T (0) = [0 , 0], φT (0) = [−1 , 2], ŷ◦(1) = θ̂T (0)φ(0) = 0, ε◦(1) = y(1)− ŷ◦(1) = 5.5

Therefore:

F (1) = F (0)− F (0)φ(0)φT (0)F (0)

1 + φT (0)F (0)φ(0)
=

[
2 0
0 2

]
− 1

11

[
4 −8
−8 16

]
=

1

11

[
18 8
8 6

]

The vector of parameter estimates after one sampling period is:

θ̂(1) = θ̂(0) + F (1)φ(0)ε◦(1) =
1

11

[
18 8
8 6

] [ −1
2

]
× 5.5 =

[ −1
2

]

Therefore:

Ĝ(q−1) =
2q−1

1− q−1
⇒ nR = 0 and nS = 0

Hence R̂(q−1) = r̂0 and Ŝ(q−1) = 1. The Diophantine equation is:

(1 − q−1) + 2q−1r̂0 = 1− 0.8q−1 ⇒ (2r̂0 − 1) = −0.8 ⇒ r̂0 = 0.1

Finally T (q−1) = P (1)/B̂(1) = 0.1.
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