Some Exercises for Chapter 2 of
Advanced Control Systems

Problem 2.1: Let A be an m x n matrix, b € R™. Then show the set of all solutions of Az = b is a
convex subset of R".

Solution: Let’s take 1 and x5 as two solutions of Az = b, i.e. Ar; = b and Azs = b. Then we should
show that Azq + (1 — \)xo is also a solution of Az =b. We have:
Az + (L= N)ag) = Aax1 + (1= N Az = X0+ (1= N)b=1D

that shows the convexity of the set.

Problem 2.2: Are the following functions convex:

a) f(x)=e* for z € Rand a € R.

b) f(z) =27 Az + cx where x € R" and A = AT is positive.
c) f(x) =log(x) where v € R.

d) f(xz) = max(z) where x € R".

e) f(x) = (z172)~! where z € R? and 1 > 0 and z2 > 0.
£) 1) =

g) flx)= ( )f2(z) where fi(z) and fo(x) are convex.

xo(x1 — 22) ! where x € R? and 21 — 22 > 0.

Solution: A twice differentiable function is convex iff its second derivative is positive.
a) f(z) = e* is convex because:
f(x) = ae®® and () = a*e™ >0
b) f(x) = 2T Az + cx is convex because:
Vf(x)=24z+c and  Vif(z)=24>0

c) f(z)=log(x) is not convex because:

fl(x) = é and  f’(z) = ;—21 <0

d) f(z) = max(z) is convex. Lets take two points in R™, namely 27 and z5. The function is convex iff
fQz1+ (1= Nz2) < Af(z1) + (1= A)f(22)
We have f(Az1 + (1 — A)x2) = max(Azy + (1 — A)zz) and
max(Az1 + (1 — A)z2) < max(Azq) + max((1 — A\)ze) = Amax(z1) + (1 — A) max(z2)

So the max function is convex.



e) f(x) = (z122) ! is convex because:

Vo= [oh Al wma V- | F R |0
= —_— 1 =
v 2319 w173 & ¥ iz x11x2 %
f) f(x) = z122(2y — 22) ! is convex because:
V() = —5C% ;1;% T and VQf(x) B 1 21}% —2x122 0
Cl(r1—22)2 (21 — 79)2 C(x —x0)3 | 21w 222 -
g) f(x) = fi(z)f2(z) is not necessarily convex. As a counterexample, take fi(x) = z and fo(z) = —=x
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that are both linear and so convex, then f(x) = —x* is not convex.

Problem 2.3: Consider an autonomous discrete-time LTI system z(k+1) = Az (k). Define a Lyapunov
function V (k) = 2T (k) Pz(k) with P = 0. Represent the stability condition of the system by an LMI.

Solution: The system is stable if V(k + 1) — V (k) < 0. We have:
V(k+1)=V(k)=2T(k+1)Px(k+1) — 2T (k)Pz(k)
= 2T (k)AT PAz(k) — 27 (k) Px(k) = 27 (k)[AT PA — Plz(k)
Therefore, A” PA — P should be negative definite. The stability condition in LMI form:

P 0

0 P—ATpa |70

Problem 2.4: Consider the following LTT discrete-time system:
x(k+1) = Az(k) + Bu(k)

and a state feedback law u(k) = —Kx (k). Find the set of stabilizing controllers represented by an LMI.

Solution: The closed-loop state equation is z(k + 1) = (A — BK)z(k) which is stable if there exists
P >~ 0 such that
(A-BK)'P(A—BK)—-P <0

which is not an LMI. Let’s multiply the matrix inequality from left and right by L = P~!:
L(A-BEK)"L™"(A-BK)L-L<0 = (LA" - LK"B)L™'(AL - BKL)—-L <0
Now, we define a new variable Y = KL which leads to:
(LAT —YTB)L™*(AL - BY) - L <0
Using Schur Lemma we obtain the following LMI:

L AL — BY

(AL — BY)T L =0

So the stabilizing controller will be K = Y L~!.



Problem 2.5: Consider an LTI discrete-time system G(z) with state-space representation (A, B, C, D).
Knowing that the impulse response of the system is g(k) = CA*~!'B for k > 0 and g(0) = D = 0. Show
that ||G||3 = trace (CLCT), where L = LT = 0 is the solution to the following Riccati equation:

ALAT —L+BBT =0

Write a convex optimization problem using LMIs to compute the Hy norm of a discrete-time system.

Solution: Using Parseval’s relation, we have:

|G3 = trace Zg(k) x gl (k) = traceZ[C’Ak’lB] [CA* BT
k=1 k=1

= trace Z CAF I BBT[AF YT CT = trace CLCT
k=1

where

L=>Y A"'BBT[A* " = BB" + ABB"A" + A°’BB"[A")? + ... = BB" + ALA"
k=1

which leads to ALAT — L + BBT = 0. It can be shown that for stable systems larger L makes the left
hand side of the above equality more negative, therefore the 5 norm can be computed by the following
convex optimization problem:

min trace CLCT

ALAT — L+ BB <0

n=max (size (A));

gamma=sdpvar (1,1);
L=sdpvar (n,n, 'symmetric');
Imil=AxLxA'-L +BxB' <= 0;

Imi2=C*xL*C'— gamma <= 0;

cons=[1lmil 1mi2 L>=0];
options=sdpsettings ('solver', 'mosek');
optimize (cons, gamma, options) ;
norm2=sqgrt (value (gamma) )

Problem 2.6: Consider an LTI discrete-time system G(z) with state-space representation (A, B, C,0).
The objective is to design a state feedback controller such that the sum of the two-norm of the closed
loop transfer functions from the input disturbance to the output and to the control signal (—Kz(k)) is
minimized. Represent this objective as a convex optimization problem.

Solution: The state feedback controller is u(k) = —Kxz(k) +w(k), where w(k) is the input disturbance.
Let’s define z = [y; (k) y2(k)]", then the closed-loop equations are:

x(k+1) = Ax(k) + B(—Kxz(k) + w(k)) = (A — BK)x(k) + Bw(k)
y1(k) = Cx(k) , wya(k) = —Kzx(k)

Therefore, the following optimization problem should be solved:
min trace CLCT + trace KLK T

(A— BK)L(A-BK)" — L+ BBT <0



The matrix inequality is not linear, so we rewrite it as:
(AL — BKL)L™Y(AL — BKL)T — L+ BBT <0
Let’s define Y = KL and apply the Schur lemma:

L-BB" AL-BY | _,
(AL — BY)T L =

which is an LMI. Lets define CLCT < T'; and KLKT < I'y. The second inequality can be written as:
'y — YL 'YT = 0 which can be converted to an LMI using the Schur lemma:

{}I:QT 32}}0

Then the convex optimization problem is:

min trace I'y + trace I'y

L — BBT AL—BY}>_O |:F2 Y

T
(AL—BY)T L yT L]>‘O s I'i—CLC* =0

Problem 2.7: Consider a state feedback control law as u(t) = r(t) — Kxz(t) for a strictly proper system

z(t) = Az(t) + Bu(t)
y(t) = Cx(t)

Write a convex optimization problem for computing K that minimizes the infinity norm of the transfer
function between the reference signal r(t) and the tracking error e(t) = r(t) — y(t).

Solution: The closed-loop equations are:

#(t) = (A — BK)x(t) + Br(t)
e(t) = —Cuz(t) +r(t)

Then we apply the bounded real lemma (Lemma 2.3, page 63) for the above closed-loop system with
Ay =A—BK, B, =B,C,; =—-C and D, = I to obtain the following inequality:

(A- BK)'P+ P(A-BK)+CTC+(PB-CHRY(PB-C")T <0
with R = (y2I — I). Multiplying from left and right with L = P~! leads to:
L(A - BK)' +(A— BK)L + LCTCL + (B — LCT)R™Y((B - LCT)T <0

Defining a new variable Y = KL gives:

LAT _YTBT 4 AL By + et Borety| T 0] cL <0
0 R (B — LCT)T

Using the Schur lemma, we obtain:

LAT —YTBT 4+ AL — BY LCT (B-LCT)
CL —I 0 <0
(B — LCT)T 0 -R

which is an LMI in the variables L and Y and v?. By minimizing ~2, the optimal values of L and Y are
obtained and the state feedback controller will be K = YL~ !.



Problem 2.8: Write a convex optimization problem to find a stabilizing controller that minimizes
[W5T||eo in a data-driven setting.

Solution: Minimizing ||W57 ||« for stable systems can be represented as:
min 7y
WoGK(I +GK) WoGK(I +GK) " <~  YweQ
Replacing K = XY ~!, we obtain:
WaGX (Y +GX) WoGX(Y +GX) 1" <41  VYweD
Taking P =Y + GX, gives:
v — (WoGX)(P*P) ' (WoGX)* =0  VYweQ
Applying QMI lemma leads to the following convex optimization problem:
min 7y

'YI WoGX

(WQGX)* P*P, + PC*P _ P:Pc =0 Yw € Q)

where P. =Y, + GX, and K, = XCY[1 is an initial stabilizing controller.

Problem 2.9: Consider the model reference control problem in the Hs framework as:

min |7 — M||2
K

where M is the transfer function matrix of a desired closed-loop system and 7 = GK (I + GK)~1. Write
a convex optimization problem in order to compute a stabilizing controller K in a data-driven setting
where only the frequency response of the plant model G is available.

Solution: Minimizing |7 — M || for stable systems can be represented as:
min / tracel’ (w)dw
Q

[GK(I+GK) ™' -~ M|[GK(I+GK)™ ' —M]* <T(w) VYweQ
Replacing K = XY ~!, we obtain:
[GX(Y +GX)™' - M][GX(Y +GX)™' — M]* <T(w) VYweQ
Taking P =Y + GX, gives:
Mw)—(GX — MP)(P*P) "} (GX —MP)* =0 VYwec®

Applying QMI lemma and gridding the frequency Qx = {wi,...,wn}, leads to the following convex

optimization problem:
N

min E trace I'y
k=1

T GX —MP
(GX — MP)* P*P,+ P'P— P'P,

where P. =Y, + GX_. and K, = XCYC_1 is an initial stabilizing controller.

:|>-0 Yw € Qpn



Problem 2.10: Consider a state feedback control law as u(t) = r(t) — Kz(t) for a strictly proper system

z(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

Compute the set of K that makes the transfer function between r(t) and e(t) = r(t) — y(t) positive real
(or passive) in terms of Linear Matrix Inequalities. You can use the positive real lemma given below:

Lemma 1 The system H(s) with state-space representation (A, B,C, D) and D+ DT = 0 is positive real
(i.e. H(jw) + H*(jw) = 0, Yw), iff there exists P = PT = 0 such that:

ATP+PA+CTC+ (PB-CT)(D+ D)"Y (PB-C")T <0
Solution: With u(t) = r(t) — Kz(t) the state-space equations of the closed loop system are:

#(t) = Ax(t) + Br(t) — BKz(t) = (A — BK)z(t) + Br(t)
e(t) = —Cuz(t) +r(t)

So the state space model of the closed-loop system is (A — BK, B,—C,I). Using PRL we obtain the
following matrix inequality:

(A— BK)'P+ P(A— BK)+CTC+ (PB+ChH2) Y (PB+CHT <0
Multiplying from left and right by X = P!, we obtain:
XAT - XKTBT + AX - BKX + XCTCX + (B+XxcHen Y (B+xcHT <0
Take KX =Y

I 0
0

-1
21} (xc™ B+xcT" <o

XAT —YyTBT + AX —BY + [XCT B+ XCT) {

Applying Schur lemma we obtain:

XAT —yTBT 4 AX - BY XCT B+ XxCT
6).¢ —I 0 <0
CX + BT 0 —2I

The above LMI together with X = 0 guarantee that the final controller K = Y X ~! makes the closed-loop
system positive real..



