
Some Exercises for Chapter 2 of

Advanced Control Systems

Problem 2.1: Let A be an m × n matrix, b ∈ Rm. Then show the set of all solutions of Ax = b is a
convex subset of Rn.

Solution: Let’s take x1 and x2 as two solutions of Ax = b, i.e. Ax1 = b and Ax2 = b. Then we should
show that λx1 + (1− λ)x2 is also a solution of Ax = b. We have:

A(λx1 + (1− λ)x2) = λAx1 + (1− λ)Ax2 = λb+ (1− λ)b = b

that shows the convexity of the set.

Problem 2.2: Are the following functions convex:

a) f(x) = eax for x ∈ R and a ∈ R.

b) f(x) = xTAx+ cx where x ∈ Rn and A = AT is positive.

c) f(x) = log(x) where x ∈ R+.

d) f(x) = max(x) where x ∈ Rn.

e) f(x) = (x1x2)−1 where x ∈ R2 and x1 > 0 and x2 > 0.

f) f(x) = x1x2(x1 − x2)−1 where x ∈ R2 and x1 − x2 > 0.

g) f(x) = f1(x)f2(x) where f1(x) and f2(x) are convex.

Solution: A twice differentiable function is convex iff its second derivative is positive.

a) f(x) = eax is convex because:

f ′(x) = aeax and f ′′(x) = a2eax > 0

b) f(x) = xTAx+ cx is convex because:

∇f(x) = 2Ax+ c and ∇2f(x) = 2A � 0

c) f(x) = log(x) is not convex because:

f ′(x) =
1

x
and f ′′(x) =

−1

x2
< 0

d) f(x) = max(x) is convex. Lets take two points in Rn, namely x1 and x2. The function is convex iff

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

We have f(λx1 + (1− λ)x2) = max(λx1 + (1− λ)x2) and

max(λx1 + (1− λ)x2) ≤ max(λx1) + max((1− λ)x2) = λmax(x1) + (1− λ) max(x2)

So the max function is convex.

1



e) f(x) = (x1x2)−1 is convex because:

∇f(x) =

[
−1

x2
1x2

−1

x1x2
2

]T
and ∇2f(x) =

1

x1x2

[
2
x2
1

1
x1x2

1
x1x2

2
x2
2

]
� 0

f) f(x) = x1x2(x1 − x2)−1 is convex because:

∇f(x) =

[
−x2

2

(x1 − x2)2

x2
1

(x1 − x2)2

]T
and ∇2f(x) =

1

(x1 − x2)3

[
2x2

2 −2x1x2

−2x1x2 2x2
1

]
� 0

g) f(x) = f1(x)f2(x) is not necessarily convex. As a counterexample, take f1(x) = x and f2(x) = −x
that are both linear and so convex, then f(x) = −x2 is not convex.

Problem 2.3: Consider an autonomous discrete-time LTI system x(k+1) = Ax(k). Define a Lyapunov
function V (k) = xT (k)Px(k) with P � 0. Represent the stability condition of the system by an LMI.

Solution: The system is stable if V (k + 1)− V (k) < 0. We have:

V (k + 1)− V (k) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

= xT (k)ATPAx(k)− xT (k)Px(k) = xT (k)[ATPA− P ]x(k)

Therefore, ATPA− P should be negative definite. The stability condition in LMI form:[
P 0
0 P −ATPA

]
� 0

Problem 2.4: Consider the following LTI discrete-time system:

x(k + 1) = Ax(k) +Bu(k)

and a state feedback law u(k) = −Kx(k). Find the set of stabilizing controllers represented by an LMI.

Solution: The closed-loop state equation is x(k + 1) = (A − BK)x(k) which is stable if there exists
P � 0 such that

(A−BK)TP (A−BK)− P ≺ 0

which is not an LMI. Let’s multiply the matrix inequality from left and right by L = P−1:

L(A−BK)TL−1(A−BK)L− L ≺ 0 ⇒ (LAT − LKTB)L−1(AL−BKL)− L ≺ 0

Now, we define a new variable Y = KL which leads to:

(LAT − Y TB)L−1(AL−BY )− L ≺ 0

Using Schur Lemma we obtain the following LMI:[
L AL−BY

(AL−BY )T L

]
� 0

So the stabilizing controller will be K = Y L−1.
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Problem 2.5: Consider an LTI discrete-time system G(z) with state-space representation (A,B,C,D).
Knowing that the impulse response of the system is g(k) = CAk−1B for k > 0 and g(0) = D = 0. Show
that ‖G‖22 = trace (CLCT ), where L = LT � 0 is the solution to the following Riccati equation:

ALAT − L+BBT = 0

Write a convex optimization problem using LMIs to compute the H2 norm of a discrete-time system.

Solution: Using Parseval’s relation, we have:

‖G‖22 = trace

∞∑
k=1

g(k) ∗ gT (k) = trace

∞∑
k=1

[CAk−1B][CAk−1B]T

= trace
∞∑
k=1

CAk−1BBT [Ak−1]TCT = trace CLCT

where

L =

∞∑
k=1

Ak−1BBT [Ak−1]T = BBT +ABBTAT +A2BBT [AT ]2 + · · · = BBT +ALAT

which leads to ALAT − L + BBT = 0. It can be shown that for stable systems larger L makes the left
hand side of the above equality more negative, therefore the H2 norm can be computed by the following
convex optimization problem:

min trace CLCT

ALAT − L+BBT � 0

n=max(size(A));
gamma=sdpvar(1,1);
L=sdpvar(n,n,'symmetric');
lmi1=A*L*A'-L +B*B' <= 0;
lmi2=C*L*C'- gamma <= 0;
cons=[lmi1 lmi2 L>=0];
options=sdpsettings('solver','mosek');
optimize(cons,gamma,options);
norm2=sqrt(value(gamma))

Problem 2.6: Consider an LTI discrete-time system G(z) with state-space representation (A,B,C, 0).
The objective is to design a state feedback controller such that the sum of the two-norm of the closed
loop transfer functions from the input disturbance to the output and to the control signal (−Kx(k)) is
minimized. Represent this objective as a convex optimization problem.

Solution: The state feedback controller is u(k) = −Kx(k)+w(k), where w(k) is the input disturbance.
Let’s define z = [y1(k) y2(k)]T , then the closed-loop equations are:

x(k + 1) = Ax(k) +B(−Kx(k) + w(k)) = (A−BK)x(k) +Bw(k)

y1(k) = Cx(k) , y2(k) = −Kx(k)

Therefore, the following optimization problem should be solved:

min trace CLCT + trace KLKT

(A−BK)L(A−BK)T − L+BBT � 0
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The matrix inequality is not linear, so we rewrite it as:

(AL−BKL)L−1(AL−BKL)T − L+BBT � 0

Let’s define Y = KL and apply the Schur lemma:[
L−BBT AL−BY

(AL−BY )T L

]
� 0

which is an LMI. Lets define CLCT ≺ Γ1 and KLKT ≺ Γ2. The second inequality can be written as:
Γ2 − Y L−1Y T � 0 which can be converted to an LMI using the Schur lemma:[

Γ2 Y
Y T L

]
� 0

Then the convex optimization problem is:

min trace Γ1 + trace Γ2[
L−BBT AL−BY

(AL−BY )T L

]
� 0 ,

[
Γ2 Y
Y T L

]
� 0 , Γ1 − CLCT � 0

Problem 2.7: Consider a state feedback control law as u(t) = r(t)−Kx(t) for a strictly proper system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Write a convex optimization problem for computing K that minimizes the infinity norm of the transfer
function between the reference signal r(t) and the tracking error e(t) = r(t)− y(t).

Solution: The closed-loop equations are:

ẋ(t) = (A−BK)x(t) +Br(t)

e(t) = −Cx(t) + r(t)

Then we apply the bounded real lemma (Lemma 2.3, page 63) for the above closed-loop system with
Acl = A−BK,Bcl = B,Ccl = −C and Dcl = I to obtain the following inequality:

(A−BK)TP + P (A−BK) + CTC + (PB − CT )R−1(PB − CT )T ≺ 0

with R = (γ2I − I). Multiplying from left and right with L = P−1 leads to:

L(A−BK)T + (A−BK)L+ LCTCL+ (B − LCT )R−1((B − LCT )T ≺ 0

Defining a new variable Y = KL gives:

LAT − Y TBT +AL−BY + [LCT (B − LCT )]

[
I 0
0 R

]−1 [
CL

(B − LCT )T

]
≺ 0

Using the Schur lemma, we obtain: LAT − Y TBT +AL−BY LCT (B − LCT )
CL −I 0

(B − LCT )T 0 −R

 ≺ 0

which is an LMI in the variables L and Y and γ2. By minimizing γ2, the optimal values of L and Y are
obtained and the state feedback controller will be K = Y L−1.
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Problem 2.8: Write a convex optimization problem to find a stabilizing controller that minimizes
‖W2T ‖∞ in a data-driven setting.

Solution: Minimizing ‖W2T ‖∞ for stable systems can be represented as:

min γ

[W2GK(I +GK)−1][W2GK(I +GK)−1]∗ ≺ γI ∀ω ∈ Ω

Replacing K = XY −1, we obtain:

[W2GX(Y +GX)−1][W2GX(Y +GX)−1]∗ ≺ γI ∀ω ∈ Ω

Taking P = Y +GX, gives:

γI − (W2GX)(P ∗P )−1(W2GX)∗ � 0 ∀ω ∈ Ω

Applying QMI lemma leads to the following convex optimization problem:

min γ[
γI W2GX

(W2GX)∗ P ∗Pc + P ∗c P − P ∗c Pc

]
� 0 ∀ω ∈ Ω

where Pc = Yc +GXc and Kc = XcY
−1
c is an initial stabilizing controller.

Problem 2.9: Consider the model reference control problem in the H2 framework as:

min
K
‖T −M‖2

where M is the transfer function matrix of a desired closed-loop system and T = GK(I +GK)−1. Write
a convex optimization problem in order to compute a stabilizing controller K in a data-driven setting
where only the frequency response of the plant model G is available.

Solution: Minimizing ‖T −M‖2 for stable systems can be represented as:

min

∫
Ω

traceΓ(ω)dω

[GK(I +GK)−1 −M ][GK(I +GK)−1 −M ]∗ ≺ Γ(ω) ∀ω ∈ Ω

Replacing K = XY −1, we obtain:

[GX(Y +GX)−1 −M ][GX(Y +GX)−1 −M ]∗ ≺ Γ(ω) ∀ω ∈ Ω

Taking P = Y +GX, gives:

Γ(ω)− (GX −MP )(P ∗P )−1(GX −MP )∗ � 0 ∀ω ∈ Ω

Applying QMI lemma and gridding the frequency ΩN = {ω1, . . . , ωN}, leads to the following convex
optimization problem:

min

N∑
k=1

trace Γk[
Γk GX −MP

(GX −MP )∗ P ∗Pc + P ∗c P − P ∗c Pc

]
� 0 ∀ω ∈ ΩN

where Pc = Yc +GXc and Kc = XcY
−1
c is an initial stabilizing controller.
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Problem 2.10: Consider a state feedback control law as u(t) = r(t)−Kx(t) for a strictly proper system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Compute the set of K that makes the transfer function between r(t) and e(t) = r(t)− y(t) positive real
(or passive) in terms of Linear Matrix Inequalities. You can use the positive real lemma given below:

Lemma 1 The system H(s) with state-space representation (A,B,C,D) and D+DT � 0 is positive real
(i.e. H(jω) +H∗(jω) � 0, ∀ω), iff there exists P = PT � 0 such that:

ATP + PA+ CTC + (PB − CT )(D +DT )−1(PB − CT )T ≺ 0

Solution: With u(t) = r(t)−Kx(t) the state-space equations of the closed loop system are:

ẋ(t) = Ax(t) +Br(t)−BKx(t) = (A−BK)x(t) +Br(t)

e(t) = −Cx(t) + r(t)

So the state space model of the closed-loop system is (A − BK,B,−C, I). Using PRL we obtain the
following matrix inequality:

(A−BK)TP + P (A−BK) + CTC + (PB + CT )(2I)−1(PB + CT )T ≺ 0

Multiplying from left and right by X = P−1, we obtain:

XAT −XKTBT +AX −BKX +XCTCX + (B +XCT )(2I)−1(B +XCT )T ≺ 0

Take KX = Y :

XAT − Y TBT +AX −BY + [XCT B +XCT ]

[
I 0
0 2I

]−1

[XCT B +XCT ]T ≺ 0

Applying Schur lemma we obtain: XAT − Y TBT +AX −BY XCT B +XCT

CX −I 0
CX +BT 0 −2I

 ≺ 0

The above LMI together with X � 0 guarantee that the final controller K = Y X−1 makes the closed-loop
system positive real..
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